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1 Introduction

Wastewater is now considered a resource where energy and valuable products can be
generated (Hao et al., 2022a). Many presently widely used wastewater treatment
technologies, such as activated sludge processes, advanced oxidation processes (AOPs)
andmembrane filtration, have the problems of large sludge output, low energy efficiency and
considerable greenhouse gas (GHG) emission. Resource recovery is rarely considered in the
design and construction of wastewater treatment projects, which is out of the standard of
sustainable development (Smol et al., 2020). In the circular economy, resource recovery and
recycling are becoming more critical perspectives in wastewater treatment beyond reducing
the contaminants (Hao et al., 2022b). Carbon neutrality is presently a much-debated topic
for wastewater treatment plants, involving the reduction of energy consumption, energy
resources recovery, and GHG emissions (Bae and Kim, 2021).

Under the global circumstance of circular economy and carbon neutrality, technological
innovations for reducing consumption and improving resource recovery are essential in
wastewater treatment. Consumption reduction involves refining the treatment strategy with
more effective use of energy and chemicals (Smol et al., 2020). Resource recovery involves the
recovery of energy, nutrients, minerals and salts: 1) energy recovery includes heat utilization
and generation of electricity, hydrogen (H2), and methane (CH4) from organics; 2) nutrient
recovery refers to the utilization of nitrogen (N) and phosphorus (p) for fertilizer and
biosolid production (Hao et al., 2022b); 3) recovery of valuable minerals includes the recycle
of potassium (K), magnesium (Mg), copper (Cu) and silver (Ag), particularly that in
industrial wastewater; and 4) salt recovery refers to the recovery of valuable salts from
saline wastewater, which could even be potential energy source, e.g., osmotic power and
salinity gradient power (Panagopoulos and Giannika, 2022a). The recovery of organics could
significantly further contribute to reducing carbon dioxide (CO2) emission from wastewater
treatment (Deng et al., 2022) and CH4 and N2O emissions from sludge disposal (Nagarajan
et al., 2020). As reported, nearly 2.2 and 0.8 MMT CO2-equivalent CH4 and N2O would be
released when producing 1 MMT through the municipal sludge digestion process,
respectively (Nagarajan et al., 2020).
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Instead of releasing resource-rich waste streams into the water
bodies increasing the environmental risk, resource recovery could lead
to multiple benefits, such as generating valuable products, greatly
improving wastewater treatment processes, reclaiming wastewater,
maintaining the ecological balance of aquatic environments, and
reducing carbon footprint in wastewater disposal. Over the above, a
perspective frame of resource recovery under the circumstance of
circular economy and carbon neutrality could be established in Figure 1.

Most reviews and suggestions in this field have focused on only one
specific type of wastewater and technologies and lack overall opinions
on the current situation of wastewater treatment from the perspective of
resource recovery and GHG emission reduction. This paper aims to
highlight the advanced wastewater treatment technologies and
strategies status for treating various types of waste streams from the
perspectives of circular economy and carbon neutrality, including
developing, optimizing, and applying advanced technologies for
consumption reduction and resource recovery. It could provide an
overview as well as a primary reference of wastewater technologies for
circular economy and carbon neutrality.

2 Technological opinions on energy
consumption reduction and GHG
emission minimization

A considerable amount of energy is required by the major
wastewater processes accompanying GHG emissions. Treatment

technology selection, operation condition optimization and
technological advancement could contribute to energy
consumption and GHG emission minimization.

2.1 Technology selection and optimization

Energy consumption in wastewater treatment plants (WWTPs)
largely depends on the treatment processes. Traditional
technologies, for example, their energy consumption in domestic
wastewater treatment (DWW) could be sorted: constructed
wetlands (0.253 kWh/m3) < anaerobic/anoxic/oxic process
(0.267 kWh/m3) < conventional activated sludge process (CAS,
0.269 kWh/m3) < anoxic/oxic process (0.283 kWh/m3), oxidation
ditch (0.302 kWh/m3) < sequencing batch reactor (0.336 kWh/
m3) < membrane bioreactor (MBR, over 0.370 kWh/m3) (Yang
et al., 2010; Krzeminski et al., 2012). Additionally, shortcut
nitrification-denitrification could theoretically reduce 25% oxygen
(O2) consumption and 40% organic carbon (OC) consumption, and
anammox could theoretically respectively decrease 62.5% O2

consumption and 100% OC consumption (Adams et al., 2022),
possessing a high potential of energy minimization and GHG
emission reduction. Autotrophic denitrification (ADN) utilizes
inorganic reductants, e.g., hydrogen (H2) (Deng et al., 2020b),
iron (Fe0/Fe2+) (Peng et al., 2019) and sulfur compounds (S0, S2-

and S2O3
2-) (Di Capua et al., 2019), as electron donors for

denitrification, reducing 100% of OC consumption and

FIGURE 1
The perspective of resource recovery, energy consumption reduction and greenhouse gas emission minimization under the circumstance of
circular economy and carbon neutrality.

Frontiers in Environmental Chemistry frontiersin.org02

Wang et al. 10.3389/fenvc.2023.1255092

https://www.frontiersin.org/journals/environmental-chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fenvc.2023.1255092


corresponding CO2 emission. Moreover, ADN utilizes CO2 as a
carbon source (Di Capua et al., 2019), obtaining the advantage of
CO2 caption in denitrification.

