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Sudden changes in drinking water quality can cause harmful consequences for

end users. Thus, real-time monitoring of drinking water quality can allow early

warning and provide crucial gains for securing safe water distribution. This study

investigated the advantages of simultaneous real-time measuring of flow

cytometry and fluorescence spectroscopy. A contamination event was

investigated in a laboratory-scale analysis by spiking drinking water samples

with organic nutrients. Flow cytometric data were analyzed by creating

fingerprints based on differentiation into high and low nucleic acid cells

(HNA/LNA). The detailed characterization of these data showed that an

increase in HNA cells indicated an increase in the bacterial growth potential

even before actual TCC increases. The fluorescence data was decomposed via

the PARAFACmethod to reveal seven fluorescent components. Three aromatic

protein-like components were associated with themicrobiological condition of

the drinking water cells; namely, Components 4 (λEx = 279 nm, λEm = 351 nm), 6

(λEx = 279 nm, λEm = 332 nm), and 7 (λEx = 276 nm, λEm = 302 nm). Component

6 was identified as a possible organic variable for appropriate monitoring of

TCC, whereas Components 4 and 7 were identified as organic compounds

representing nutrients for organisms present in drinking water. Overall,

combining both methods for real-time monitoring can be a powerful tool to

guarantee drinking water quality.
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Graphical Abstract

1 Introduction

Guaranteeing high drinking water quality after treatment and

within the water distribution system (WDS) is essential to ensure

public health. Ashbolt et al. (2014) reported that illnesses from

drinking water mainly occur due to the presence of containing

microbiological pathogens such as bacteria, protozoa, and

viruses. Furthermore, recent studies have also reported the

relationship between microorganisms and dissolved organic

matter (DOM) (Camper et al., 2003; Sillanpa€a€, 2014).

Therefore, there is a crucial need for an early warning system

for evolving microbiological or organic contamination,

particularly the real-time monitoring of water quality

parameters after water treatment and in critical sections

within the WDS.

Flow cytometry is a proven method of evaluating total cell

count (TCC) and nucleic acid viability and amount in bacterial

cells (Macey, 2007; Prest et al., 2013; Schönher et al., 2021).

Community characterization in a liquid medium is often

performed through the discrimination of cells with high

nucleic acid content (HNA) and low nucleic acid content

(LNA) (Wang et al., 2010). Several studies have demonstrated

the use of flow cytometry for real-timemonitoring of TCC, HNA,

and LNA (Hammes et al., 2012; Jie et al., 2017). Moreover, studies

have reported the identification of chlorine disinfection

characteristics in drinking water via flow cytometry (Gillespie

et al., 2014; Cheswick et al., 2020; Mao et al., 2021) or exhaustive

differentiation between pathogens and harmless drinking water

bacteria (Vital et al., 2012; Al-Sabi et al., 2015). Other studies

have investigated the interdependencies between TCC and shifts

between HNA and LNA cells and specific events (day- and

nighttime, e.g.) (Besmer et al., 2014) or monitored changes in

TCC between several steps of the water treatment process

(Buysschaert et al., 2018). Although flow cytometric methods

have been applied, data evaluation remains challenging and is not

yet standardized (Safford and Bischel, 2019). The general

standardization of the data post-processing is driven by

current studies. Therefore, microbiological fingerprinting

methods have been developed by applying gate-independent

evaluation tools (Rogers and Holyst, 2009; Rubbens and

Props, 2021). Moreover, several promising python and

R-based toolkits have been developed to facilitate evaluation

and allow comparability between different flow cytometric

devices (Ross, 2021; Heins et al., 2022).

Apart from bacteria, the amount of DOM (equivalent to

DOC, dissolved organic carbon) plays a crucial role in drinking

water quality. The usual challenges are the formation of

disinfection by-products (Ding et al., 2019), inconveniences

due to taste and odor (Li et al., 2020), and the occurrence of

membrane fouling (Al-Amoudi, 2010) and its microbial impact

(Weinrich et al., 2010). Regarding DOC as potential bacterial

substrates, the amount of assimilable organic carbon (AOC)

plays a crucial role in drinking water analysis in non-

disinfected WDS. AOC describes the proportion of DOC that

can be easily biodegraded by microorganisms (Van der Kooij

et al., 1982). Thus, even though it comprises 0.1%–9% of the

DOC in drinking water, AOC is among the most important

parameters for determining the microbiological stability of
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drinking water in non-disinfectedWDS (Van der Kooij, 2003; Yu

et al., 2011; Wang et al., 2014).

Regarding the characterization of DOC in the steps of

drinking water treatment, size-exclusion chromatography is an

expedient but expensive and slow method (Baghoth et al., 2011;

Brezinski and Gorczyca, 2019). The search for a faster and more

sensitive method led to the development of DOC

characterization via fluorescence spectroscopy (Korshin, Sgroi,

and Ratnaweera, 2018; Carstea et al., 2020). The correlations

between particular fluorescent components and water DOC level

have been reported (Johnstone et al., 2009; Shutova et al., 2014).

