
Improved Intrinsic Activity of
Ce0.5Pr0.5O2 for Soot Combustion by
Vacuum/Freeze-Drying
Qian Li*, Yimin Su, Xuesong Liu, Yanan Lv, Nana Zhang, Ying Xin and Zhaoliang Zhang*

Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical
Engineering, University of Jinan, Jinan, China

Vacuum-drying and freeze-drying were adopted to improve the catalytic activity of
Ce0.5Pr0.5O2 for soot combustion. The specific surface area and pore volume of the
as-prepared Ce0.5Pr0.5O2 were greatly increased compared to the counterpart using the
common drying method. Furthermore, the redox performance and the oxidation ability for
soot were enhanced, as demonstrated by H2-TPR and soot-TPR. Thus, lower combustion
temperatures and higher intrinsic activity were obtained. This work demonstrated that
simply changing the drying process of precipitates can be served as a paradigm to improve
the structure and catalytic performance.
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INTRODUCTION

Soot particulates emitted from diesel engines have caused seriously deleterious effects on human
health and environment (Wei et al., 2011; Lin et al., 2013; Wei et al., 2014; Fino et al., 2016; Yu et al.,
2019; Tsai et al., 2020). The catalytic combustion technique combined with diesel particulate filters
(DPFs) (Kumar et al., 2012; Feng et al., 2016; Cheng et al., 2017; Ren et al., 2019; Fang et al., 2020; Jin
et al., 2020; Zhao et al., 2020) has been considered as one of the most efficient ways to eliminate soot,
of which the key point is to explore a highly active catalyst.

CeO2 has been extensively used as an excellent catalyst for soot combustion due to its remarkable
oxygen storage capacity (OSC) and redox property (Piumetti et al., 2015). Doping with metal ions
can further improve its catalytic performance (Liu et al., 2008; Fu et al., 2010; Muroyama et al., 2010;
Zhang et al., 2010; Li et al., 2011; Lim et al., 2011; Wang et al., 2015; Lin et al., 2018; Yang et al., 2019;
Cui et al., 2020). In particular, doping of rare earth elements can induce distortion of the CeO2 lattice,
leading to the formation of more oxygen vacancies, thereby improving the oxygen storage/release
property and redox capability (Aneggi et al., 2012). Bueno-López et al. (Bueno-Lopez et al., 2005)
reported that doping of La3+ increases surface area and redox properties of CeO2, and thus enhances
its catalytic soot combustion activity. Hernández-Giménez et al. (Hernández-Giménez et al., 2013)
found that by doping of Nd, the soot combustion activity of Ce-Zr mixed oxide can be improved.
Impressively, Pr-doped CeO2 was shown to be more active than other Ce-based oxides (Krishna
et al., 2007; Bueno-López, 2014; Guillén-Hurtado et al., 2015). Therein, Ce0.5Pr0.5O2 with the highest
surface area and smallest particle size is even better than a reference Pt-based commercial catalyst
(Guillén-Hurtado et al., 2015). The enhancement of Pr and La doping for soot combustion was
attributed to the increased lattice oxygen activity (Harada et al., 2014).

So far, coprecipitation (Katta et al., 2010; Kumar et al., 2012; Venkataswamy et al., 2014;
Muroyama et al., 2015; Devaiah et al., 2016), hydrothermal (Nakagawa et al., 2015; Piumetti et al.,
2015), sol–gel (Oliveira et al., 2012; Zhou et al., 2015; Alcalde-Santiago et al., 2019), microemulsion
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(Fan et al., 2017), and solid-phase grinding have been used to
prepare CeO2-based oxides. However, the drying methods are
scarcely discussed. Generally, improving the drying process can
decrease the agglomeration of catalyst particles and have a
positive impact on catalytic activity (Fan et al., 2014). In this
work, vacuum-drying and direct freeze-drying were adopted to
coprecipitated Ce0.5Pr0.5O2 and compared with the common
drying method. XRD, BET, H2-TPR, and soot-TPR were used
to characterize the physiochemical properties of the as-prepared
catalysts so that the effects of drying treatment on the catalytic
soot combustion performance can be deduced.

