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To address the challenges posed by the randomness and volatility of multi-
energy loads in integrated energy systems for ultra-short-term accurate load
forecasting, this paper proposes an ultra-short-term multi-energy load
forecasting method based on multi-dimensional coupling feature mining and
multi-task learning. Firstly, a method for mining multi-dimensional coupling
characteristics of multi-energy loads is proposed, integrating multiple
correlation analysis methods. By constructing coupling features of multi-
energy loads and using them as input features of the model, the complex
coupling relationships between multi-energy loads are effectively quantified.
Secondly, an ultra-short-term multi-energy load forecasting model based on
multi-task learning and a temporal convolutional network is constructed. In the
prediction model construction phase, the potential complex coupling
characteristics between multiple loads can be fully explored, and the potential
temporal associations and long-term dependencies within data can be extracted.
Then, the multi-task learning loss function weight optimization method based on
homoscedastic uncertainty is used to optimize the forecasting model, realizing
automatic tuning of the loss function weight parameters and further improving
the prediction performance of the model. Finally, an experimental analysis is
conducted using the integrated energy system of Arizona State University in the
United States as an example. The results show that the proposed forecasting
method has higher prediction accuracy than other prediction methods.
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1 Introduction

The Integrated Energy System (IES) is a multi-energy supply system that connects
multiple independent energy systems through a variety of energy coupling devices to
achieve tight coupling, coordination, and complementarity between different energy forms
(Alabi et al., 2022). IES can improve the flexibility of various energy systems and achieve full
consumption of renewable energy and a reliable supply of multiple energy sources (Zhu
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et al., 2022). Therefore, the development and construction of IES is
an inevitable choice to solve the energy crisis, improve
environmental pollution, improve energy utilization efficiency,
and promote the large-scale utilization of renewable energy (Liu
et al., 2023). With the development of IES, the potential factors
affecting the energy demand of IES users have gradually become
more complicated, which brings huge challenges to the ultra-short-
term accurate prediction of multi-load, thus affecting the optimal
dispatch and demand response strategy formulation of IES (Yan
et al., 2024). Therefore, it is necessary to research a more accurate
ultra-short-term forecasting method for IES multi-energy loads.

In the construction phase of the input feature set for multi-energy
load forecasting in IES, existing research has considered various
potential factors that influence IES users’ energy consumption
habits, and uses correlation analysis methods to screen the strongly
correlated features for multi-energy load forecasting. Literature (Wang
et al., 2022) considers the impact of meteorological information,
holiday information, and temporal features on the multi-energy
load when constructing the input feature set. It employs Pearson
correlation analysis and Grey Relational Analysis (GRA) to select
strongly correlated meteorological features for multi-energy load
forecasting, thereby enhancing the forecasting model’s accuracy.
Similarly, Literature (Zhuang et al., 2023) considers factors such as
meteorological information and holiday information in relation to the
potential association with the multi-energy load when constructing the
input feature set. It utilizes Pearson correlation analysis and correlation
analysis methods based on Copula theory to select strongly correlated
meteorological features from both linear and nonlinear perspectives for
multi-energy load forecasting. In addition, some researchers have
constructed strongly correlated features that reflect the latent
characteristics of multi-energy loads, achieving high prediction
accuracy. For instance, Literature (Tan et al., 2023) introduces a
feature selection method based on Synthesis Correlation Analysis
(SCA), and constructs a Load Participation Factor (LPF) as an
input feature for the prediction model, illustrating the degree of
participation of each load in the total load. However, existing
multi-energy load forecasting methods for IES have not fully
explored the potential complex coupling characteristics between
multi-energy loads of the integrated energy system in different
dimensions during the input feature set construction phase, thereby
leaving room for improvement in the model’s prediction accuracy.

In the construction phase of forecasting models for multi-energy
loads in IES, some existing studies build separate forecasting models
for different types of loads. Literature (Zheng et al., 2023) proposes a
multi-energy load forecasting method based on Temporal
Convolutional Networks (TCN) and global attention mechanism,
forecasting electric, cooling, and heating loads separately. Literature
(Ge et al., 2021) introduces a Wavelet Neural Networks (WNN)
multi-energy load forecasting model based on Improved Particle
Swarm Optimization (IPSO) and Chaos Optimization Algorithm
(COA), which forecasts electric, cooling, and heating loads
individually. Literature (Liu et al., 2022) presents a multi-energy
load forecasting method combining Multivariate Phase Space
Reconstruction (MPSR) with Support Vector Regression (SVR),
achieving good forecasting results by separately constructing
forecasting models for each load. However, there is a complex
coupling relationship among the multi-energy loads in IES. The
mentioned research method uses historical data of various types of

loads, which are strongly correlated with the load to be predicted, as
input features for the forecasting model during the construction of
the input feature set. This approach only considers the coupling
relationship among the multi-energy loads at the construction phase
of input feature set construction and fails to fully explore the
potential coupling characteristics among the multi-energy loads
during the construction phase of the forecasting model. As a
result, this leads to the need for improvement in the accuracy of
multi-energy load forecasting.

To address this issue, some studies have employed multi-energy
load forecasting models based on Multi-Task Learning (MTL),
achieving high prediction accuracy. For instance, Literature (Guo
et al., 2022) developed a multi-energy load forecasting model based
on MTL and Bi-directional Long Short-Term Memory Networks
(BiLSTM), effectively extracting potential coupling information
between loads. Literature (Wang et al., 2021) used a forecasting
model combining MTL with Long Short-Term Memory Networks
(LSTM) to forecast the trend curves of decomposed and
reconstructed multi-energy loads. Additionally, it employed the
Least Squares Support Vector Regression (LSSVR) method to
forecast fluctuation curves. The final multi-energy load forecast
results were obtained by superimposing the predictions of the
two models. However, existing studies on multi-energy load
forecasting based on MTL often employ LSTM and their variants
to construct the sharing layers in MTL. Although these structures
contain temporal memory units, they still face issues with forgetting
historical information. Furthermore, their capability to mine
potential temporal associations and long-term dependencies
within data is relatively weak, limiting the improvement in the
accuracy of multi-energy load forecasting.