Further successful applications of fluorescence spectroscopy,

such as the effects of bacterial coagulation in drinking water

(Ma et al., 2018), DOM adsorption on activated carbon and

nanotubes (Shimizu et al., 2018), the influence of organic

molecules within a membrane process (Meng et al., 2011),

and pH effects on DOM in freshwater (Spencer et al., 2007)

illustrate the wide range of application of this method for the

analysis of drinking water.

In general, fluorescence spectroscopy generates an

excitation-emission matrix (EEM), with up to tens of

thousands of excitation (λEx) and emission (λEm) wavelength

pairs. Since Coble (1996) described the correlation between the

appearance of λEx/λEm peak regions and samples containing

humic-like and protein-like substances, methods for the use of

fluorescence spectroscopy for the characterization of DOM have

improved continuously. However, the data analysis method

referred to as peak picking interpretation has limitations in

the quantitative analysis of eventual overlapping peak regions.

Therefore, the parallel factor analysis (PARAFAC) method was

introduced by Andersen and Bro (2003) and Stedmon et al.

(2003), which uses a least square model approach to identify

several fluorescent components of DOM in natural water

sources. The PARAFAC method enables the identification and

characterization of several peak regions by decomposing the

generated EEM. Subsequently, PARAFAC has been adapted

and improved as a sustainable method for fluorescent data

treatment and evaluation (Stedmon and Bro, 2008; Murphy

et al., 2013; Wünsch and Murphy, 2021). Besides the

appearance and the position (λEx/λEm) of the identified

fluorescent components, the respective intensities can now

also be determined.

PARAFACmodeling had been widely applied to evaluate the

steps of drinking water treatment (Yang et al., 2015). Xu et al.

(2021) demonstrated the advantages of this modeling for

characterizing the types and sources of DOM that affect the

formation of disinfection by-products. Sorensen et al. (2018)

initially presented an approach for monitoring the correlation

between fluorescent DOM and TCC and Escherichia coli by

applying a two-component PARAFAC model. However,

according to Heibati et al. (2017), studies about characterizing

drinking water quality via fluorescence spectroscopy within a

WDS are very few and need further investigations.

The present study demonstrated the detailed simultaneous

real-time fingerprinting of drinking water via flow cytometry and

fluorescence spectroscopy. By spiking samples with organic

nutrients, microbial growth was simulated to monitor the

changes and correlations between flow cytometry and

fluorescence spectroscopy. The spiked nutrients were selected

due to their fluorescent properties. Applying an appropriate

seven-component PARAFAC model provided insights into the

influence of DOM on microbial conditions. This PARAFAC

model can be used for future investigations of a broader range of

tap water sources. Additionally, this study also presents the

advantages of detailed TCC gating for the early detection of

bacterial growth.

2 Materials and methods

2.1 Samples

Tap water samples were collected at the Hamburg University

of Technology (11°C, pH = 8.2, conductivity = 227 μS/cm. After

2 min of flushing the tap, the water was sampled in autoclaved

glass bottles and immediately used in the respective experiments.

The tap water samples showed an initial total cell count (TCC) of

approximately 2 × 104 cells/ml, approximately 90% of which

were viable. The total organic carbon (TOC) was 0.55 mg/L.

As an organic additive contaminant, Luria Bertani (LB) nutrient

medium was utilized, which is well known as the cultivation

medium for Escherichia coli (Sezonov et al., 2007). To prepare 1 L

of LB medium, 5 g yeast extract, 10 g peptone from casein, and

10 g sodium chloride (all CARL ROTH®) were dissolved into 1 L

of ultrapure water (18.2 MΩ cm at 22°C ± 2°C). Thus, LB

medium mainly contains oligopeptides and amino acids as

organic compounds, which leads to an initial TOC of

approximately 7 g/L.

This study investigated six tap water samples with increasing

concentrations of LB medium: S1—tap water, S2—tap water +

vol% 0.001 LB medium, S3—tap water + vol% 0.007 LB medium,

S4—tap water + vol% 0.014 LB medium, S5—tap water + vol%

0.029 LB medium, and S6—tap water + vol% 0.043 LB medium.

2.2 Experimental setup

Figure 1 shows the scheme of the laboratory setup in this

study, which allowed the simultaneous investigation of three

different water samples. Thus, two experiments were run

successively (samples S1–S3 and S4–S6). Automatic sampling

was conducted every 90 min (flow cytometry) and every 180 min

(fluorescence spectroscopy). In between, the tubes and cuvettes

were disinfected, quenched, and rinsed with sodium hypochlorite

and sodium thiosulfate solutions as well as with ultrapure water.

