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The intermittence and unpredictability of large-scale renewable integration
poses significant challenges to the operation of the electricity market. New
paradigms of the joint electricity spot market (EM) and ancillary service market
(ASM) incorporating frequency regulation (FR) and flexible ramping product (FRP)
are considered as potential solutions, addressing the challenge of limited
compatibility in the electricity market with the widespread integration of
renewable sources. This work focuses on three critical technical obstacles:
optimizing the joint market mechanisms, constructing bidding models, and
exploring algorithmic solutions. This paper presents a brief review of recent
research on bidding mechanisms, models, and strategies for the electricity joint
market with high-penetration renewable integration. Furthermore, challenges
and future research prospects of these issues are also discussed.
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1 Introduction

Global climate change problem has become increasingly serious in recent years, and
reducing greenhouse gas emissions is one of the main challenges facing the industry.
Burning fossil fuels at thermal power plants play a significant role in greenhouse emissions,
accounting for over 60% of the European Union’s total emissions (Andersson and
Börjesson, 2021). Therefore, decarbonizing power sector, i.e., promoting wide-scale
penetration of renewable generation to replace thermal generators, has drawn
considerable attention from academia and industry (Bistline and Blanford, 2021).
Nevertheless, the uncertainty and intermittence of renewable generations also threaten
the security of power grid operation.

Facing these new challenges, the electricity market is considered the macro-level
approach to achieving power system operation security, economic efficiency, and
environmental friendliness. In order to accommodate the vast amount of renewable
generation resources, the emerging features of the worldwide electricity market can be
summarized as follows: (1) High penetration distributed resources such as photovoltaics
and wind power are more inclined to generate and participate in the electricity market as
stakeholders. (2) The demand for balancing products in the ancillary service market (ASM)
has increased due to the necessity of hedging uncertainties caused by high penetrations of
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renewable generations (Nelson and Johnson, 2020; Wang and
Hobbs, 2015). For instance, the flexible ramping product (FRP)
proposed by California ISO (CAISO) facilitates real-time (RT)
balancing in a time slot of 5–15 min (Wang et al., 2020).
Therefore, the joint energy spot market (EM) and ASM will
become a dominant force in the global power industry, making it
necessary to extensively study the joint market mechanism. This
paper reviews the market mechanism optimization, the construction
of the bidding models, and the algorithmic solutions.

2 Literature review

2.1 Current research on market mechanism
optimization theory for large-scale
penetration of renewable energy

Optimizing market mechanisms, typically grounded in
microeconomic theory, involves the proposal of bidding or
pricing mechanisms, which are then validated through
equilibrium analysis. This process often models the market as an
Equilibrium Problem with Equilibrium Constraints (EPEC).
Worldwide research has explored the strategic bidding behaviors
of large-scale renewable energy suppliers in electricity markets, such
as wind farms, electric vehicle integrators, and energy storage
facilities (Morales et al., 2010; Pousinho et al., 2013; Zugno et al.,
2013; Alabdulwahab et al., 2016; Zou et al., 2016; Xiao et al., 2023).
Some research has considered the collaborative operational bidding
strategies of various renewable energy sources (Mohammadi et al.,
2011; Vagropoulos et al., 2013; Agustin et al., 2016; Cao et al., 2024),
while others have proposed short-term bidding strategies for virtual
power plants that incorporate various flexibility resources
(Rahimiyan and Baringo, 2016). Countries like
Denmarkanticipate a complete transition to renewable energy for
power supply by 2050, particularly in Northern Europe. However,
China faces the challenge of being unable to replace fully traditional
power plants with renewable energy sources in the short term
(Jacobson et al., 2017). Consequently, when investigating the
strategic bidding of large-scale renewable energy suppliers in the
market, the presence of traditional power plants should not be
overlooked alongside flexible resources like wind, solar, and energy
storage. Furthermore, integrating carbon markets into the power
market has prompted studies on the effects of European Union
carbon emission trading rights and carbon emission costs on power
market dynamics and generator bidding strategies (Weigt et al.,
2013; Anke et al., 2020). With the spot market overlooking the
carbon market’s impact on power market transactions, electricity-
carbon market mechanisms operate relatively independently in
regions such as Guangdong Province.