EXPERIMENTAL

Catalyst Preparation
1.2593 g of Ce(NO3)3·6H2O and 1.2593 g of Pr(NO3)3·6H2O were
dissolved in 10 ml deionized water at room temperature. NH3·H2O
was added dropwise under vigorous stirring until the pH reached
∼9. Then, the precipitates were kept at room temperature for 24 h,
followed by filtration and washing with deionized water until a pH
of 7 was attained. After that, the precipitates were dried at 100°C
for 12 h and finally calcined at 500°C for 2 h in the muffle furnace
with the heating rate of 1°C/min. The sample obtained is denoted
as CPO.

Based on the above method, the drying process was improved.
For vacuum-drying, the precipitate was immersed in 250 ml of
ethanol for 24 h under static conditions for the sake of
substituting water with ethanol. Subsequently, the precipitate
was filtered to remove alcohol and then dried at 80°C for 12 h
in a vacuum oven. Finally, the sample was calcined at 500°C for
2 h in the muffle furnace with a heating rate of 1°C/min. The
sample obtained is denoted as CPO-E. For freeze-drying, the
precipitate was placed in a freeze dryer and dried for 24 h. Finally,
the sample was calcined at 500°C for 2 h in the muffle furnace
with a heating rate of 1°C/min. The sample obtained is denoted as
CPO-F.

Characterizations
X-ray powder diffraction (XRD) patterns were measured on a
D8FOCUS powder X-ray diffraction instrument (Bruker AXS,
Germany) using 40 kV as tube voltage and 40 mA as tube current.

Surface area and pore size distribution were determined
by N2 adsorption/desorption at 77 K using the
Brunauer–Emmett–Teller (BET) method with a Micromeritics
ASAP 2020 instrument after out-gassing for 5 h at 300°C prior to
analysis.

Temperature-programmed reduction with H2 (H2-TPR)
experiments were performed in a quartz reactor with a
thermal conductivity detector (TCD) to monitor H2

consumption. A 50 mg sample was pretreated in situ
for 30 min at 200°C in a flow of O2 (30 ml/min) and
cooled to room temperature in the presence of O2. After
purging in N2, TPR was conducted at 10°C/min up to 900°C in
a 30 ml/min flow of 5 vol.% H2 in N2. To quantify the total
amount of H2 consumption, CuO was used as a calibration
reference.

Soot temperature–programmedreduction (soot-TPR) experiments
were performed in a quartz reactor consistent with the activity test
dosage. 50 mg sample of the soot–catalyst mixture and 100mg of

FIGURE 1 | XRD patterns of CPO, CPO-E, and CPO-F.

FIGURE 2 | N2 adsorption/desorption isotherms (A) and pore
distribution curves (B) for CPO, CPO-E, and CPO-F.
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quartz sand were pretreated in a flow of He (100ml/min) at 200°C for
30min to remove adsorbed species. After cooling to room
temperature, the temperature was also programmed in a He
atmosphere under the condition of a heating rate of 5°C/min,
reaching 850°C. CO2 during the reaction was detected by mass
spectrometry (MS, OminiStar 200, Balzers).