The duration of all experiments was 70 h, while stirring the
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samples at 200 rpm. All experiments were performed at room

temperature (25 ± 1°C). The first measurement of each

experiment was used to generate individual microbiological

and organic fingerprints of both the tap water and the organic

LB medium. In addition to the continuous monitoring by flow

cytometry and fluorescence spectroscopy, a detailed

characterization of the containing organic carbon was

conducted by LC-OCD and TOC analysis before and after the

experiments.

2.3 Flow cytometry

The flow cytometric analysis in this study was performed on

a CyFlow™ Cube 6 V2 device (Sysmex, Germany) equipped with

a 60 mW blue diode laser at a rigid wavelength of 488 nm. The

detectors included non-fluorescent and fluorescent signal

detectors. Non-fluorescent signals were detected by forward

(FSC) and sideward (SSC) scatter detectors. The FI1 and

FI3 detectors detected light emitted at specific wavelengths of

536 ± 40 nm (green) and >630 nm (red), respectively. As

described by Ho et al. (2020) the flow cytometer was

calibrated using the integrated CyView™ software using

fluorescent 3 µm calibration beads (Sysmex), mineral water,

and sterile filtered mineral water (evian®). For the real-time

monitoring analysis, the flow cytometer was connected to the

onCyt™ OC-300 automation add-on (OC300, onCyt

Microbiology AG, Switzerland), which conducted sampling,

mixing, and incubation (37°C, 13 min) with SYBR® Green I

(SIGMA-ALDRICH®) (Dragan et al., 2012).

Between sample measurements, disinfectant cleaning

solutions were applied, including disinfectant sodium

hypochlorite (approximately 1% active chlorine) and sodium

thiosulfate (50 mM) quenching solutions.

The flow cytometric data was proceeded by integrated

analysis software onCyt™ cyPlot, as well as the python toolkit

FlowKit version 0.8.2 compiled by White et al. (2021). The latter

was especially utilized for detailed fingerprinting tools. Based on

various studies, the TCC gate was set by utilizing evian® as an
external standard for bacterial cells (Ho et al., 2020). All signals

detected within this TCC gate were counted to generate the

respective bacterial concentration. The distinction between high

nucleic acid (HNA) and low nucleic acid (LNA) cells and the

position of their respective gates was also performed using evian®.
For detailed microbial fingerprinting, further sectioning was

applied by dividing the HNA and LNA cells into minimum

(min) and maximum (max) gates.

2.4 Fluorescence spectroscopy and
PARAFAC methodology

The fluorescence spectroscopic measurements in this study

were performed using an Aqualog® fluorometer (HORIBA,

FIGURE 1
Flow scheme of the real-time characterization setup via fluorescence spectroscopy and flow cytometry, which enables the simultaneous
analysis of three different samples.
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Japan). Without pre-treatment, the samples were automatically

injected into a 10 mm flow cuvette (Helma GmbH, Germany).

The measurement was initialized via external triggering of the

Aqualog®. During analysis, the water sample was exposed to

monochromatic light with excitation wavelengths (λEx) from

200 to 600 nm in 3-nm increments. The fluorescently emitted

light (λEm) was detected at 212–619 nm.

Fluorescence spectroscopic data were analyzed using the

PARAFAC multi-way decomposition method (Murphy et al.,

2013) in drEEM (decomposition routines for excitation and

emission matrices) toolbox version 0.6.3 for MATLAB version

R2021a. This toolbox perfoms post-treatment and correction of

all data, known as inner-filter effects, as well as Raman and

Rayleigh scattering. The mathematical decomposition of the

PARAFAC model is based on Eq. 1:

xijk � ∑
F

f�1
aifbjfckf + eijk (1)

In Eq. 1, xijk represents the EEM for a single sample i. aif
indicates the respective score for each identified organic

component, while bjf and ckf correspond to the respective

emission and excitation loading of the identified components,

respectively. The signal of the residues is indicated by the last

term ,eijk. The removal of regions with high scattering leads to

EEM regions of emission and excitation wavelengths of

250–550 nm and 250–580 nm, respectively. According to

Raman and Rayleigh scattering, the regions including

Rayleigh 1 as well as Raman 1 and 2 scattering were

removed. Meanwhile, the Raman 1 scattering region was

interpolated due to the importance of the contained

fluorescent signals (Bahram et al., 2006). The entire dataset

contained 96 samples, which were investigated considering

outlying samples and samples with high leverage given the

later model development. The validation of 5-, 6-, 7-, and 8-

component models of fluorescent data included the following

four steps:

• Evaluation of the respective residues of each sample

• Random initialization of the x-component model by

applying nonnegativity constraint

• Evaluation of the spectral properties of each x-component

model

• Split-half-analysis by splitting the dataset into three

separate datasets of equal sizes

2.5 Total-, dissolved- and assimilable
organic carbon

Total organic carbon (TOC) was determined using a TOC-

analyzer (Shimadzu, Japan). Regarding a more specific

organic carbon characterization, size exclusion liquid

chromatography (LC) was used in combination with an

organic carbon detector (OCD) and UV detector (UVD)

(LC-OCD-UVD, DOC Labor Dr. Huber, Germany). All

analyses were performed as described by Huber et al.