Selecting appropriate weights for the loss functions of each sub-
task in the construction and training process of MTL models is a
crucial means of enhancing the overall performance of the model.
Current research methods on multi-energy load forecasting in IES
using MTL models typically set the weights of each forecasting task’s
loss function manually without adjustment. For example, Literature
(Zhang et al., 2023) manually set the loss function weights for the
model when utilizing MTL to construct an electric load forecasting
model. Literature (Wu et al., 2022) developed a multi-energy load
forecasting model for IES based on MTL and LSTM, where the loss
function weights for the MTL model were manually set based on the
peak ratio of different types of loads within the IES. However,
manually setting the weights of the MTL loss functions during the
training process will consume a considerable amount of time for
parameter tuning. Additionally, setting model parameters manually
may lead to one or more tasks dominating the model training process.
This method of parameter configuration fails to balance the losses of
the sub-tasks reasonably, lacks scientific rigor, and limits further
enhancements in the prediction performance of MTL models.

To address the aforementioned issues, this paper proposes an
ultra-short-term multi-energy load forecasting method based on
multi-dimensional coupling characteristic mining and multi-task
learning. The specific contributions of this paper are as follows:

(1) A multi-dimensional coupling characteristic mining method
for multi-energy loads is employed, integrating multiple
correlation analysis methods. By utilizing Pearson
correlation coefficients, Spearman rank correlation
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coefficients, and theMaximum Information Coefficient (MIC),
load features that describe the coupling relationships between
multi-energy loads are constructed. This effectively quantifies
the complex coupling relationships among the historical
sequences of IES multi-energy loads, thoroughly mining the
potential coupling characteristics from different dimensions in
the construction of the input feature set.

(2) An ultra-short-term multi-energy load forecasting model
based on MTL and TCN is constructed. During the model
construction phase, the sharing layer of MTL is used to fully
exploit the potential complex coupling characteristics among
multi-energy loads. The use of dilated causal convolutions
and residual connections in TCN extracts the latent temporal
information of input features, capturing the long-term
dependencies of the input time series.

(3) An optimization method for the forecasting model based on
homoscedastic uncertainty (HU) for MTL loss function
weight optimization is employed. By learning the
homoscedastic uncertainty of multiple forecasting tasks,
the method automatically tunes the weight parameters of
the loss function, saving time on parameter tuning while
further enhancing the model’s prediction performance.

(4) An experimental analysis is conducted using the IES of
Arizona State University as a case study. The results
demonstrate that the proposed forecasting method achieves
higher prediction accuracy compared to other methods.

2 Multi-energy load
characteristic analysis

The various energy subsystems in IES coordinate and
complement each other through energy conversion devices,
leading to complex coupling relationships among different forms
of energy within IES. Simultaneously, changes in external factors
such as meteorological conditions can influence the energy
consumption habits of IES users, implying that the variation
trends of IES multi-energy loads follow certain latent patterns.
To fully explore the latent characteristics of IES multi-energy
loads, this study analyzes the multi-energy load characteristics
using historical data of loads from March 2018 to February
2019 from the IES of the Tempe campus of Arizona State University.

2.1 Analysis of the annual variation trends of
multi-energy loads

Figure 1 displays the annual data curves of electric, cooling, and
heating loads in IES from March 2018 to February 2019. To facilitate
the analysis of the variation trends of multi-energy load sequences in
different seasons, the load data fromMarch to May are categorized as
Spring data, June to August as Summer data, September to November
as Autumn data, and December to the following February as Winter
data. As indicated in Figure 1, both electric and cooling loads
gradually increase to higher levels in Spring and Summer, with
significant fluctuations in these two seasons. The electric load
exhibits stronger fluctuations in autumn, while the fluctuations are
more subdued in winter. The cooling load remains relatively stable in

both autumn and winter. Conversely, the heating load shows an
opposite annual trend, gradually decreasing in Spring and Summer
with less variability. InAutumn andWinter, the heating load increases
to higher levels with more pronounced fluctuations. This
demonstrates that for the same load, the variation trends in
different seasons are significantly influenced by varying
meteorological and other external factors. The differences in load
variation trends across different seasons imply that IES users have
varying energy consumption habits in different seasons. Ignoring
these differences can lead to a failure to fully explore the potential
characteristics of multi-energy loads. Therefore, in conducting ultra-
short-term forecasting of multi-energy loads, it is crucial to mitigate
the negative impact of the differences in load variation trends between
seasons on prediction accuracy.

2.2 Coupling analysis between multi-
energy load

Figure 1 also reveals that within the same season, the variation
trends of different loads in IES are either similar or complementary,
which preliminarily indicates a tight coupling relationship among
IES multi-energy loads. To analyze the coupling among multi-
energy loads more intuitively, Figure 2 employs the Pearson
correlation analysis method to quantify the correlation of the
annual variation trends among different loads. The Pearson
correlation coefficient is a statistical metric that measures the
degree of linear correlation between two continuous variables,
and its specific expression is as follows:

ρ � ∑n
i�1 ai − �a( ) bi − �b( )������������������������∑n

i�1 ai − �a( )2
�����������∑n

i�1 bi − �b( )2√√ (1)

In the formula, ai and bi respectively represent the i-th sample of
the multi-energy load sequences A and B, while �a and �b represent the
mean values of the multi-energy load sequences A and B,

FIGURE 1
The annual historical data curves of multi-energy loads.
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respectively. The symbol “n” denotes the total number of samples in
the load sequences. The value of ρ ranges from [-1, 1], and a larger
value of |ρ| indicates a stronger correlation.