Catalytic Activity
Temperature-programmed oxidation (TPO) reactions were
conducted in a fixed bed micro-reactor. Printex-U from
Degussa is used as the model soot. Two conditions (tight
and loose contact) were employed in this study, in which
45 mg of catalyst and 5 mg of soot were used. In tight contact
conditions, soot was mixed with the catalyst in an agate mortar
for 30 min to obtain a homogeneous mixture. In loose contact
conditions, the catalyst–soot mixture was added into a small
flask and shaken for 24 h. 50 mg sample of the soot–catalyst
mixture was pretreated in a flow of He (100 ml/min) at 200°C
for 30 min to remove adsorbed species. After cooling to room
temperature, a gas flow with 5 vol.% O2 in He was introduced,
and then TPO was started at a heating rate of 5°C/min until
reaching 750°C. The effluent gases were monitored online
using a gas chromatograph (GC, SP-6890, Shandong Lunan
Ruihong Chemical Instrument Corporation, China) fitted
with a methanator. The activity for soot combustion was
evaluated by Tm, the temperature corresponding to the
maximum soot combustion rate. The selectivity to CO2

(SCO2) is defined as the percentage CO2 in the outlet
concentration divided by the sum of the CO2 and CO
outlet concentrations.

The intrinsic activity, turnover frequency (TOF), is measured
by an isothermal anaerobic titration with soot as a probe
molecule, as suggested by us previously (Zhang et al., 2010). A
50 mg mixture of catalyst and soot (9:1) below 300 mesh was
diluted with 100 mg silica (below 300 mesh). After pretreatment
in a flow of He (100 ml/min) at 120 °C for 20 min, a gas flow with
5 vol.% O2 in He (200 ml/min) was introduced. The isothermal
reaction rates were detected at 280°C when the soot conversion is
stable and low but sufficient for analysis purposes. When
comparable soot conversions were reached for all the samples,
O2 was replaced with He. The transient decay in concentrations
from the steady state was monitored using a gas chromatograph.
The number of active redox sites available to soot under these
reaction conditions can be quantified by integrating the
diminishing rate of CO2 formation over time.

RESULTS AND DISCUSSION

XRD patterns show that all the as-prepared samples are indexed
to the structure of fluorite CeO2 (JCPDS 43–1002), and no other

TABLE 1 | Texture properties, hydrogen consumption, and catalytic soot oxidation activity of samples.

Samples Surface area
(m2·g−1)

Pore volume
(cm3·g−1)

H2-TPR Tm (°C) SCO2

(%)
Rate (μmol·s−1·g−1) TOF (s−1 × 10–3)

Main peak
T (°C)

H2 consumption
(μmol[H]·g−1)

CPO 51 0.096 410 2952.5 400a (514b) 93.62 0.044 0.426
CPO-E 95 0.324 406 3284.8 390a (492b) 94.73 0.091 0.581
CPO-F 93 0.347 403 3826.2 389a (493b) 94.75 0.073 0.546

aUnder tight contact conditions.
bUnder loose contact conditions.

FIGURE 3 | H2-TPR curves of CPO, CPO-E, and CPO-F.

FIGURE 4 | Soot-TPR and initial soot consumption rate (inset) curves of
CPO, CPO-E, and CPO-F.
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peaks were found (Figure 1), implying the formation of CePr
solid solution due to the similar ionic radius of Ce4+ (0.97 Å) with
Pr4+ (0.96 Å). This confirms that changing drying methods does
not change the phase structure of the CePr composite oxides.
Additionally, it is noted that the intensity of the diffraction peaks
of CPO-E and CPO-F is lower than those of CPO, suggesting the
lower crystallinity or more defects/vacancies for CPO-E and
CPO-F, which would benefit the redox property and catalytic
activity (Martínez-Munuera et al., 2019).

Figure 2 shows N2 adsorption/desorption isotherms and pore
distribution curves. The type II isotherms with a type H3 hysteresis
loop in the relative pressure (P/P0) range of ∼0.4–1.0 are observed

(Figure 2A), indicating aggregates of plate-like particles with slit-
shaped pores (Aneggi et al., 2012; Fan et al., 2014). Furthermore, both
mesopores and macropores are detected (Figure 2B). However, the
pore size distribution with a shift to lower values was observed for
CPO-E andCPO-F compared with CPO, while the BET surface areas
of CPO-E and CPO-F are nearly double that of CPO, and pore
volumesmore than triple (Table 1), confirming the looser texture and
abundant pores for the former two samples derived from the
vacuum- and freeze-drying processes. This is possibly due to the
loosely aggregated morphology under vacuum/freeze-drying process
resulting in the elimination of surface tension effects.