(2011). Additional standard analyses such as monitoring of

pH, temperature, and conductivity were conducted using a

MultiLine® Multi 3630 IDS.

Assimilable organic carbon (AOC) was analyzed based on

Hammes and Egli (2005) and (Van der Kooij, 2003). Briefly,

AOC was determined as the difference between the maximum

TCC (TCCmax) and the initial TCC (TCCinitial) of a water sample

in an aerobic biotest for up to 28 days. An expression for the

AOC is given in Eq. 2. This equation was applied by replacing the

parameters with TCC0 and TCCend monitored at the beginning

and end of the real-time monitoring experiments, respectively.

AOC � (TCCmax − TCCinitial) × 10−4 in µg Ceq/L (2)

FIGURE 2
Flow cytometric fingerprint (red over green fluorescence
signals) of a tap water sample (S1) at time t = 0. Discrimination into
overall TCC ( 2.0 × 104 cells/ml), LNAmin ( 5.8 × 103 cells/ml),
LNAmax (4.5 × 103 cells/ml), HNAmin ( 9.9 × 103 cells/ml), and
HNAmax (0.2 × 103 cells/ml) gates. LNA summarizes both LNAmin

and LNAmax signals whereas HNA summarizes both HNAmin and
HNAmax signals.

TABLE 1 Overview of TOC in tap water samples. The description refers
to the amounts of LB medium in the tap water. The analyses were
performed before the start of the real-time monitoring experiment.

Sample Description TOC0 in mg/L

S1 Tap water 0.55

S2 Tap water + vol% 0.001 LB 0.68

S3 Tap water + vol% 0.007 LB 1.07

S4 Tap water + vol% 0.014 LB 1.52

S5 Tap water + vol% 0.029 LB 2.33

S6 Tap water + vol% 0.043 LB 3.15
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3 Results and discussion

3.1 Fingerprinting of drinking water and LB
medium

3.1.1 Gating of flow cytometric microbiological
fingerprints

One focus of this study was the optimization and

standardization of the gating procedure. For this, Figure 2

shows the flow cytometric fingerprint of the drinking water.

Within the TCC gate, signals are classified as bacterial cells.

Signals outside of the gate are background noise, which affect the

general fingerprint of miscellaneous waters, although they did

not affect the upcoming bacterial growth behavior. We could

identify around 2.0 × 104 signals as the TCC, approximately half

of which were classified as HNA and LNA cells respectively. This

ratio varied from those of the investigations of Jie et al. (2017),

who showed predominantly LNA cells in their tap water samples

(approximately 67%). However, the differentiation between LNA

and HNA is dependent on the general gating procedure, specific

device specifications such as threshold and gain settings, and the

type of drinking water (e.g., source, treatment process) (Ho et al.,

2020).

The single distribution into two gates was not precise enough

to detect obvious changes in the drinking water matrix in real-

time monitoring of flow cytometric data. Discrimination of the

LNAmin/LNAmax and HNAmin/LNAmax (Figure 2) gates should

highlight the advantage of detailed gating, especially compared to

state-of-the-art discrimination into two gates only (HNA and

LNA). For tap water, similar proportions of LNAmin and LNAmax

cells were observed, whereas almost all HNA cells appeared

within the HNAmin gate.

This approach of further discrimination was introduced due

to its convenient way of applying it to existing gating procedures

for water quality analysis within waterworks. This might be

promising for the easy applicability of this method compared

to more detailed programming-based analysis tools described

recently (Rogers and Holyst, 2009; Ross, 2021).

3.1.2 Organic carbon characterization via TOC
analyses and LC-OCD

According to the high TOC concentration of pure LB

medium (7 g/L), very low amounts were injected to the tap

water and investigated in this study. The respective TOC

concentrations of all samples are shown in Table 1.

The TOC analysis confirmed the linearity between each

sample and the respective concentration of LB medium. Very

small concentrations of LB medium (vol% 0.001) were detected

via the TOC analysis. Additional LC-OCD analysis was applied

to better understand the molecular weight distribution of the

organic components in water and their effect on bacterial growth.

The relative OCD signals of each sample are shown in Figure 3.

The corresponding results from the UV detector showing

analogous behavior are included in the Supplementary

Material (Supplementary Figure S1).