According to Figure 2, there is a positive correlation between the
IES electric load and the cooling load, while there is a negative
correlation between the heating load and both the cooling and
electric load. The absolute values of the Pearson correlation
coefficients between the annual electric load, cooling load, and
heating load in the IES are all greater than 0.7. This indicates a
strong coupling relationship between the various loads in the IES.
Therefore, in conducting ultra-short-term forecasts of multiple
loads, it is crucial to thoroughly explore the complex coupling
characteristics between these loads, as this can significantly
enhance the accuracy of the forecasts.

2.3 Multi-energy loads temporal
correlation analysis

The Autocorrelation Coefficients Function (ACF) is used to
analyze the temporal correlation of multi-energy loads, with the

results presented in Figure 3. The calculation formula for ACF is
as follows:

R k( ) � E Xt − μ( ) Xt+k − μ( )[ ]
σ2

(2)

In the formula, k represents the time lag, where Xt denotes the
load value at time t; μ represents the mean of the historical load
sequence, and σ2 represents the variance of the historical load
sequence. The autocorrelation coefficient takes values within the
range [-1, 1], where a higher autocorrelation coefficient indicates a
stronger correlation.

Figure 3 shows the autocorrelation coefficients of IES multi-
energy loads with a 96-h lag, where the shaded area represents the
95% confidence interval. The figure reveals that within each 24-h lag
period, the autocorrelation coefficients of the various loads first
decrease and then increase, exhibiting a strong daily periodicity.
Additionally, the peak values of the autocorrelation coefficients
within each 24-h lag period gradually decrease. This indicates
that the load values of the IES at a given moment are not only
strongly correlated with the load values of adjacent times but also
with the load values at the same time on adjacent days. Therefore,
when conducting ultra-short-term forecasts of multi-energy loads, it
is essential to fully consider the temporal correlation of the loads to
achieve accurate ultra-short-term predictions.

3 Multi-dimensional multi-energy load
coupling characteristics mining and
input feature set construction

Section 2.2 quantifies the coupling relationships between multi-
energy loads in the IES using the Pearson correlation analysis
method, indicating a strong coupling among the IES multi-
energy loads. However, the Pearson correlation analysis method
can only describe the linear relationships between two types of load
sequences and fails to capture the nonlinear relationships between
loads. Therefore, this chapter employs Pearson, Spearman, and MIC
correlation analysis methods to construct multi-energy load
coupling features. By utilizing multiple correlation analysis
methods to quantify various types of linear and nonlinear
relationships between multi-energy loads, it is possible to fully

FIGURE 2
Pearson correlation analysis results between multi-energy loads.

FIGURE 3
Annual multi-energy load autocorrelation coefficient.
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explore the complex coupling characteristics among multi-energy
loads from multiple dimensions. Based on this, considering various
potential characteristics of multi-energy loads, an input feature set
for the ultra-short-term forecasting model is constructed.

3.1 Multi-dimensional multi-energy load
coupling characteristics mining based on
the integration of multiple correlation
analysis methods

The Spearman’s rank correlation coefficient is a non-parametric
rank statistic used to measure the strength of the monotonic
relationship between two continuous variables. For the multi-
energy load sequences A and B, its specific expression is as follows:

r � 1 − 6∑n
i�1 d

2
i

n n2 − 1( ) (3)

In the formula, di represents the difference in ranks between the
i-th sample ai and bi in the multi-energy load sequences A and B.
The value of r ranges from [-1,1], and a larger value of |r| indicates a
stronger correlation.

MICmeasures the linear and nonlinear relationships between two
continuous variables by calculating the maximum normalized mutual
information under different grid divisions. MIC exhibits robustness to
samples containing noise. The mutual information calculation
formula between multi-energy load sequences A and B is as follows:

I a; b( ) � ∫ p a, b( )log2
p a, b( )
p a( )p b( ) dadb (4)

In the formula, P(a, b) represents the joint probability density of
multi-energy load sequences A and B, while P(a) and P(b)
respectively denote the marginal probability densities of multi-
energy load sequences A and B.

A grid is partitioned on the two-dimensional variable (A, B)
formed by the multi-energy load sequences A and B, and the mutual
information size between each grid is calculated. MIC is the
maximum value of the normalized mutual information under
different grid partitioning methods. Its calculation formula is
as follows:

δ � max
mpn<D

I a; b( )
log2 min m, n( ) (5)

In the formula, m and n respectively represent the number of
intervals partitioned in the direction of multi-energy load sequences
A and B, D is the total number of grids, typically taken as D = n0.6.
The value of δ ranges from [0, 1], and a larger value of δ indicates a
stronger correlation.

For a multi-energy load sequence of length n, the Pearson
correlation coefficient quantifies the linear relationship between
multi-energy loads by calculating covariance and standard
deviation. The Spearman rank correlation coefficient quantifies
simple monotonic nonlinear relationships between multi-energy
loads by calculating the correlation coefficients between the ranks
of variables. Meanwhile, MIC effectively measures the strength of
both linear and nonlinear relationships between multi-energy
loads by calculating the maximum normalized mutual
information under different grid partitioning methods.
Pearson, Spearman, and MIC correlation analysis methods can
quantify different types of linear and nonlinear relationships
between multi-energy loads. Therefore, combining these three
correlation analysis methods to construct multi-energy load
coupling features can measure the potential coupling
relationships between loads from different dimensions, thereby
fully exploring the multi-dimensional coupling characteristics
between multi-energy loads.

Therefore, for the forecast moment t, the historical multi-energy
load sequences from t-1 to t-s are analyzed using Pearson, Spearman,

FIGURE 4
Correlation analysis results between coupling features and multi-energy loads.
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and MIC correlation methods. The obtained correlation coefficients
are then averaged in a weighted manner according to formula (6),
thus obtaining the IES multi-energy load coupling features at time t.
These features reflect the coupling characteristics of the historical
multi-energy load sequences from t-1 to t-s across different
dimensions, effectively quantifying the potential complex
coupling relationships between historical IES multi-energy
load sequences.

