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The online prediction of power system dynamic frequency helps to guide the
choice of control measures quickly and accurately after a disturbance, and this
then ensures the reliable and stable operations of a power system. However,
the prediction performance of the traditional single model is not accurate
enough, and the prediction method cannot reflect the dynamic mechanism of
the power system. To address these challenges, based on the analysis of the
mechanism of the dynamic operation of a power system, a dynamic frequency
online prediction method using the autoregressive integrated moving average
(ARIMA)model and the deep belief network (DBN) is proposed in this paper. First,
according to the mechanism of the dynamic operation of a power system, the
dynamic frequency can be regarded as having two stages after the disturbance
occurs. In the first stage, the frequency changes monotonously in the short
term, which is predicted by the ARIMA model. Furthermore, the second stage
is an oscillation phase with changing amplitude, which is predicted by the DBN.
The calibration process is used to combine the two predicted results. Second,
the three metrics including the frequency nadir (fnadir), the quasi-steady state
frequency (fss), and the frequency curve obtained through the prediction are
analyzed to measure the accuracy of the prediction results. Finally, to verify
the accuracy of the proposed model, the IEEE 10-generator 39-bus benchmark
system is used for verification.

KEYWORDS

frequency prediction, autoregressive integrated moving average model, deep belief
network, frequency nadir, rate of change of frequency (ROCOF)

1 Introduction

Frequency plays a crucial role in power system operations, and the frequency deviation
reflects the degree of power inequality between the active power and the load capacity.
In particular, the frequency remains within the safety and stability margin when a power
system is operating in a steady state (Mi et al., 2021). However, after the power system is
disturbed, such as the generator tripping, load outages, line switching, short circuits, or
disconnection faults (Bykhovsky and Chow, 2003; Su et al., 2021), the power system may
become unstable and the frequency will also change.Therefore, online frequency prediction
is of great significance for assessing the stability of a power system. Furthermore, the accurate
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prediction of the frequency helps to schedule the power generation,
which guides the control of the power system after the disturbance
(Gu et al., 2018). From the viewpoint of the mechanism of a power
system, when a disturbance occurs, the imbalanced power of the
power system will lead to a large deviation of the frequency and
instability of the power system if no control measure is activated.
For example, when a serious accident occurs in a power system
and the spinning reserve capacity is insufficient to make up for
the power shortage, part of the load should be selectively cut to
prevent the frequency from falling. This process is called under-
frequency load shedding. However, frequency instability may be
caused by a contingency, such as an unexpected huge demand for
power without available reserve power (Wood et al., 2013). If there
is no frequency prediction and no control strategy, the frequency
decreases abruptly. Hence, the protection relay will be activated,
and a blackout may occur in the power system. Therefore, the
accurate prediction of the frequency guides the control action
and ensures the safe and stable operation of power systems
(Dos et al., 2015; Dahab et al., 2020).

A power system is a large-scale, highly complex, and highly
nonlinear dynamic system, and it is challenging to construct the
mapping function between the operation mode, the disturbance
information, and the mode of the frequency response. At present,
the dynamic frequency prediction methods for a power system
include the time-domain simulation method, equivalent method,
and machine learning method. The working principle of the time
domain simulation method consists of two parts: mathematical
modeling and model solving. This method is used to calculate
the dynamic frequency according to the simplified model of the
power system when the initial conditions are given. A set of
differential-algebraic equations is constructed that represents the
relationship between the various components of the power system.
Then the solution of the power flow calculation is used as the
initial value to solve the equations. Therefore, the frequency can
be calculated.

When a power system has a large scale, the calculation amount
will be large.Therefore, the time domain simulation method cannot
be applied online. Furthermore, the equivalent model method
can reduce the calculation amount. The equivalent model method
mainly includes the average system frequency (ASF) model and
the system frequency response (SFR) model. The ASF model
aggregates the equations of motion of all the generator rotors in
the entire network into a single-generator model. Therefore, since
the independent response of the prime mover-speed control system
of each generator is retained, the order of the ASF model increases
when there are a large number of generators in the power system,
and the calculation speed is slower. The SFR model is further
simplified based on the ASF model, transforming the system into
a single generator model with the centralized load. In (Anderson
and Mirheydar, 1990), the frequency of the IEEE 3-generator 9-
bus system after the disturbance was predicted by using the SFR
model. After a 100 MW power disturbance occurred, the minimum
frequency prediction error reached 0.39 Hz, and it was difficult
to meet the requirements in a real-world application. Due to the
simplification of the SFR model, although the calculation speed
has been greatly improved, the calculation accuracy is not high. If
the ASF or SFR model is adopted, a large amount of information

that can be obtained will be ignored, and the model is not
easy to solve.