Tap water analysis (S1) showed that the organic carbon

content was dominated by humic substances (humics),

building blocks, and low molecular weight (lmw) acids and

humics. Significant levels of lower molecular weight neutrals

and biopolymers were not detected in tap water. The addition of

FIGURE 3
Characterization of organic carbon by LC-OCD analysis for all samples (S1–S6). Differences in biopolymers, humics, building blocks, low
molecular weight (lmw) acids + humics and lmw neutrals are show. The analyses were performed before the start of the real-time monitoring
experiments.
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LB medium to tap water showed corresponding increases in the

relative signal intensities. Even for very low concentrations of LB

medium (S2—tap water + vol% 0.001 LB), a slight increase was

visible for low molecular weight acids and humics as well as for

low molecular weight neutrals. This trend was also observed for

higher LB medium concentrations.

According to the results of the LC-OCD analysis, we could

characterize most of the TOC as DOC. The DOC in tap water and

LB medium were mainly hydrophilic.

3.1.3 Organic carbon characterization via
PARAFAC modeling

Fluorescence spectroscopy can be run in real-time and

generated organic fingerprints much more quickly compared

to TOC and LC-OCD analysis. We applied fluorescence

spectroscopy for organic fingerprinting characterization of

drinking water to check whether TOC and LC-OCD analysis

could be a complementary real-time approach for detecting

changes in water quality. Our model validation showed a

successful performance for the 7-component model.

Fluorescence spectroscopic data is displayed in the

excitation-emission matrix (EEM), which shows the

fluorescence intensities for the corresponding excitation and

emission wavelengths (λEx/λEm). By plotting EEMs (Figure 4),

characteristic patterns of fluorescent compounds can be

identified. Figure 4A shows the EEM of a pure tap water

sample (S1), while Figure 4B shows the EEM of a tap water

sample containing LB medium (S3—tap water + vol% 0.007 LB

medium).

Fluorescence spectroscopic analysis of DOM in water

generally showed fluorescent signals at excitation wavelengths

of 200–500 nm and emission wavelengths of 250–600 nm

(Stedmon and Bro, 2008). Depending on the TOC level and

the source of the natural water sample, fluorescent peak regions

and intensities can vary slightly (Coble, 1996). The EEM of tap

water (Figure 4A) showed the typical appearance of DOM peaks

in natural water. Based on Coble (1996) and Chen et al. (2003)

the DOM signals can be divided into humic acid-like, fulvic acid-

like, and protein-like components. Compared to the tap water

sample (Figure 4A), different peak intensities and positions were

observed for the sample containing LB medium (Figure 4B),

especially at lower excitation wavelengths (250–300 nm). The

real-time monitoring of fluorescence spectroscopic data by

plotting and comparing EEM is not expedient for two

reasons. First, the change in signal intensities might be too

small to be seen by eye, particularly for drinking water with

very low DOM concentrations, constant raw water sources, or

stable treatment processes. Second, the fluorescence peaks can

overlap in EEM graphics. This might result in unnoticed changes

in peaks of lower intensities, which are masked by higher-

intensity peaks. Therefore, it is currently crucial to apply the

PARAFAC method as an offline- and real-time monitoring

standard.

PARAFAC allows the specific characterization of particular

fluorescent organic components present in tap water based on

EEM decomposition. The PARAFAC model used in this study

included 96 measurements of six different samples (S1–S6). The

validation of the model revealed successful performance for

seven fluorescent components. The individual fingerprints for

each component, including their corresponding excitation and

emission wavelength peaks, are shown in Figure 5. The

fluorescence scores were normalized for each component.

Components 1, 2, 3, 5, 6, and 7 were detected in the

investigated tap water (S1). No signal was observed for

Component 4 in tap water which indicated that this signal

belonged mainly to the LB medium. However, while

distinction among DOM fractions is difficult, it was required

in this study. The OpenFluor database was used for detailed

single component characterization (Murphy et al., 2014). An

overview of studies that mentioned components with high

FIGURE 4
Excitation emission matrix (EEM) (A) of tap water (S1) and (B) tap water + vol% 0.007 LBmedium (S3). Rayleigh and Raman scattering is removed
and interpolated, respectively.
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matches (>95%) to the seven components modeled by the

PARAFAC model in the present study is shown in Table 2.

The DOM categorization proposed by Coble (1996) is the

most commonly used among the studies cited in the present

study. However, a detailed characterization of humic-like DOM

in microbial and terrestrial humic-like components is evident.

The studies investigating humic-like compounds showed that

the differentiation between components is not trivial, since

there is usually a larger existing range of excitation-emission

spectrum related to each component (Shutova et al., 2014).

Aromatic protein-like components can be located more

precisely in the EEM. This leads to the accurate

identification of tryptophan-like and tyrosine-like

compounds in both artificial and natural water sources. The

components of our analyzed drinking water cannot be

identified as general characteristics of drinking water only as

they occurred in a wide range of natural water sources (Table 2).