S � ρ +| |r +| δ
∣∣∣∣

3
(6)

To analyze the feasibility of the proposed method for mining
multi-dimensional multi-energy load coupling characteristics
based on the integration of multiple correlation analysis
methods, let’s consider constructing multi-energy load

coupling features using historical multi-energy load data from
the month preceding the forecast moment as an example. The
constructed multi-energy load coupling features and the load
sequences are then analyzed using Pearson, Spearman, and MIC
correlation methods, with the results shown in Figure 4. In the
figure, SEC, SEH, and SCH represent the coupling features of the
electric load with the cooling load, the electric load with the
heating load, and the cooling load with the heating load,
respectively.

To avoid the one-sidedness of strong correlation features
obtained by using a single correlation analysis method, when the
constructed coupling feature and a certain type of load in the
multi-energy loads simultaneously satisfy formula (7) (Guo et al.,
2022; Li et al., 2022; Chen et al., 2023), then that coupling feature
is considered a strong correlation feature for the multi-
energy loads.

ρ
∣∣∣∣ ∣∣∣∣> 0.4
r| |> 0.3
δ > 0.3

⎧⎪⎨⎪⎩ (7)

As can be seen from Figure 4, when constructing multi-energy
load coupling features using the historical load data from the month
preceding the forecast moment, SEC, SEH, and SCH can all be
considered strong correlation features for multi-energy load
prediction. This fully demonstrates the effectiveness of the
proposed method for constructing multi-energy load coupling
features. Furthermore, analyzing the correlation between multi-
energy loads using different correlation analysis methods further
indicates the strong coupling relationships within IES multi-energy
loads. Using the constructed coupling features as input features for
the multi-energy load forecasting model can achieve multi-
dimensional mining of potential complex coupling characteristics
in the construction phase of input feature set, improving the
prediction accuracy of ultra-short-term multi-energy load
forecasting.

FIGURE 5
Correlation analysis results between meteorological features and multi-energy loads.

TABLE 1 Input feature set for each seasonal forecasting model.

Feature types Features

Coupling features SEC , SEH , SCH at time t

Meteorological
features

Dew Point, Precipitable Water, Temperature, Pressure at
time t

Holiday features Use 0 to represent weekdays, use 1 to represent weekends,
and use 2 to represent important holidays

Time features Month, Day, Week, Hour

Historical load
features

The multi-energy load at time t-1

The multi-energy load at time t-2

The multi-energy load at time t-3

The multi-energy load at time t-24

The multi-energy load at time t-48

The multi-energy load at time t-72
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3.2 Construction of multi-energy load input
feature set

To avoid the negative impact of seasonal differences in load
variation trends on the accuracy of multi-energy load forecasting,the
historical data of loads for the entire year are divided according to
different seasons. This seasonal historical data, along with other
features, are collectively used as inputs for the model to build ultra-
short-term forecasting models for multi-energy loads in different
seasons. To fully explore the potential complex coupling
relationships between multi-energy loads from multiple
dimensions, the constructed coupling features SEC, SEH, and SCH
are subjected to correlation analysis with the multi-energy loads. If
the correlation analysis results with a certain type of load satisfy Eq.
7, they are considered as input features for the multi-energy load
forecasting model. Simultaneously, as meteorological factors can
influence users’ energy consumption habits, meteorological features
whose correlation analysis results with a certain type of load in the
multi-energy loads satisfy Eq. 7 are selected as strongly correlated
meteorological features for the multi-energy load. The correlation
analysis results between atmospheric pressure, temperature, relative
humidity, wind direction, precipitable water, dew point, and multi-
energy loads are presented in Figure 5.

From Figure 5, it is evident that atmospheric pressure,
temperature, precipitable water, and dew point can be considered
as strongly correlated meteorological features for multi-energy load
forecasting. Additionally holidays information reflecting users’
energy usage behaviors, along with time features, are also
included as input features for the forecasting model. Since this
study uses the IES of Arizona State University in the United States
for forecasting research, it adopts the U.S. federal holidays
(including New Year’s Day, Christmas, Thanksgiving, etc.) as the
selection rule for holidays in the dataset. To fully consider the
temporal correlation of multi-energy loads, historical load data from
moments t-1 to t-3, as well as t-24, t-48, and t-72, are used as
historical load features in the forecasting model, thus ensuring
thorough mining of the temporal correlations of multi-energy loads.

In summary, for the multi-energy loads at the predicted time t,
the input feature set for the ultra-short-term forecasting model of
multi-energy loads, considering the potential characteristics of
multi-energy loads, is presented as shown in Table 1.

4 Construction of multi-energy load
forecasting

This paper develops an ultra-short-term multi-energy load
forecasting model based on MTL-TCN-HU. Firstly, an MTL
model based on a hard parameter sharing mechanism is
employed in the model construction phase to fully mine the
coupling characteristics of multi-energy loads. Secondly, the
sharing layer based on TCN effectively extracts potential
temporal association information from the input features and
captures long-term dependencies in the input sequence. Lastly,
the use of a homoscedastic uncertainty-based MTL loss function
weight optimization method enables the automatic tuning of loss
function weight parameters. This approach not only reduces the
time cost of model parameter tuning but also further enhances the
prediction accuracy of the MTL forecasting model.

4.1 MTL forecasting model based on hard
parameter sharing mechanism

For the prediction of IES multi-energy loads, the approach of
constructing separate load forecasting models for different types of
loads does not deeply explore the potential complex coupling
characteristics among various energy loads in the model
construction phase. MTL enhances the predictive performance of
the model by extracting coupling information from different
forecasting tasks. This approach not only facilitates parallel
learning of multiple forecasting tasks but also aims to improve
the accuracy of the forecasting model and enhance its generalization
ability (Zhang and Yang, 2022).