In sharp contrast to the above methods, the machine learning
methods have been used for the analysis and prediction of
power system frequency dynamics (Xu et al., 2013; Yang et al.,
2021). The working principle of machine learning methods is
training the mapping relationship between state variables and
dynamic frequencies rather than constructing complex high-order
differential-algebraic equations (Xiong et al., 2021).

In (Bo et al., 2014), the v-support vector regression (v-SVR)
method was used to predict the value of the frequency nadir of
an IEEE 10-generator 39-bus benchmark power system after the
disturbance, and the results showed that the maximum absolute
error did not exceed 0.014 Hz. However, the value of the frequency
can be predicted by using the v-SVR method. Several models need
to be constructed when the v-SVRmethod is used to predict a value
of the frequency. Yet, because the v-SVR models are independent of
each other, the v-SVR models cannot reflect the mutual influence
of factors in the change process of the frequency. In (Xu et al., 2013),
the extreme learningmachine was introduced into the safetymargin
evaluation of the power system frequency. In (Huang et al., 2018),
a physical-statistical model was proposed to predict the transient
stability of a power system.

Traditional types of machine learning, such as artificial neural
networks, support vector machines, decision trees, and other
shallow learning algorithms, are limited in terms of prediction
accuracy (Aik, 2006; Shi et al., 2020). In (Hong and Wei, 2010),
based on deep neural networks and a multi-layer extreme learning
machine (ELM), the real-time measured data were used to predict
and evaluate the frequency stability of a power system. However,
there is also the problem of difficulty in determining the parameters
and model structure of an ELM. In (Larsson and Rehtanz, 2002),
based on SVR and artificial neural networks, the steady-state
frequency of the power system for the post-disturbance period
was predicted.

However, a single prediction model has the limitation of poor
prediction accuracy for extreme points. According to the analysis of
the power system mechanism, the frequency series is a time series
containing linear and nonlinear components (Prakash et al., 2020).
A hybrid model of the autoregressive integrated moving average
(ARIMA) and deep belief network (DBN) models is proposed. The
ARIMA model is used to predict the linear part of the frequency
in this study. Furthermore, the DBN model is used to analyze and
predict the residual that is predicted with the ARIMAmodel, which
means that the nonlinear trend of the future frequency is predicted
by the DBN model.

First, the linear part of the frequency is predicted by the ARIMA
model.Then the residual of the predicted result is predicted with the
DBNmodel.The DBNmodel is very effective in modeling the input
features of the power system and the frequency, and it is effective for
the nonlinear systemmodeling.Themain contributions of this study
are as follows.

1. According to the analysis of the mechanism of the dynamic
operation of a power system, a dynamic frequency online
prediction method using the autoregressive integrated moving
average (ARIMA) model and the deep belief network (DBN)
is proposed.
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2. The 22 dimensional features of the power system at the
moments before and after the disturbance are used as input
features to predict the frequency.

3. The absolute error, maximum absolute error, mean relative
error, and root mean square error of the three metrics are used
to measure the accuracy of the prediction results. The three
metrics include the frequency nadir (fnadir), the quasi-steady
state frequency (fss), and the frequency curve obtained with the
prediction.

The organization of this paper is as follows. In Section 2, first,
the ARIMA model is introduced. Second, the basis of the DBN
model with a restricted Boltzmann machine (RBM) and a multi-
layer perceptron (MLP) is presented. In Section 3, the key problems
of the ARIMA-DBN model in terms of frequency prediction are
illustrated. Section 4 describes how the ARIMA-DBN model is
used for the frequency prediction of the IEEE 10-generator 39-bus
benchmark power system. In Section 5, the conclusion is given.