3.2 Real-time monitoring of bacterial
growth and fluorescent properties in tap
water

3.2.1 Simultaneous monitoring and
characterization results

Figure 6 shows the real-time monitoring results of drinking

water samples S1, S2, S5, and S6. The results of the remaining

samples are shown in Supplementary Figure S2. Fluorescent (λEx/

λEm) Component 6 (279 nm/332 nm) was strongly correlated

with the TCC. Components 4 (279 nm/351 nm) and 7 (276 nm/

302 nm) affected the microbial conditions of the drinking water.

3.2.1.1 Flow cytometry

The TCC of each sample was stable in the beginning (<20–30 h)
of the experiment, which corresponded to the lag-phase of the cells

present in the drinking water. Regarding the tap water sample

FIGURE 5
Fluorescent fingerprint of seven organic components in tap water with LB medium. Peak regions by pair of excitation (λEx) and emission (λEm)
wavelengths: Component 1 λEx = 252/303 nm, λEm = 403 nm; Component 2 λEx = 252/393 nm, λEm = 463 nm; Component 3 λEx = 261/357 nm,
λEm = 453 nm; Component 4 λEx = 279 nm, λEm = 351 nm; Component 5 λEx = 252 nm, λEm = 526 nm; Component 6 λEx = 279 nm, λEm = 332 nm;
Component 7 λEx = 276 nm, λEm = 302 nm.
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(Figure 6A), a slight linear increase of TCC is noticeable not only for

the initial 20–30 h but over the entire experimental duration.

However, the final TCC with approximately 6.0 × 104 cells/ml

was still within the usual drinking water ranges (El-Chakhtoura

et al., 2015; Van Nevel et al., 2017). The AOC analysis of this

particular sample showed a maximum TCC (TCCmax) of

approximately 8 × 104 cells/ml between 3 and 7 days after the

experimental start, which was outside the range of the shown

real-time monitoring experiments.

Samples spiked with LB medium (Figures 6B–D) showed

typical bacterial growth behavior over the experimental duration;

namely, lag-phase, exponential growth, and stationary phase

(Maier, 2009). After the initial lag phase, the cell communities

enter the exponential growth phase before reaching the TCCmax

(stationary phase). At least for (Figures 6C, D), the bacterial

growth reached a stationary phase, whereas the TCC for

(Figure 6B) continued to increase slightly until 60 h. In all

samples, TCCmax was strongly related to the initial LB

medium concentration. Furthermore, there was a link between

the maximum exponential growth rate of each sample and its

initial LB medium concentration. The higher the LB

concentration, the higher TCCmax and exponential growth

rate, respectively (Supplementary Table S1).

Despite the correlation between bacterial growth and LB

medium concentration in drinking water, bacterial growth

potential is also dependent on external parameters such as the

general condition of cells in drinking water or the water

temperature (Dukan et al., 1996; Jie et al., 2017).

Regarding the detected signals outside the TCC gate, no changes

in event concentrations were observed during the experiments. The

number of these events remained constant at around 5,000 cells/ml.

Therefore, they were considered non-microbiological events that did

not participate in microbiological growth.

3.2.1.2 Fluorescence spectroscopy

Fluorescent (λEx/λEm) Components 1 (252 and 303 nm/

403 nm), 2 (252 and 393 nm/463 nm), 3 (261 nm/357 nm), 5

(252 nm/526 nm), 6 (279 nm/332 nm), and 7 (276 nm/302 nm)

can clearly be identified as present in drinking water (Figure 6A).

Regarding the effect of LB medium on tap water (Figures 6B–D)

for the first respective measurement, the PARAFAC

decomposition showed a significant linear increase in the

fluorescence signals of Components 4 (279 nm/351 nm) and

7. However, Components 1, 2, 3, and 5 only showed slight and

linear increases with the addition of LB medium, whereas the

fluorescence signal in Component 6 remained constant.

Comparison of these findings to the results of LC-OCD

analysis (Figure 3) suggest to which of the possible fractions

each component can be attributed. The large increase in the

fluorescence scores of Components 4 and 7 suggest that they are

low molecular weight organic acids and humics, and low

molecular weight neutrals, respectively. The fluorescence

scores of Components 1, 2, 3, and 5 suggested larger molecule

structures such as humics and building blocks.

Regarding the time-dependent development of

(Figures 6B–D), we start with Components 4, 6, and

7—previously determined to be protein-like compounds. The

development of Component 6 shows the same behavior as the

TCC growth curve. This might suggest that Component 6 can be

used as a monitoring parameter for TCC. However, the modest

increase over time of TCC in tap water (Figure 6A) was not

demonstrated in Component 6. Different behaviors were

observed for Components 4 and 7. Over the experimental

duration, each component showed decreased fluorescence

scores, divergent to the increase in TCC.

However, Component 4 did not show perfect

synchronization with the corresponding TCC development.

TABLE 2 Overview of seven components detected by the PARAFAC model in the present study, with their respective substance or substance-like
designations, appearance in natural sources, and respective references according to Murphy et al. (2014).