Research onmarket mechanisms varies depending on the type of
market. Some focus on the bidding and settlement mechanisms of
the energy quantity market from the generation side (Ela et al., 2016;
Mozdawar et al., 2022; Silva-Rodriguez et al., 2022), while others
concentrate on the pricing and deployment strategies of ancillary
services, primarily frequency regulation (Arteaga and Zareipour,
2019; Maria Luisa et al., 2019; Godoy et al., 2020; Stavros et al., 2020;
Luis et al., 2022). These studies explore various market clearing
methods (deterministic or stochastic) and compensation

mechanisms (pay-as-bid or opportunity cost payment). In the
United States, markets such as CAISO and MISO independently
trade, optimize, and price ramp capabilities, introducing a new
ancillary service product, FRP (Casio, 2015; Navid and
Rosenwald, 2024). This addition mitigates the uncertainty of
system load and renewable energy variations, ensuring sufficient
ramping capability to match net load changes and maintain system
real-time balance. Although the introduction of FRP for joint market
clearing can enhance the regulatory capacity of the system, research
in this area is still in its nascent stages. Various studies have
examined the market mechanisms of Energy Markets (EM) and
Ancillary Service Markets (ASM) from different perspectives,
including market time frames, equilibrium models based on non-
strategic bidding (actual cost functions), incentive-compatible
clearing mechanisms, and the formulation of Locational Marginal
Pricing (LMP) (Sorourifar et al., 2018; Zhou et al., 2018; Wu et al.,
2020; Zhang et al., 2020; Hu et al., 2021). In the joint optimization of
the Energy Market (EM) and Ancillary Services Market (ASM), FPR
does not possess the autonomy to bid independently.

The ultimate objective of optimizing market mechanisms is to
maximize the overall social welfare of the integrated market. The
mechanisms across different markets must be harmonized to
gradually steer the bidding strategies of market participants
towards Pareto optimality while preventing cross-market
collusion arbitrage and market power abuse. For example, the
compensation that market participants receive is tied to the
difference between Day Ahead (DA) and real-time EM prices. If
there are flaws in the market mechanisms, speculators can
manipulate DA and real-time prices to reap substantial profits.
However, the current evaluation of market mechanisms lacks
quantitative indicators, making it challenging to verify their
effectiveness. Indeed, existing market mechanisms, primarily
established based on domestic and international experience and
theoretical knowledge, are constrained by computational
limitations. The efficiency and security of the market largely
hinge on the bidding strategies of participants, but assessing the
impact of market mechanisms on participants’ bidding strategy
preferences remains a formidable challenge. Thus, optimizing
market efficiency and stability through empirical market
mechanisms is not feasible.

2.2 Current research on the multi-agent
bidding model of the electricity market

In the Multi-agent bidding model, human candidates with
varying degrees of expertise in electricity markets will participate
in the trading with a virtual market environment, representing
different generation companies to submit their bids to maximize
potential profits. After repeated bids submission, the game may
gradually converge to the equilibrium, allowing for the detection of
potential abuses of market power through the convergence
procedure. The aforementioned process can be simulated as a
two-layer bidding game model of GENCOs, and the solutions for
this model are typically obtained through mathematical methods
based on equilibrium models (Dou et al., 2016) and Agent-based
Models (ABM) (Guevara C et al., 2012). A significant number of
research on equilibrium models using mathematical programming
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focused on optimizing bidding strategies, including chance-
constrained stochastic optimization (Zhao et al., 2018; Hosseini
et al., 2020), robust optimization (Pousinho et al., 2015; Baringo and
Sánchez Amaro, 2017), and distributional robust optimization (Han
and Hug, 2020; Hajebrahimi et al., 2020). However, the diverse
operational characteristics (such as on-and-off or up-and-down
constraints for switches and generators) and the immense scale
of expanded power networks render these problems highly
dimensional, non-convex, and subject to non-observable
uncertainty. Consequently, using traditional optimization tools in
these contexts becomes exceedingly complex and imposes a
substantial computational load. The existing research regarding
scale and market rules is overly simplified compared to real-
world electricity markets. ABM is typically more flexible, as it
allows us to model all market participants individually and treat
them as distinct agents. Each agent continuously updates its data
through repeated interactions with the simulated market
environment. After repeated bidding, the game may gradually
converge to an equilibrium state. It should be noted that
potential market power abuse phenomena can be discovered
through the convergence process, resembling a real electricity
market (Azadeh et al., 2012). In the ABM model, heuristic
algorithm models are commonly used (Boonchuay and Ongsakul,
2011a; Elsakaan et al., 2018; Kong et al., 2019a; Hematabadi and
Foroud, 2019; Du et al., 2021; Qiu et al., 2023), including genetic
algorithms (GA) (Boonchuay and Ongsakul, 2011a), particle swarm
optimization (PSO) (Kong et al., 2019a), artificial immune system
algorithms (AIS) (Qiu et al., 2023), bacterial foraging optimization
(BFO) (Elsakaan et al., 2018), krill herd algorithms (KHA)
(Hematabadi and Foroud, 2019), and water wave optimization
(WWO) (Du et al., 2021). These algorithms are inspired by the
cooperative behaviors of gregarious animals, evolution, and heredity
and have exhibited superior computational performance compared
to conventional mathematical programming techniques. Model-
based intuitive learning and applying genetic algorithms are
utilized separately to determine the optimal bidding curves, as
demonstrated in (Zhang et al., 2014; Weidlich and Veit, 2008).
However, these algorithms are designed to formulate the bidding
strategy of individual agents, where each agent makes decisions
independently without considering the actions of the competitors.
Although numerous studies (Boonchuay and Ongsakul, 2011b;
Javaid et al., 2017; Kong et al., 2019b) have utilized group
optimization algorithms to model the dynamic bidding process,
these methods yield the optimal Pareto frontier in a cooperative
setting, where agents can freely exchange search strategies.
Nevertheless, this study aims to find the Nash Equilibrium within a
competitive bidding environment. This necessitates fully distributed
training that precludes any communication among the participating
GENCOs. This strategy ensures privacy and mitigates the risk of
collusion, thereby preserving the competitive integrity of the bidding
process. Consequently, these methods prove unsuitable for a
competitive market where each agent seeks to achieve its objectives
by adjusting its behavior in response to other agents. As the model-free
characteristic of reinforcement learning techniques, they eliminate the
need for intricate mathematical modeling, empowering the agent to
pursue the optimal decision more conveniently through direct
interaction with the environment. The comparison of various
electricity market bidding models is presented in Table 1.