FIGURE 6
The structure of (A) hard parameter sharing mechanism and (B) soft parameter sharing mechanism.
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MTL is primarily divided into hard parameter sharing and soft
parameter sharing mechanisms based on the type of sharing
mechanism. Figure 6 presents the structural diagrams for both
soft and hard parameter sharing mechanisms. In the soft
parameter sharing mechanism, the models and parameters for
each forecasting task are distinct and regularization is required
before sharing potential coupling information for each sub-task.
The hard parameter sharing mechanism involves different
forecasting tasks learning the potential coupling information
between sub-tasks directly through the same sharing layer,
thereby facilitating joint training of multiple tasks. Given that
the soft parameter sharing mechanism has more relaxed
constraints compared to the hard parameter sharing
mechanism, it is more suitable for multi-energy load forecasting
tasks where the sub-tasks have weaker interrelations. In contrast,
the hard parameter sharing mechanism, with its common sharing
layer for each sub-task, is apt for multi-energy load forecasting
tasks where sub-tasks are closely related. Since the IES multi-
energy loads under study exhibit strong coupling, this paper opts
for a hard parameter sharing mechanism-based MTL method to
construct an ultra-short-term multi-energy load
forecasting model.

4.2 Construction of MTL sharing layer based
on TCN

TCN is a convolutional neural network that integrates Dilated
Causal Convolution (DCC) and Residual Connection (RC). DCC
includes dilated convolution and causal convolution. In TCN, causal
convolution ensures that the forecasting results at earlier time steps
do not involve future data information, preventing future
information leakage, and making the convolutional network
suitable for multi-energy load forecasting models. The dilated
convolution in TCN addresses the issue of the limited receptive
field in traditional convolution. Introducing a dilation coefficient d,
increases the model’s receptive field while reducing the
computational load, thus enabling the learning of global
information. Assuming the model’s input sequence is X �

x1, x2,/, xn{ } and the filter is F � f1, f2,/, fk−1{ }, the
calculation formula for the dilated convolution is as follows:

F t( ) � ∑k−1
i�0 f i · xt−d·i (8)

In the formula, k represents the filter size, d is the dilation factor,
and F(t) is the result of the dilated convolution for the t-th element
in the input sequence.

The residual block of TCN consists of a DCC layer,
WeightNorm layer, ReLu activation function, and Dropout layer.
The residual block effectively addresses the issue of gradient
vanishing in deep network structures and enhances the model’s
generalization ability. Its core idea is to form an RC by combining
the direct mapping of the input with the output of the last layer of
the residual module, thereby improving the model’s stability and
facilitating the construction of deep networks. An example of a DCC
structure with d = 1, 2, 4, and k = 3 is shown in Figure 7. In the figure,
Ŷ � ŷ1, ŷ2,/, ŷn{ } represents the output of the DCC.

From Figure 7, it is evident that TCN can capture long-term
dependencies in the input time series while avoiding the problem of
gradient vanishing. It possesses a strong capability to mine the
potential temporal association information in the input data.
Therefore, this paper opts to use TCN to construct the sharing
layer of the MTL model.

4.3Method for optimizing theweight of MTL
loss functions based on homoscedastic
uncertainty

MTL models achieve parallel learning of multiple sub-tasks
through the sharing mechanisms of the model. The loss function
of MTL is as shown in Eq. 9:

L � λ1L1 + λ2L2 +/λrLr (9)

In the formula, L represents the loss function of MTL, r is the
number of sub-tasks in MTL, L1, L2,/, Lr{ } denotes the loss
functions of each sub-task in the MTL model and λ1, λ2,/, λr{ }
represents the weights of the loss functions for each sub-task.

FIGURE 7
The structure of TCN model.
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According to formula (9), the weights of the loss functions for
sub-tasks can affect the training effectiveness of the MTL model.
Scientific and rational allocation of weights to the sub-task loss
functions can further enhance the performance of the multi-task
learning model. Therefore, this paper adopts a homoscedastic
uncertainty-based optimization method for the multi-task
learning loss function.

Homoscedastic uncertainty refers to the type of uncertainty that
is independent of input data. This uncertainty remains constant
across all inputs and varies between different tasks, reflecting the
inherent learning difficulties of each sub-task in MTL. The
optimization method for MTL loss functions based on
homoscedastic uncertainty is achieved by learning the
homoscedastic uncertainty among different sub-tasks, thereby
enabling the automatic tuning of loss function weights. Assuming
anMTLmodel with three sub-tasks has parametersW, and the noise
parameters for different tasks are σ1, σ2, and σ3, the total loss
function L(W, σ1, σ2, σ3) of MTL can be represented as follows:

L W , σ1, σ2, σ3( ) � 1
2σ2

1

L1 W( ) + 1
2σ2

2

L2 W( ) + 1
2σ2

3

L3 W( )
+ ln σ1σ2σ3( )

(10)

In the formula, σ2i (i � 1/3) represents the observation noise,
which is used to measure the homoscedastic uncertainty of each
forecasting task, and ln(σ1σ2σ3) is the regularization term that
restricts the model from learning in the direction of unbounded
increase of σ2i .

4.4 The overall framework of the
forecasting model

The framework of the ultra-short-term multi-energy load
forecasting model is shown in Figure 8. It mainly comprises the
following three parts:

(1) Multi-dimensional multi-energy load coupling characteristics
mining: Selecting the length s of the historical load sequence

for correlation analysis, calculating the Pearson correlation
coefficient, Spearman correlation coefficient, and MIC
between the multi-energy load historical sequences from t-
1 to t-s, and using formula (6) to integrate various correlation
analysis methods to construct the multi-energy load coupling
features at time t. This approach quantifies the complex
coupling relationships between multi-energy loads and
enables in-depth multi-dimensional mining of potential
couplings in the construction phase of the multi-energy
load input feature set.

(2) Construction of multi-energy load input feature set: Dividing
the annual historical data of multi-energy loads by different
seasons, to construct ultra-short-term forecasting models for
multi-energy loads in various seasons. Various correlation
analysis methods are used to select strongly correlated
features from coupling and meteorological features, which
are then combined with holiday features, time features, and
historical load features to form the multi-energy load input
feature set. This method comprehensively considers various
factors affecting the energy usage habits of IES users and
deeply mines the potential characteristics of multi-
energy loads.