2 The proposed ARIMA-DBN method

2.1 ARIMA model

Autoregressive Moving Average (ARMA) models can be
represented as follows.

yt = θ0 +ϕ1yt−1 +ϕ2yt−2 +⋯+ϕpyt−p
+δt − θ1δt−1 − θ2δt−2 −⋯− θqδt−q

(1)

where yt and δt are the actual value and the random error at the
time period t, respectively. ϕi (i = 1,2,… ,p) and θj (j = 0,1,2,… ,q)
are parameters. {δt} is a sequence of independent and identically
distributed random variables with a mean of zero and a constant
variance of σ2. p and q are the order of the autoregressive term
and the moving average term, respectively (Box and Pierce, 2012).
Furthermore, the number of times needed to differentiate a series
in order to achieve stationarity when implementing the prediction
of a time series. The ARIMA model is suitable for the modeling
and prediction of the stationary series after the non-stationary series
undergoes the difference operation.

The basic idea of the ARIMA model is that a certain
mathematicalmodel is used to describe the sequence that is expected
to be predicted.Once themodel is established, themodel can be used
to predict the future frequency based on the historical frequency in
the time series. One key task of theARIMAmodeling is to determine
the appropriate values of (p,d,q). The expression of the ARIMA
model is shown below.

Φ (L)Ddyt = θ0 +Θ (L)ut (2)

where Φ (L) and Θ (L) are the p-order autoregressive operator and
the q-order moving average operator, respectively. θ0 is the error
term. Ddyt is the difference of the yt by d times.

2.2 A predictor using the DBN of RBMs

2.2.1 Restricted Boltzmann machine
TheBoltzmannmachine is composed of the hidden layer and the

visible layer. It is assumed that the visible vector is v = (v1,v2,⋯vm)
T,

FIGURE 1
The structure of the restricted Boltzmann machine.

and the hidden vector is h = (h1, h2,…hn)
T. In Figure 1, the unit

vi of the visible layer has the weight wij relative to the unit hj of the
hidden layer. Additionally, there is a two-way coupling relationship
and two-way flow of data (Kuremoto et al., 2014a; Guo et al., 2015).
The energy function of the RBM is defined as follows:

ε (v,h ∣ θ) = −
n

∑
i=1

m

∑
j=1

Wijhivj −
m

∑
j=1

ajvj −
n

∑
i=1

bihi (3)

where Wij represents the connection weight between the neuron i
and the neuron j, aj is the bias of the visible node j, and bi is the bias
of the hidden node i.

The training process of the RBM is to treat each training sample
as a state vector in order to make the probability of the state vector’s
appearance as large as possible. The joint distribution of the RBM
can be obtained by using the energy function:

p (v,h ∣ θ) =
exp (−ε (v,h ∣ θ))

∑
v,h

exp (−ε (v,h ∣ θ))
(4)

It is assumed that there are m visible neurons and n hidden
neurons, and v and h represent the state vectors of the visible layer
and the hidden layer, respectively. The probability distribution can
be represented as follows.

P (v ∣ h) =
d

∏
i=1

P(vi ∣ h) (5)

P (h ∣ v) =
q

∏
j=1

P(hj ∣ v) (6)

The RBM reaches a convergent state by learning the weights
of the appropriate connections. For example, for each training
sample v, first, the probability distribution of the state of the hidden
layer neuron is calculated according to (6), and then h is sampled
according to this probability distribution. Similarly, according to
(5), v′ is generated from h, and then h′ is generated from v′.
Furthermore, the update formula of the connection weight is:

ΔW = η(vhT − v′h′T) (7)
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FIGURE 2
The structure of a deep belief network.

2.2.2 Multi-layer perceptron
Generally, the MLP includes the input layer, the hidden layer,

and the output layer. The signal is input to the input layer, which
is propagated to the neurons of the hidden layer. When the input
signal exceeds the threshold, the neurons of the hidden layers are
activated. The working principle of the output layer is similar. A
logistic sigmoid function can usually be adopted as the output
function of each unit, as shown in Eq. 8).

f (x) = 1
1+ exp (−x/ε)

(8)

2.2.3 Deep belief networks
The deep belief network is composed of multiple RBMs, and the

top-down generation weights determine the directional connection
between the layers. Because the DBN is composed of multiple
stacked RBMs, the number of visible nodes of each RBM is
equal to the number of hidden layer nodes of the previous RBM
(Ackley et al., 1985).The structure of a deep belief network is shown
in Figure 2.