2.3 Current research on bidding strategy
algorithms of multi-agent market
participant

This section comprehensively reviews the Reinforcement
Learning (RL) fundamentals, encompassing all necessary concepts
and algorithms that will be further utilized in elaborating the RL
applications on marketized power systems presented in the
subsequent sections. An RL algorithm comprises a model-based
RL such as dynamic programming and model-free RL, further
extending to value-based RL (including Q-learning, DQN and
WoLF-PHC) and policy-search-based RL (including stochastic
and deterministic policy gradient, Actor-critic (AC), Trust
Region/Proximal Policy Optimization (TRPO/PPO), Deep
Deterministic Policy Gradient (DDPG) methods). As a set of RL
algorithms, numerous Q-learning algorithms have found broad
application in the multi-agent electricity market for exploring
bidding strategies. Najafi et al. (2019) present the development of
a decentralized multi-agent model for bidding by Electric Vehicle
(EV) owners, which is based on a Q-learning algorithm and crafted
without the necessity for environmental modeling. For instance, Liu
et al. (2021) introduced a quarter-hourly dynamic pricing strategy,
leveraging the DDPG algorithm, to address the discretization issue
encountered in traditional time-division pricing models. Lee et al.
(2021) present an innovative energy trading system among
Microgrids (MGs), incorporating a DDQN algorithm and a
double Kelly strategy. Although these techniques have explored
the dynamic interaction of numerous agents, the optimality
search process relies on cooperation and communication among
individual agents, which is inconsistent with competitive market
bidding in the absence of knowledge about other rivals.

Qiu et al. (2023) and Elsakaan et al. (2018) employ the Multi-
Agent-Based Models (MABM) for simulating market participant
bidding models and consider the game issues of updating the multi-
agent bidding strategies of energy suppliers in large power systems
and regional integrated energy systems, respectively. However, in
the process of making bidding decisions, multi-agents require
historical bidding information of competitors. Although this
model offers certain advantages compared to models with fully
disclosed information, the real market is an incomplete information
market. Indeed, in a real market, each participant only knows their
own cost function and bidding strategy, lacking any information
about other competitors (Hematabadi and Foroud, 2019).
Moreover, market participants are unwilling to share their
historical bidding information with competitors, rendering this
algorithm still impractical for real-world market scenarios.

Zhao et al. (2022) list several Multi-agent Reinforcement
Learning (MARL) methods and developed a time-varying model
with an updating strategy to simulate bidding games with
incomplete information. Gao et al. (2021) employ the WoLF-
PHC method to ascertain the Nash Equilibrium (NE) in a pool-
based energy market comprised of large-scaled wind turbines and
EV aggregators. However, the computational performance is
unstable with the increase of variables. Fang et al. (2021)
introduce a market mechanism for double auctions in regional
microgrids (MGs), utilizing a Multi-Agent Deep Q-Network
(MADQN) algorithm to identify the optimal bidding strategy for
these MGs. Furthermore, an Optimal Equilibrium Selection (OES) is
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proposed to guarantee benefit fairness, execution efficiency, and
privacy protection during the interactive learning process of
MADQN. Ye et al. (2023) introduced a generalized strategic
bidding model for energy producers and solved it using the Deep
Deterministic Policy Gradient (DDPG) method, which uses a neural
network to estimate the optimal Q function. However, this
algorithm based on policy gradient descent is constrained by the
instability of the learning environment and the interaction of
multiple agents, rendering it unsuitable for multi-agent
environments. In Xu et al. (2018), Qiu et al. (2021), Li et al.