(3) Construction of multi-energy load forecasting model: An
ultra-short-term multi-energy load forecasting model based
on MTL-TCN-HU for IES is constructed. The MTL model
based on a hard parameter sharing mechanism extracts
coupling information between sub-tasks through the
sharing layer, enabling in-depth mining of potential
complex coupling characteristics among multi-energy
loads during the model construction phase. TCN, using
DCC and RC, extracts potential temporal association
information from input features and captures long-term
dependencies in the input time series. The HU multi-task
learning loss function weight optimization method, by
learning the homoscedastic uncertainty of different tasks,
achieves automatic tuning of loss function weight
parameters, thereby saving time in model tuning and
further enhancing the accuracy of multi-energy load
forecasting.

FIGURE 8
The structure of ultra-short-term multi-energy load forecasting model.
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5 Case study

5.1 Data source and evaluation index

This paper selects historical data on electric, cooling, and heating
loads from the comprehensive energy system of Arizona State
University’s Tempe campus, spanning from 1 March 2018, to
28 February 2019, for training the ultra-short-term forecasting
model. The multi-energy load data are divided according to
different seasons, and then each season’s load data are split into
training, validation, and test sets in the ratio of 8:1:1. The
meteorological data are sourced from the National Solar
Radiation Database of the United States.

This paper selects Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Root Mean Square Error (RMSE), and
Weighted Mean Absolute Percentage Error (WMAPE) as the
forecasting error evaluation metrics, and their calculation
formulas are as follows:

MAE � 1
n
∑n

i�1 yi − ŷi
∣∣∣∣ ∣∣∣∣ (11)

MAPE � 1
n
∑n

i�1
yi − ŷi
yi

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ × 100% (12)

RMSE �
�������������
1
n
∑n

i�1 yi − ŷi( )2√
(13)

WMAPE � θEMAPEE + θCMAPEC + θHMAPEH (14)

TABLE 2 Experimental input features and model parameters for selecting load sequence length used in constructing coupling features.

Sequence length 1 week 2 weeks 3 weeks 1 month 2 months 3 months

Type of input feature According to Table 1, the feature set of multi-energy load input was constructed

Coupling features SCH SEH, SCH SEC, SEH, SCH SEC, SEH, SCH SEH, SCH SEH, SCH

Model MTL-TCN-HU

Hyper-parameter of the model Batch size 128

Number of filters 32

Size of the filter 3

Dropout 0.1

Dilation factor 1,2,4,8,16

Number of iterations 200

Learning rate 0.001

Number of residual blocks 1

Number of fully-connected units 16

Number of fully-connected layers 1

FIGURE 9
Comparative MAPE chart for the experiment on selecting load sequence length used in constructing coupling features.
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In the formula, yi represents the actual load value, ŷi denotes the
forecasting load value, and n indicates the number of samples. θE,
θC, and θH represent the prediction error weights for electric,
cooling, and heating loads, respectively. They are set to 0.4, 0.4,
and 0.2 (Wu et al., 2022), respectively. MAPEE, MAPEC, and
MAPEH represent the MAPE for electric, cooling, and heating
loads. Lower values of MAE, MAPE, and RMSE imply higher
accuracy of the model’s predictions.

5.2 Experimental platform and data
preprocessing

The construction and training of the forecasting model are based
on the Pytorch deep learning framework. The hardware
configuration of the experimental platform includes an Intel(R)
Core (TM) i7-12700H CPU, with acceleration provided by an
NVIDIA GeForce RTX3060 Laptop GPU.

The 3 σ rule is used to filter out anomalies in the historical multi-
energy load data, treating these anomalies as missing data, which are
then filled using cubic spline interpolation. To eliminate the impact
of input feature dimensions on the forecasting model, max-min
normalization is applied to ensure that the input data range
is between [0,1].

5.3 Comparative analysis of
forecasting methods

5.3.1 Selection of load sequence length for
constructing coupling features

The method of mining multi-dimensional multi-energy load
coupling characteristics based on the integration of multiple
correlation analysis methods involves analyzing the correlation of
the historical multi-energy load sequences from t-1 to t-s to
construct the coupling features of multi-energy loads at time t.
Therefore, it is crucial to appropriately select the length of the multi-
energy load historical sequence used for constructing coupling
features. If a shorter load sequence is chosen to construct
coupling features, the randomness and volatility of the multi-
energy loads may result in significant changes in coupling

features between adjacent time steps. The strong fluctuations in
the sequence prevent the coupling feature sequence from fully
reflecting the potential coupling relationships among multi-
energy loads. On the other hand, if a longer load sequence is
chosen to construct coupling features, the changes in coupling
features between adjacent time steps are relatively small.
Consequently, the sequence of coupling features for multi-energy
loads exhibits a more gradual change trend, also failing to capture
the potential coupling relationships. To select an appropriate length
for the multi-energy load sequence to construct coupling features,
experiments are conducted using historical load data from
29 November 2017, to 28 February 2019.

Different lengths of multi-energy load sequences, specifically
1 week, 2 weeks, 3 weeks, 1 month (31 days), 2 months (61 days),

TABLE 3 Ablation experiment input features and model parameters.

Model
number

Model0 Model1 Model2 Model3 Model4

Type of input
feature

According to the results of correlation
analysis, the strong correlation features of
each load were selected. The coupling
features of multiple loads are not

considered.

According to the results of
correlation analysis, the

strong correlation features
of each load were selected.
The feature types are the

same as Table 1.

Same as Table 2

Forecasting
model

LSTM TCN MTL-TCN MTL-TCN-HU

Hyper-parameter
of the model

Number of hidden layers 2 Same as
Table 2

The loss function weight of the multitask
learning model is 0.4, 0.4, 0.2. The other model
hyperparameters are the same as Table 2

Same as Table 2. use HU to
adjust loss function weight

automaticallyNumber of hidden layer units 32

The other model hyperparameters are the same as Table 2

TABLE 4Comparison of prediction errors in electric load forecasting results
of different models.