2.3 Proposed method

The linear predictor ARIMA is used for the prediction at first,
and then the DBN model is used to predict the nonlinear part
of the frequency. Finally, the final prediction result is the sum of
the value predicted by the ARIMA model and the value predicted
by the DBN model. The prediction formulas can be represented
as follows.

y (t) = L (t) +N (t) (9)

FIGURE 3
The flowchart of the proposed ARIMA-DBN method.

where y(t) is the actual frequency at time t, L(t) is a linear part of
y(t), and N(t) is a nonlinear part of y(t).

The ARIMA-DBN method is shown as follows:

ε (t) = y (t) − L̂ (t) (10)

ŷ (t) = L̂ (t) + N̂ (t) (11)

where L̂(t) and N̂(t) are the prediction results of the ARIMA model
and the DBN model, respectively.

The framework of the ARIMA-DBN model used for frequency
prediction is shown in Figure 3. First, the ARIMA model is used
to predict the frequency at time t. Second, the DBN model is used
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to predict the error at time t, and the frequency prediction value is
corrected. Finally, the calibration process is used to combine the two
predicted results.

3 The frequency prediction of the
power system after the disturbance

3.1 Description of the challenge of
frequency prediction

The power system is a large-scale, highly complex, and highly
nonlinear dynamic system. The frequency changes with time
and the frequencies of electrical points in different geographical
locations are not exactly the same. When the power system is
disturbed, the dynamic changes in the frequency are caused by
the comprehensive influence of all generators in the power system
(Larsson, 2005; Seethalekshmi et al., 2009). Therefore, the center
frequency is usually selected as the system frequency for the criterion
of the actions of the frequency control. The frequency at the center
inertia is as follows:

ωCOI =
n

∑
i=1
(Miωi)/

n

∑
i=1

Mi (12)

where n is the number of generators. Mi and ωCOI are the inertia
time constants of the i− th generator and the angular velocity of the
generator rotor, respectively.

When a disturbance occurs, if no control actions are taken or
the power system’s reserve capacity is not enough, the frequency is
unstable. Figure 4 shows the dynamic change curve of the power
system frequency at center inertia when the load increases suddenly.
In the first few seconds after the disturbance occurs, due to the
prime mover’s adjustment lag, the first frequency adjustment of
the generator has not acted yet. The inertia of the power system
determines the change speed of the frequency at center inertia.
When the synchronous generator set has a frequency adjustment
function, the rotating reserve of the active power is gradually put in
to reduce the power imbalance. The frequency at center inertia first

FIGURE 4
The curve of the dynamic frequency after the system is disturbed.

drops to the lowest point, then gradually rises, and finally returns
to the quasi-steady state point. There are two important indicators
used to measure the frequency, namely, the frequency nadir and the
quasi-steady frequency.

3.1.1 Frequency nadir f nadir

The extreme value of the frequency is the lowest or highest point
in the transient change process of the frequency at center inertia, and
its magnitude is related to the system inertia, rotating reserve, and
regulated power of the generator.

The frequency nadir f nadir directly determines the acts of
low-frequency load shedding when the frequency is low, and
the generators are tripped when the frequency is high. This is
the frequency indicator of most concern with an active power
disturbance. In order to avoid generator tripping or load shedding,
the value of the frequency nadir f nadir needs to satisfy the condition
of fmin ≤ f nadir ≤ fmax, where fmin and fmax are the minimum
and maximum frequencies that the power system allows for safe
operations.

3.1.2 Quasi-steady frequency f ss

f ss is the frequency value at which the center of the inertia
frequency of the system is restored to the quasi-steady state
operating point after the system is disturbed. According to the value
of f nadir, it can be judged whether the power disturbance event
should trigger the generator tripping or load shedding to avoid a
frequency collapse.

This paper describes the use of the extreme value of the
frequency at the center inertia of the power system and the quasi-
steady state frequency to measure the frequency performance with
disturbance events.

3.2 The selection of input features

The reasonable selection of the input feature set is the key to
the ARIMA-DBNmethod for the frequency prediction of the power
system after the disturbance. The features need to be selected with
reference to the factors affecting the frequency at center inertia of the
power system. Therefore, the maximum correlation and minimum
redundancy algorithms are used to choose the features (Amjady and
Majedi, 2007).