Component λEx in nm λEm in nm Substance Appearance References

1 252/303 403 Microbial humic-like, terrestrial humic-like Wastewater Murphy et al. (2011)

River Lin and Guo (2020)

Seawater Stedmon et al. (2007)

2 252/393 463 Terrestrial humic-like Drinking water Shutova et al. (2014)

Wastewater Murphy et al. (2011)

3 261/357 453 Terrestrial humic-like Lake/river Wünsch et al. (2017)

Drinking water Shutova et al. (2014)

4 279 351 Indole, Tryptophan Artificial Wünsch et al. (2015)

Algae, soil Derrien et al. (2019)

5 252 526 Terrestrial humic-like Mangrove soil Kida et al. (2021)

Lake Murphy et al. (2018)

6 279 332 Tryptophan-like Seawater Yamashita et al. (2011)

7 276 302 Tyrosine-like Seawater Paerl et al. (2020)
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The stable TCCmax (stationary phase) during the declining

fluorescence score of Component 4 could mean that the

PARAFAC model was detecting microbiological changes in

the water that were not directly related to the TCC. However,

the respective minimum fluorescence scores for Components

4 and 7 had probably not yet been reached in (Figures 6C, D). It

FIGURE 6
Real-time monitoring of total cell count (TCC) and fluorescence score in arbitrary units (Components 1–7) over an experimental period of
approximately 70 h. Tap water samples with different LB medium concentrations: (A)—S1 tap water; (B)—S2 tap water + vol% 0.001 LB medium;
(C)—S5 tap water + vol% 0.029 LB medium; (D)—S6 tap water + vol% 0.043 LB medium.
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was not clear from the results of the experiments if both

components reached their respective fluorescence scores from

the pure tap water sample (Figure 6A) at some time after 70 and

50 h for (Figures 6C, D), respectively.

TOC measurements at the end of the experiments confirmed

the remaining organic carbon amounts for S2–S6. The respective

final TOC results are included in the Supplementary Material

(Supplementary Table S2). Thus, it is likely that some organic

carbon remained in these samples at the end of the experiments,

which could not be utilized by bacteria (refractory organics).

The fluorescence scores of Components 1, 2, 3, and 5 showed

largely stable behavior over the entire experimental period, with

no visible and continuous trends in significant ranges.

3.2.2 Flow cytometric fingerprinting
S4 (tap water + vol% 0.014 LB medium) and S5 (tap water +

vol% 0.029 LBmedium) were chosen as representative samples to

show respective bacterial growth behavior (Figure 7).

During the lag phase, the HNA (I) and LNA (II) were stable,

at approximately 50% each (Figure 7—second row). With

increasing TCC, a shift towards HNA cells up to 90% during

the exponential growth phase was observed. After reaching the

stationary phase, the proportion of HNA declined but remained

higher than that at the beginning (80%–85%). The single outliers

might be caused by device issues in the beginning as well as

during the analysis of high bacterial concentrations. Thus, the

continuous measurement was an advantage over single

measurements as outliers could be easily identified.

For a more detailed analysis of the bacterial community,

the HNA/LNA gates were further divided into two sub-gates

each. The peak of HNA cells for maximum exponential growth

rate was mainly dominated by HNAmax (I-I) cells

(Figure 7—third row). During the lag phase, no HNAmax

cells were detected, and the proportion of HNAmax cells

decreased again during the stationary phase. Interestingly,

the significant appearance of HNAmax cells was identified

before the exponential growth phase, as indicated by TCC

monitoring (between 15 and 20 h).

This study confirmed the results of recent studies

characterizing HNA cells as crucial cells compared to LNA

cells for bacterial growth (Park et al., 2016; Jie et al., 2017).

Furthermore, shifts between HNA and LNA cells within the

stationary phases were also identified. A similar trend was

observed in the PARAFAC analysis of Component 4 (Figures

6C,D). This might support the hypothesis of detailed

microbiological monitoring via fluorescence spectroscopy and

should be investigated in further studies.

The sudden occurrence of HNAmax cells could mark a central

change in the water matrix that can lead to exponential growth or

other general issues in the WDS. The analysis of several gate

FIGURE 7
Real-timemonitoring of detailedmicrobial fingerprints over approximately 70 h (A)—S4 tap water + vol% 0.014 LBmedium; (B)—S5 tap water +
vol% 0.029 LB medium.
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regions and the movement of bacterial clusters within these gates

might be promising for the development of an early warning

system for bacterial and organic contamination in WDS.

Recent studies highlighted the opportunities for detailed

automatic fingerprinting. Ross (2021) introduced a python

package (FlowGateNIST) that enables automatic gating to

differentiate between cells and background and between

singlet and multiplet events. Rogers and Holyst (2009)

presented the R-based flowFP fingerprinting tool, which

allows the automatic classification of bacteria. These

innovative and accurate approaches aim for the successful

identification of specific bacteria. Since it is currently

impossible to distinguish between different bacteria species

present in drinking water and data are difficult to interpret, it

is a challenge to apply these techniques to a continuous

monitoring system in a WDS. Considering the interaction

between the accuracy and feasibility of drinking water

monitoring, the method described in the present study

connects both.