Season
model

Spring Summer Autumn Winter

Model0 MAPE 4.014% 3.952% 5.140% 4.570%

RMSE 1142.542 1449.89 1190.07 945.592

MAE 950.643 1202.68 1030.03 820.507

Model1 MAPE 3.490% 3.435% 4.506% 3.872%

RMSE 1035.59 1331.17 1072.03 818.780

MAE 857.682 1042.37 896.725 694.082

Model2 MAPE 3.272% 3.094% 4.152% 3.434%

RMSE 1013.40 1199.50 1007.00 759.829

MAE 778.181 947.146 867.486 620.585

Model3 MAPE 2.890% 2.751% 3.760% 2.998%

RMSE 882.260 1069.68 926.778 696.124

MAE 687.800 877.501 746.664 533.179

Model4 MAPE 2.543% 2.475% 3.521% 2.749%

RMSE 787.7014 963.5569 877.0918 650.5965

MAE 607.003 782.2664 714.5630 494.145

Frontiers in Energy Research frontiersin.org11

Huang et al. 10.3389/fenrg.2024.1373345

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1373345


and 3 months (92 days), are selected to construct coupling features
as input features for the forecasting model. The ultra-short-term
prediction accuracy of multi-energy loads is compared and analyzed
using the MAPE. To facilitate the construction of multi-energy load

coupling features and to ensure that the selected sequence lengths
effectively reflect the potential coupling relationships of multi-
energy loads 1 month, 2 months, and 3 months prior to the
predicted moment, the load sequence lengths for 1 month,
2 months, and 3 months were defined as the number of days
with the highest occurrence frequency for 1 month, 2 months,
and 3 months, respectively, in the dataset from March 2018 to
February 2019, which are 31 days, 61 days, and 92 days,
respectively. The related parameters of the experiment are
presented in Table 2. To comprehensively assess the prediction
effects of different sequence lengths, data from 1 week in different
seasonal test sets are used for ultra-short-term multi-energy load
forecasting, with specific experimental results shown in Figure 9.

As Figure 9 indicates, when multi-energy load coupling features
are constructed using historical sequence lengths of 1 week, 2 weeks,
3 weeks, and 1 month, the prediction error of the models for each
season decreases with the increase in the length of the load sequence
used for constructing coupling features. However, when using
1 month, 2 months, and 3 months as the historical sequence
lengths, the prediction error increases with the length of the load
sequence. The MAPE, RMSE, and MAE of the forecasting models
are the lowest when a 1-month multi-energy historical load
sequence is used for constructing coupling features. This suggests
that coupling features constructed with a 1-month load sequence
effectively quantify the complex coupling relationships between
multi-energy loads. Therefore, the historical multi-energy load
sequence length of 1 month prior to the forecast moment is
chosen for constructing the coupling features at the forecast
moment, making it the input feature of the model, thereby better
achieving in-depth multi-dimensional mining of the potential
coupling characteristics of multi-energy loads.

5.3.2 Ablation experiment
To validate the effectiveness of each component of the proposed

forecasting method, comparative experiments are designed as
shown in Table 3. Models 0, 1, and 2 all use the approach of
constructing separate forecasting models for different types of loads
and select strongly correlated features as input features for each load
forecasting model. Among these, Model 0 does not include coupling
features as input for the forecasting model, andModel 1 does not use
the TCN model for multi-energy load prediction. Models 3 and
4 both employ MTLmodels for prediction. Model 3 does not use the
homoscedastic uncertainty-based MTL loss function weight
optimization method, and its loss function weights are manually
set (Wu et al., 2022). Model 4 represents the multi-energy load
forecasting method proposed in this paper. Data from 1 week in
different seasonal test sets are used for ultra-short-term multi-
energy load forecasting, and the forecasting results of each model
for different seasons are evaluated using MAPE, RMSE, and MAE.
The forecasting results of each model are presented in Tables 4–6.

From Tables 4–6, it is evident that Model 4 achieves the highest
ultra-short-term prediction accuracy for multi-energy loads across
different seasons. Additionally, there is a gradual increase in the
ultra-short-term prediction accuracy of multi-energy loads from
Model 0 to Model 4. Compared to Model 0, Model 1 shows a
decrease in the MAPE of electric load by 12.330%–15.273%, cooling
load by 10.740%–36.257%, and heating load by 11.106%–28.566%
across different seasons. This demonstrates that the proposed

TABLE 5 Comparison of prediction errors in cooling load forecasting results
of different models.

Season
model

Spring Summer Autumn Winter

Model0 MAPE 5.963% 6.087% 13.278% 7.970%

RMSE 689.712 1106.31 553.570 283.108

MAE 576.056 939.455 485.663 236.215

Model1 MAPE 3.801% 4.224% 11.337% 7.114%

RMSE 449.771 669.713 506.408 261.672

MAE 347.180 568.314 434.940 213.595

Model2 MAPE 3.378% 3.716% 9.942% 6.585%

RMSE 388.592 634.589 488.733 223.868

MAE 304.066 515.800 417.852 187.785

Model3 MAPE 2.895% 3.068% 8.001% 5.621%

RMSE 333.329 519.307 413.671 217.304

MAE 252.306 422.211 340.658 170.274

Model4 MAPE 2.637% 2.583% 6.843% 4.987%

RMSE 287.6244 448.215 360.527 184.807

MAE 226.131 359.368 294.187 146.175

TABLE 6 Comparison of prediction errors in heating load forecasting results
of different models.