Therefore, in this study, the active load, reactive load, and total
load amount of the systemafter the disturbance, aswell as the reserve
capacity and the total load amount of each generator at the moment
and the power shortage value after the disturbance, are chosen as
input features. Additionally, an extra feature is selected for the input
feature set (Yurdakul et al., 2020).

From the rotor motion equation of the generator and the
equation of the frequency at center inertia, the dynamic equation
of the frequency of the multi-generator system can be represented
as follows.

2Hω̇ = Pm − Pe −Dω (13)

2Hsysω̇COI =
n

∑
i=1

Pmi −
n

∑
i=1

Pei −
n

∑
i=1

Dωi (14)
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TABLE 1 Input features of frequency prediction.

Feature Description

1 Load capacity

2
The influence value of each generator on the

dynamic frequency

3
The power shortage after

the power system is disturbed

4–5
The voltage or angle of each bus after

Disturbance

6–7
The electromagnetic power of each generator

before or after the disturbance

8–9
The total electromagnetic power of generators

before or after the disturbance

10–11
The mechanical power of each generator

before or after the disturbance

12–13
The total mechanical power of generators

before or after the disturbance

14–15
The reactive power of each generator

before or after the disturbance

16
The total reactive power of generators

after the disturbance

17–18
Active load or reactive load of the system

after the disturbance

19–20
The total amount of active load or reactive load of the system

after the disturbance

21
The reserve capacity of each generator at the moment

after disturbance

22
The total amount of reserve capacity of the generator

after the disturbance

where Hsys represents the equivalent total inertia of the power
system, ωi, Pmi and Pei are the frequency, mechanical power, and
electromagnetic power of the i− th generator, respectively, and D
represents the generator’s damping coefficient.

From Eq. 13) and Eq. 14), it can be concluded that the
variables that affect the frequency at center inertia are mainly the
mechanical power and the electromagnetic power of each generator
(Liu et al., 2016; Zografos et al., 2018). A total of 22 dimensional

features are selected in this study, as shown in Table 1. Given
the input features mentioned above and the prediction error of
the ARIMA model, the established mapping network can reflect
the influence of the 22 features on the frequency and include
the influence of the system control parameters on the current
system frequency.

3.3 Modeling process

From the perspective of the power system mechanism, the
dynamic frequency can be regarded as having two stages after
the power system is disturbed. In the first stage, the frequency
changes monotonously in the short term. The second stage is an
oscillation phase with changing amplitude. In the first stage, the
frequency changes approximately linearly. Furthermore, the first
stage reflects the characteristics of the frequency, which contains
more information about the whole power system. Specifically, the
type of disturbance and the capacity amount of the disturbance are
contained in the frequency characteristics in the first stage. The
dynamic part of the frequency of the power system is regarded as
nonlinear in the second stage.

The basic idea of the hybrid method is as follows. First,
the ARIMA model is used to predict the frequency. Then the
DBN is used to obtain a more accurate result of the predicted
frequency. The linear prediction result is obtained with the ARIMA
model, and then the residual value is obtained by determining the
difference between the original frequency and the linear prediction
result. The residual values represent the nonlinear characteristics of
frequency.The error sequence can also be regarded as a random time
sequence, and its error prediction model can also be established.
Then the DBN model is used to analyze and predict the residual
values (Hinton, 2012; Kuremoto et al., 2014b). Finally, the results
of the linear prediction and the nonlinear prediction are summed
to obtain the prediction frequency. The proposed ARIMA-DBN
model can effectively solve the limitations of a single model’s low
prediction accuracy.

The specificmodeling and the prediction process of theARIMA-
DBN model used for frequency prediction are shown in Figure 5.
The realization of the hybrid prediction method based on the
ARIMA-DBN model is as follows. First, the ARIMA model is used
to predict the frequency at time t. Second, the DBN model is used
to predict the error at time t, and the frequency prediction value is
corrected. The dotted line in Figure 5 is the modeling process of the
error prediction.

After the modeling process is completed, an error prediction
model is formed, as shown by the solid rectangular frame, which
is used to predict the prediction error and correct the prediction
frequency. By analyzing a large quantity of historical data, a
reasonable frequency prediction model that reflects the changing
trend of the historical data can be established.

4 Case study

The IEEE 10-generator 39-bus benchmark system is adopted to
evaluate the performance of the proposedARIMA-DBNmodel.This
benchmark system comprises 10 generators, 39 buses, 19 loads, 12
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FIGURE 5
Hybrid ARIMA and DBN model for frequency prediction.