3.3 Application of the PARAFAC model for
assimilable organic carbon analysis

The present database allowed the differentiation of

organic components related to bacterial growth from those

that were not. Protein-like Components 4 (λEx = 279 nm,

λEm = 351 nm), 6 (λEx = 279 nm, λEm = 332 nm), and 7 (λEx =

276 nm, λEm = 302 nm) were identified as components

representing microbiological conditions in drinking water.

Component 6 was useful for the quantitative monitoring of

TCC in drinking water. Components 4 and 7 represented

potential nutrient material for cells present in drinking

water.

This study assessed the potential usefulness of fluorescence

spectroscopy, in particular the fluorescent behaviors of

Components 4 and 7, to estimate AOC. Conventional AOC

measurement of drinking water samples requires up to

4 weeks; thus, real-time measurement is not generally possible.

Fluorescence spectroscopic analysis could significantly accelerate

this process. This study identified a correlation between AOC

and fluorescence scores for both Components 4 and 7 (Figure 8).

The high fluorescence scores in Components 4 and 7 were

correlated with higher AOC levels. Since these were drinking

water samples containing LB medium (S2–S6), this finding

requires validation in actual water samples with originally

high amounts (high AOC in drinking water, groundwater,

wastewater e.g.). Lower AOC levels (<50 μg C eq/L) likely lead

to lower fluorescence spectroscopy accuracy since the

fluorescence signals of both components are low compared to

those of the remaining fluorescent components (Figure 6A).

Moreover, the AOC standard deviation is high for lower

ranges (<20 μg C eq/L). Another issue is that AOC can be

affected by different carbon sources, such as single-bound

carbon chains, which have no fluorescent properties and

would consequently not be detected by fluorescence

spectroscopy (Chen et al., 2018).

Another possible approach to characterize the AOC in water

samples is LC-OCD-UVD analysis performed before and after

the experimental run. The results of one representative sample

(S4) are included in the Supplementary Material (Supplementary

Figure S3). The OCD results showed that low molecular weight

components (acids and neutrals) were the main sources of AOC

in this study. However, these fractions were not significantly

FIGURE 8
Correlations between fluorescence scores in arbitrary units for Components 7 (A) and 4 (B) and AOC level in the tap water samples.
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detected by UVD. Thus, fluorescence spectroscopy is better for

the quantification of AOC compared to LC-OCD-UVD analysis.

Fluorescence spectroscopy for general AOC

measurements cannot detect components with small

amounts of double bonds (sugars e.g.), since they have low

or even no fluorescent properties. However, considering the

proportions of natural organic matter DOC as the potential

source of AOC, most of the potential components from

natural waters have fluorescent properties. Thus, the real-

time monitoring of fluorescent components in drinking water

might still allow an estimation of changes in microbial growth

potential (AOC). A future objective is the application of this

PARAFAC model to characterize fluorescence scores

(Components 4 and 7) of several real drinking water

sources without artificial growth stimulation by LB

medium, which may confirm the correlation between the

presence of these components and the AOC level in

different drinking water sources.

4 Conclusion

The results of this study underscore the potential for real-

time water quality characterization in real application fields

based on real-time monitoring and characterization of flow

cytometric and fluorescence spectroscopic data. The

demonstrated correlations between the real-time monitoring

of flow cytometric and fluorescence spectroscopic data can be

summarized as follows:

• The PARAFAC model identified six different fluorescent

components present in drinking water, whereas one extra

component was only present in the medium (LB) applied

as a nutrient source. This discrimination allows a precise

and complementary characterization of drinking water

DOC apart from conventional TOC or LC-OCD analysis.

• The identified protein-like Component 6 showed a strong

correlation to TCC in drinking water, whereas protein-like

Components 4 and 7 were organics that can be utilized as

nutrients from autochthonous cells in drinking water.

Analyzing both components may allow rapid estimation

of the AOC level in drinking water samples.

• Fluorescence spectroscopy with real-time PARAFAC

modeling enabled the combined analysis of bacterial

concentration, detailed DOC information, and the

microbial growth potential of drinking water.

• The distinction of flow cytometric fingerprints into four

characteristic gates (LNAmin, LNAmax, HNAmin, and

HNAmax) suggests the possibility of an early warning

system for bacterial growth potential in drinking water.

The occurrence of bacteria within the HNAmax gate

identified emerging bacterial growth before the TCC

increased.

• The developed PARAFAC model and dataset can be

applied and adjusted for future real-time monitoring

investigations of a broader range of drinking water

sources as well as other sources including wastewater,

surface water, etc.
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