Season
model

Spring Summer Autumn Winter

Model0 MAPE 6.854% 4.403% 8.587% 7.461%

RMSE 0.442 0.266 0.907 0.878

MAE 0.388 0.220 0.812 0.766

Model1 MAPE 5.446% 3.917% 6.134% 5.969%

RMSE 0.363 0.239 0.699 0.726

MAE 0.306 0.197 0.589 0.620

Model2 MAPE 4.428% 3.339% 5.263% 5.206%

RMSE 0.307 0.214 0.596 0.654

MAE 0.250 0.169 0.490 0.545

Model3 MAPE 3.703% 2.904% 4.419% 4.216%

RMSE 0.276 0.196 0.532 0.544

MAE 0.209 0.146 0.414 0.442

Model4 MAPE 3.387% 2.480% 3.629% 3.536%

RMSE 0.248 0.178 0.446 0.520

MAE 0.190 0.127 0.342 0.402
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method for mining multi-dimensional multi-energy load coupling
characteristics based on the integration of multiple correlation
analyses can effectively quantify the complex coupling
relationships between multi-energy loads. It achieves in-depth
mining of potential coupling characteristics from various
dimensions in the construction phase of the input feature set,
significantly enhancing the prediction accuracy of multi-energy
loads. Compared to Model 1, Model 2 shows a reduction in the
MAPE of electric load by 6.246%–11.313%, cooling load by 7.436%–
12.305%, and heating load by 12.783%–18.693%. This indicates that
the TCN model effectively extracts potential temporal association
information from input features and captures long-term
dependencies in the input time series, thereby improving the
accuracy of multi-energy load prediction. Compared to Model 2,
Model 3 shows a reduction in the MAPE of electric load by 9.44%–
12.696%, cooling load by 14.298%–19.523%, and heating load by
13.028%–19.016%. This suggests that the MTL model based on a
hard shared parameter mechanism can fully mine the potential
complex coupling characteristics between multi-energy loads during
the model construction phase, further reducing the prediction error
of the model. Compared toModel 3, Model 4 shows a decrease in the
MAPE of electric load by 6.356%–12.007%, cooling load by 8.912%–
15.808%, and heating load by 8.533%–17.877%. This indicates that
the homoscedastic uncertainty-based MTL loss function weight
optimization method can automatically tune the loss function
weights by learning the homoscedastic uncertainty of different
tasks, further enhancing the model’s prediction performance.
Overall, each component of the proposed multi-energy load
forecasting method significantly improves the prediction accuracy
of multi-energy loads.

5.3.3 Comparative analysis of different
prediction models

To further evaluate the prediction accuracy of the proposed
model, this study compares its performance with commonly used
models in existing research, including Random Forest (RF), Support
Vector Regression (SVR), CNN-BiGRU, and MTL-BiGRU
forecasting models. The input features and related parameters for
the experiment are shown in Table 7.

Data from 1 week in different seasonal test sets are used for
ultra-short-term multi-energy load forecasting. The MAPE
prediction errors of each forecasting model in different seasons
are shown in Figure 10, and the prediction result curves for each
model in different seasons are presented in Figure 11. The WMAPE
prediction errors of each forecasting model in different seasons are
shown in Table 8. Tables 8; Figures 10, 11 reveal that in different
seasons, the prediction curves of the SVR and RFmodels have a poor
fit with the actual values. The CNN-BiGRUmodel can extract latent
feature information and temporal associations reflecting load
changes (Niu et al., 2022), but it fails to fully extract the long-
term dependencies of input features and does not adequately mine
the potential complex coupling characteristics between multi-energy
loads, resulting in lower prediction accuracy. The MTL-BiGRU
model also cannot learn long-term dependencies of input features
and does not employ a scientific MTL loss function weight
optimization method, leading to poor prediction performance. In
contrast, the proposed forecasting model not only uses TCN to
thoroughly mine potential temporal associations and long-termT
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dependencies in the input data but also explores the potential
coupling characteristics between multi-energy loads through an
MTL model based on a hard parameter sharing mechanism.
Additionally, it achieves scientific parameter optimization

through a homoscedastic uncertainty-based MTL loss function
weight optimization method. Therefore, the proposed forecasting
model exhibits the highest prediction accuracy across
different seasons.

FIGURE 10
MAPE comparison chart of different forecasting models.

FIGURE 11
Forecast results of each model in different seasons.

Frontiers in Energy Research frontiersin.org14

Huang et al. 10.3389/fenrg.2024.1373345

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1373345


6 Conclusion

This paper proposes an ultra-short-term multi-energy load
forecasting method based on multi-dimensional coupling
characteristic mining and multi-task learning. Firstly, a multi-
dimensional multi-energy load coupling characteristics mining
method, integrating multiple correlation analysis methods, is
employed to construct load coupling features. This effectively
quantifies the complex coupling relationships between IES
multi-energy loads and thoroughly mines potential coupling
characteristics from various dimensions in the input feature set
construction phase. Case studies show that using this method in
different seasons results in a decrease in theMAPE of electric load by
12.330%–15.273%, cooling load by 10.740%–36.257%, and heating
load by 11.106%–28.566%.

Then, an ultra-short-term multi-energy load forecasting model
based on MTL and TCN is constructed, which mines the potential
complex coupling characteristics between multi-energy loads during
the model construction phase. The TCN is used to mine potential
temporal association information from input features and capture
long-term dependencies in the input time series. Case studies
indicate that employing MTL reduces the MAPE of electric load
by 9.44%–12.696%, cooling load by 14.298%–19.523%, and heating
load by 13.028%–19.016% in different seasons. Using TCN results in
a decrease in the MAPE of electric load by 6.246%–11.313%, cooling
load by 7.436%–12.305%, and heating load by 12.783%–18.693%.

Moreover, a homoscedastic uncertainty-based MTL loss
function weight optimization method is adopted to automatically
tune the loss function weight parameters, saving time in model
tuning while further enhancing the model’s prediction performance.
Case studies show that employing this method results in a decrease
in the MAPE of electric load by 6.356%–12.007%, cooling load by
8.912%–15.808%, and heating load by 8.533%–17.877% in
different seasons.

Finally, a comparative analysis of different forecasting models is
conducted using the comprehensive energy system of Arizona State
University in the United States as a case study. The results indicate
that the proposed forecasting method has higher prediction
accuracy compared to other methods.
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