FIGURE 6
The topology of the IEEE 10-generator 39-bus system.

transformers, and 34 transmission lines, as shown in Figure 6. The
rated frequency is 60 Hz. The base power and the voltage are 100
MVA and 345 kV, respectively. The generator at bus 39 represents
the aggregation of a large system.

4.1 Dataset generation

Since various disturbances such as generator tripping or a
load increase or decrease may occur to different degrees, multiple
emergency scenarios are generated for analysis. Power System
Simulator/Engineering (PSS/E) can be used to simulate numerous
contingencies in batch mode, which is useful in transient analysis.
Consequently, the required numerical simulations are run on the
IEEE 10-generator 39-bus benchmark system by using PSS/E. Based
on the IEEE 10-generator 39-bus benchmark system, the transient
simulation after the sudden load increase, the sudden load decrease,
and the generator tripping disturbance is carried out.

The setting of the simulation conditions is mainly divided into
two parts, namely, the setting of the operation mode and the setting
of the disturbance information. The setting of the operation mode
mainly involves consideration of the load capacity, load model,
rotating reserve, and inertia time constant. All the loads (both
active and reactive loads) are set to 50%, 50.25%, 50.5%,…, 110%
of the rated load capacity, respectively. The rotating reserves of the
power system are set to 0%, 0.5%, 1.0%,…, 4.0% of the basic value,
respectively. For the simulation of different working conditions of
the power system, the inertia time constant is set to 0.2 times, 0.4
times, 0.6 times, … , 2.0 times the basic value, respectively. The
detailed configurations are listed in Table 2.

For the disturbance cases, the fault types are a short-circuited
fault, line shedding fault, bus short-circuit fault, and generator
tripping disturbance. The disturbances of the load increase or load
shedding are set to 5%, 10%, 15%,…, 100% of the rated load capacity.
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TABLE 2 Operation mode setting.

Operation conditions Types

Load capacity 50%, 50.25%, 50.5%,…, 110%

Rotating reserve 0%, 0.5%, 1.0%, 1.5%,…, 4.0%

Inertial time constant 0.2, 0.4, 0.6, … , 2.0

FIGURE 7
The frequency at center inertia after the generator tripping.

Thegenerator tripping is determined by the generator capacity of the
simulation system.

According to the above operationmode settings and disturbance
information settings, different combinations of operationmodes and
disturbances can be selected arbitrarily to form different scenarios
of the transient simulation. A large number of data samples for
frequency prediction can be obtained after the transient simulation.
First of all, the rotating reserve, inertia time constant, and active
power in the power systemcan be continuously changed for the same
load capacity, and different load models for the transient simulation
can be set. Thus, several steady-state operation modes before
disturbance can be obtained. In a certain operating mode, different
fault types and fault locations are set, and then the data samples
of different frequency response modes for the above corresponding
conditions can be obtained through transient simulation.

Each load mode of the IEEE 10-generator 39-bus benchmark
system has 12 groups of switching load disturbances, and each line
has two cutoff line disturbances after a short circuit. Therefore, for
one scenario of steady-state operation, 294 different disturbances
and frequency response curves can be generated. For the simulation
of generator tripping, the time of a single simulation is 60 s. The
step length is 0.01 s. The frequency needs to be obtained with the
weighted average of the frequency of each generator according to the
inertia time constant. Figures 7, 8 show the system frequency at the
center inertia response results. The frequency at center inertia after
a 500-MW generator is tripped shown in Figure 7. The frequency at
center inertia after 90-MW load shedding is shown in Figure 8.

4.2 Evaluation indicators

To assess the prediction accuracy of different models, the
absolute error (AE), maximum absolute error (MAE), mean relative

FIGURE 8
The frequency at center inertia after the load shedding.

TABLE 3 Comparison of the accuracy of different methods for predicting
fnadir.

MAE/Hz MRE/% RMSE/Hz

ARIMA-DBN 0.0069 7.31 × 10−4 7.60 × 10−4

SVR 0.0136 0.02 0.011

BPNN 0.028 0.08 0.0057

error (MRE), and root mean square error (RMSE) are used to
evaluate the results. The MRE is the ratio of the error of the true
value, which means that the smaller the value of the MRE is, the
higher the accuracy of the prediction result is.The root mean square
error can reflect the degree of dispersion of the error, that is, the
stationarity of the prediction. When there is a very small number
of values that differ greatly from the real values, the RMSE indicator
is greatly affected. The formulas of the above four indicators are as
follows.