The redox properties of the catalysts were investigated by H2-
TPR. As shown in Figure 3, two H2 consumption peaks, a
prominent one with a should and a small one above 500°C,
were observed, which can be attributed to the reduction of surface
and subsurface Ce4+ and Pr4+ reduction (Krishna et al., 2007;
Guillén-Hurtado et al., 2015). Importantly, the first peak appears
earlier for CPO-E and CPO-F than for CPO, indicating the higher
reducibility of CePr oxide solid solutions using vacuum/freeze-
drying methods. Furthermore, the H2 amounts consumed for
CPO-E and CPO-F were much higher than those consumed for
CPO (Table 1), suggesting that not only the reactivity of active
oxygen but also the amount involved are improved.

To be more realistic, soot was used as a probe agent for TPR
reactions (Figure 4). Similar with H2-TPR, two CO2 production
peaks are observed. Furthermore, the lower temperature of the
first reduction peaks for CPO-E and CPO-F in comparison with
CPO confirmed the increase of surface lattice oxygen activity for
soot combustion (Machida et al., 2008; Aneggi et al., 2012;
Harada et al., 2014). On the other hand, the low-temperature
reducibility of catalysts can be evaluated using the initial soot

FIGURE 5 | Soot conversion under tight and loose contact between
catalysts and soot in 5 vol.% O2 in He.

FIGURE 6 | Soot consumed as a function of time at 280°C over CPO, CPO-E, and CPO-F (A), COx concentrations as a function of time at 280°C over CPO (B),
CPO-E (C), and CPO-F (D) before and after O2 is removed from the reactant feed. The curve slopes between three dot lines in (A) represent reaction rates.
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consumption rates. The soot consumption rates of CPO-E and
CPO-F are much higher than those of CPO, confirming the
stronger ability of active oxygen species in CPO-E and CPO-F for
oxidizing soot.

Figure 5 shows soot combustion conversion profiles under
tight and loose contact conditions in O2 atmosphere. Both CPO-E
and CPO-F show lower Tm and higher SCO2 than CPO in the tight
contact conditions. For the sake of disclosing the differentiation
in intrinsic activity, isothermal reactions at 280°C and anaerobic
titration tests were performed (Li et al., 2011; Zhang et al., 2010),
from which the reaction rates, the amounts of active oxygen, and
the TOF values can be obtained (Figure 6). As listed in Table 1,
higher reaction rates and TOF values were achieved on CPO-E
and CPO-F, which is consistent with the results of H2-TPR
(Figure 3) and soot-TPR (Figure 4). In the loose contact
conditions, similar activity results were observed, but all Tm
shift to higher temperatures than that in the tight contact
conditions (Figure 5). Clearly, the activity improvement after
vacuum-drying and freeze-drying is more evident, because the
difference of Tm between CPO-E/CPO-F and CPO is 20°C, while
under the tight contact conditions, only 10°C was detected
(Table 1). This could be attributed to bigger pore volumes
and surface areas of CPO-E and CPO-F (Table 1), improving
soot dispersion on catalysts and thus the contact efficiency of soot
with catalyst under loose contact conditions, as well as facilitating
fast oxygen delivery (Martínez-Munuera et al., 2019).

CONCLUSION

Vacuum-drying and freeze-drying were used to improve the
activity of Ce0.5Pr0.5O2, a promising soot combustion catalyst.

Lower crystallinity, higher surface area, larger pore volume, and
stronger redox properties were obtained compared to the
counterpart using the common drying method. Therefore,
lower soot oxidation temperatures and higher intrinsic activity
were achieved. It is a good paradigm for catalysts to enhance
catalytic performance simply by changing drying methods during
the preparation process.
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