(2022), and Mehdipourpicha et al. (2023), the Multi-agent Deep
Deterministic Policy Gradient (MADDPG) algorithm and its
modified versions were used to simulate the bidding game in
competitive electricity markets taking into account privacy
protection. Overall, the computational performance of existing
RL algorithms is highly sensitive to hyperparameters. Therefore,
for the bidding simulation of large-scale electricity markets,
adjusting hyperparameters significantly impacts them and affects
simulation convergence’s stability. Moreover, pressure on storage
space can also make equilibrium point calculations time-consuming

TABLE 1 Comparison of different bidding model of the electricity market.

Model Algorithm Multi-agent
environment

Competitive
environment

Speedy
computation

Tractable in
continuous

space

Privacy
protection

Sensitivity
to hyper-
parameters

Equilibrium
models

Stochastic optimization × × × × × ✓

Robust optimization × × × × × ✓

Distributed robust
optimization

× × × × ✓ ✓

Agent-based
models

Heuristic algorithm ✓ ✓ ✓ ✓ ✓ ✓

Multi-agent
Reinforcement

Learning

Q-learning × × ✓ × × ✓

DDPG × × ✓ ✓ × ✓

DQN × × ✓ ✓ × ✓

WoLF-
PHC

✓ ✓ ✓ × ✓ ✓

MAQ ✓ × ✓ × × ✓

MADQN ✓ ✓ ✓ ✓ × ✓

MAAC ✓ ✓ ✓ ✓ × ✓

MAPPO ✓ ✓ ✓ ✓ ✓ ×

MADDPG ✓ ✓ ✓ ✓ ✓ ✓

FIGURE 1
Various algorithm of the bidding model.
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and challenging. The applicability of these MARL algorithms in
bidding strategy is compared as shown in Table 1. The bidding
model with corresponding algorithms is summarized as Figure 1.

3 Challenges and future trends

Although the research mentioned above has played a significant
role in integrating renewable energy into the optimal mechanism of
the emerging joint energy and ancillary service market, this paper
proposes three major technical challenges and future trends:

(1) Integrating large-scale renewable energy entities into the
combined electricity spot and ancillary services markets
has rendered the research into power market mechanisms
increasingly complex. The inherent intermittency of
renewable energy sources poses substantial threats to the
reliability and safety of the power system, consequently
impacting the dispatching, investment, and operation of
the electricity market. Inadequate market mechanisms may
lead to some renewable energy participants engaging in
detrimental price competition or exploiting market power
to establish monopolies, thereby affecting overall societal
welfare and market efficiency. Furthermore, there has been
little research on how to optimize the market mechanisms
and improve market operational efficiency. With the
penetration of large-scale renewable energy, future research
could focus on investigating integrated electricity market
mechanisms to address the aforementioned challenges.
Integrated market encompasses the Energy Market (EM)
and the Ancillary Services Market (ASM), which includes
components such as Frequency Regulation (FR) and Flexible
Ramping Product (FRP). It would be beneficial to develop
pertinent evaluation metrics to optimize these market
mechanisms effectively.

(2) The bidding model utilized in the current electricity market
trading mechanisms is overly simplified, particularly in the
market scale, the simulation of participant bidding strategies,
and market rules. Compared to the real electricity market, this
excessive simplification leads to a lack of reliability and
credibility in the simulated results of the model. In
response to the issues outlined above, future research
should focus on MABM to simulate the bidding behavior
of market participants in a competitive market environment.
The model will explore the relationship among factors such as
bidding, profitability, and market settlement conditions to
validate and iteratively optimize the market mechanisms.

(3) Existing methodologies employed to solve bidding models of
multi-agent market participants encounter limitations in
computational performance. This is particularly evident in
the bidding simulations of large-scale electricity markets,
where adjusting hyperparameters in reinforcement learning
methods can significantly impact the algorithm’s convergence
performance. Further research should explore a multi-agent
deep reinforcement learning algorithm for the bidding model
of market participants. The method safeguards agents’
privacy, allowing them to fully exert their autonomy in

bidding without any information exchange among them.
Moreover, this approach successfully mitigates the
influence of hyperparameters and exhibits excellent
convergence properties.

4 Conclusion

In a carbon-constrained environment, the fundamental purpose
of market mechanisms, with the electricity market as the primary
tool, is to promote the development of the electricity industry
towards cleaner, more efficient, and lower-carbon directions. It
also aims to facilitate the large-scale penetration of renewable
energy generation replacing fossil-fuel-based power generation.
The intermittent and uncertain nature of large-scale renewable
energy grid-integrated generation poses significant challenges to
the operation of electricity markets. To address the issue of
suboptimal compatibility in electricity markets, this paper reviews
three aspects: the optimization of mechanisms in the integrated
market of electricity spot and ancillary services, the construction of
bidding models, and the resolution of associated algorithms. In
addition, the challenges and potential future developments in the
field are also discussed.
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