AE = f (xi) − yi (15)

MAE =max(abs | f (xi) − yi|) (16)

MRE = 1
n

n

∑
i=1

|Xi −Yi|
Yi

(17)

RMSE = √ 1
n

n

∑
i=1
(Xi −Yi)

2 (18)

4.3 Analysis of prediction result

4.3.1 Frequency nadir
Three methods including the ARIMA-DBN model, support

vector regression (SVR), and the back-propagation neural network
(BPNN)model are adopted for frequency prediction.The frequency
nadir is extracted, and the error calculation is performed.The result
is shown in Table 3 and Figure 9.

It can be concluded from Table 3 and Figure 9 that the error of
the ARIMA-DBN used to predict the minimum value of frequency
is very small. Table 3 shows that the maximum absolute error of the
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FIGURE 9
Absolute error comparison of the fnadir.

TABLE 4 Comparison of the accuracy of different methods for predicting
fss.

MAE/Hz MRE/% RMSE/Hz

ARIMA-DBN 0.0079 8 × 10−4 0.001

SVR 0.01 0.014 0.01

BPNN 0.023 6.5 × 10−3 0.0046

lowest value predicted by the ARIMA-DBNmodel is 0.0069 Hz, and
the mean relative error is 7.31× 10−4%.

4.3.2 The quasi-steady state frequency
Three methods including the ARIMA-DBNmodel, SVR model,

and the BPNNmodel are used for frequency prediction of the power

FIGURE 10
Absolute error comparison of the fss.

FIGURE 11
Frequency curve of the 37th test sample.

system after the disturbance. The quasi-steady state frequency is
extracted, and the error is calculated. The result is indicated in
Table 4 and Figure 10.
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It can be concluded from Table 4 and Figure 10 that the error of
the ARIMA-DBNused to predict the steady-state value of frequency
is very small, and the accuracy of the BPNN in predicting the steady-
state value of frequency is generally better than that of SVR. The
maximum absolute error of the steady-state value predicted by the
ARIMA-DBN model is 0.0079 Hz, and the mean relative error is
8× 10−4%.

4.3.3 The dynamic characteristics of the
frequency

The prediction result of the frequency curve of the 37th sample
is shown in Figure 11.

It can be seen from Figure 11 that the maximum absolute error
of SVR when predicting the frequency curve is slightly smaller than
that of the ARIMA-DBN model, but the root mean square error
of the ARIMA-DBN model when predicting the frequency curve is
much lower than that of SVR and the BPNN. As can be seen from
Figure 11, compared to the other two methods, the ARIMA-DBN
prediction curve has a high degree of overlap with the simulation
curve, and the SVR prediction curve has a large prediction error
at the steady-state value of the frequency. Taking this sample as
an example, the frequency is 58.91 Hz, which is lower than the
frequency setting value of 59.5 Hz. For this kind of disturbance, the
power system is assessed to be unstable. Therefore, the automatic
load shedding control is activated.

The load to be removed is calculated according to the predicted
minimum frequency value and the corresponding load is removed
so that the actual frequency of the system is not lower than
the set value. The results show that the proposed method can
predict the frequency curve value within 60 s after the disturbance,
which is quicker and more accurate than other single machine
learning methods.

5 Conclusion

The frequency of the power system after the disturbance is
predicted using a hybrid model of the autoregressive integrated
moving average model and a deep belief network. The 22
dimensional features of the power system at the moments before
and after the disturbance are used as input features to predict the
frequency, and the IEEE 10-generator 39-bus system is adopted for
verification. Compared with traditional machine learning models,
such as the SVR model and BPNN, the frequency prediction result
of the hybrid ARIMA-DBN model is more accurate according

to the comparison of the absolute error, the maximum absolute
error, the mean relative error, and the root mean square error of
three metrics, including the frequency nadir, the quasi-steady state
frequency, and the dynamic characteristics of frequency. In the
future research, according to the result of the predicted frequency,
study the emergency control strategy to ensure the frequency
stability further.
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