Process optimization could further minimize energy
consumption and GHG emission. In traditional WWTPs,
aeration consumes almost 60% of the total energy (Lozano Avilés
et al., 2019). Thus, many studies have focused on reducing energy
consumption in aeration through aeration optimization, e.g., the
propose of ammonia-N-based feedback aeration control strategy
(Sun et al., 2016) and the air supply process optimization through
modeling (Jiang et al., 2023). For instance, Jiang et al. (2023) applied
a comprehensive model composed of a mass flow analysis module,
an oxygen transfer rate module and an aeration optimization
module to develop an aeration optimization strategy to reduce
the energy consumption of a full-scale anaerobic/anoxic/oxic
system. It reduced the energy-saving potential of blowers by
14.1% with an improved air supply prediction accuracy (Jiang
et al., 2023). In terms of GHG emission, proper optimization of
denitrification processes, e.g., the Fe0-/H2-supported ADN, could
also reduce over 90% of the N2O emission (Li et al., 2017; Deng et al.,
2020a). In addition to N2O, process optimization could also reduce
CH4 production during H2 generation from wastewater, e.g., that in
microbial electrolysis cells (MECs) (He et al., 2022).

2.2 Technology advancement

Technology advancement mainly involves the innovation,
strengthening and combination of the existing technologies,
which also showed potential for reducing energy consumption
and GHG emission in wastewater treatment.

In carbon (i.e., COD, mg/L) to nitrogen (i.e., total nitrogen, mg/
L) (C/N) ratio wastewater treatment, traditional biological treatment
processes could be innovated by coupling ADN, reducing CO2

emission compared to dosing external OC (e.g., CH3OH and
CH3COOH) (Deng et al., 2019). For instance, Fe0-ADN has been
successfully introduced into the anaerobic/anoxic/oxic process
(Peng et al., 2020) and constructed wetland (Deng et al., 2020b),
and achieved efficient N removal. In ADN, OC addition could be an
innovative strategy for GHG emission reduction. Deng et al. (2022)
reported that OC dose at 0.25 mg-C/mg-N in Fe0-ADN could reduce
N2O emission by over 80%.

In AOPs, innovations could be focused on developing and
applying catalysts to reduce chemical and energy consumption
(Wu et al., 2021). Ozonation as an example, Lakshmi et al.
(2018) and Deng et al. (2021) respectively developed FeOx-doped
granular activated carbon (Deng et al., 2021a) and TiO2/Fe3O4-
composited graphene oxide (Jothinathan et al., 2021) to build
catalytic ozonation processes, and both obtained enhanced
performance and reduced ozone (O3) consumption, reducing the
energy consumption.

In membrane processes, innovations should be focused on
membrane fouling mitigation, e.g., membrane material and
operational mode development, to improve energy efficiency
(Deng et al., 2022). Deng et al. (2022) introduced iron-carbon
galvanic cells (Fe0||C) into MBR, confirming a 22% improvement
in phenolic-compounds removal and a 71% membrane fouling
extension. Wang et al. (2021) developed a novel vibrating MBR

for DWW treatment. It showed superior energy efficiency for
fouling control and saved 51.7%–78.5% energy compared to the
conventional air-sparging MBR (Wang et al., 2021).

Beyond innovation and strengthening, process combination is
also an alternative. Deng et al. (2021b) combined ozonation with
MBR for phenolic wastewater treatment. The pretreatment by
ozonation reduced the acute biotoxicity and increased the 5-day
biochemical oxygen demand (BOD5) to chemical oxygen demand
(COD) ratio (BOD5/COD), contributing to performance
enhancement and membrane fouling mitigation. This
combination decreased the membrane fouling rate by over 88%
and reduced the O3 consumption of ozonation by over 50% (Deng
et al., 2021b).

3 Technological opinions on resource
recovery

Wastewater is an abundant source of energy, nutrients and
minerals. Energy recovery comprises heat extraction and energy
generation from organics. As estimated, the COD-related energy in
DWW is about 23 W per capita (Wang et al., 2017). For inorganic
nutrients, Robles et al. (2020) estimated that the global resource
recovery from DWW could retrieve p consumed by humans and
could constitute around 50% of the present N market (Robles et al.,
2020). Minerals and salts are also rich in waste streams, e.g., K and
Mg in dairy and manure wastewater (Goglio et al., 2019a), Ag and
Cu in deplating wastewater (Gu et al., 2020), Cd, Cu, Pb and Zn in
mining processing wastewater (Meng et al., 2022) and Cr in tannery
effluents (Li et al., 2020).

3.1 Energy recovery

3.1.1 Energy extraction from heat
DWW is a promising source of heat energy with the advantages

of constant supply, abundant quantity and small temperature
variation. A coefficient of performance of 2.2–5.5 for cooling and
1.8–10.6 for heating could be achieved by a wastewater-sourced heat
pump (Hepbasli et al., 2014; Chae and Ren, 2016). Fouling of heat
pump systems is the critical issue of wastewater-sourced heat
recovery (Culha et al., 2015). Studies have been focused on
developing anti-fouling technologies/designs and efficient
cleaning devices (Qi et al., 2014). A WWTP has been utilized as
a local thermal power station by connecting it to the district heating
network, which covers the regional external heat demand
(Kretschmer et al., 2021).

3.1.2 Energy production from organics
As containing a wealth of organics, wastewater possesses great

energy production potential. Silvestre et al. (2015) indicated that
52% of the energy transferred to sludge could be recovered (Silvestre
et al., 2015). Heidrich et al. precisely determined the energy content
of domestic wastewater (DWW) through freeze-drying samples to
minimize the loss of volatiles and organic matter. Their results
indicated that DWW contains an energy generation potential of
7.6 kJ/L (Heidrich et al., 2011). Anaerobic technologies, including
the up-flow anaerobic sludge blanket (UASB) and anaerobic MBR
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(AnMBR) based on the anaerobic digestion (AD) (Smith et al., 2014;
Wang et al., 2020), and microbial electrochemical technologies
(METs) including microbial fuel cells (MFCs), MECs and
microbial recycling cells (MRCs) (Vadillo et al., 2013), are the
main advancement in energy production from wastewater.

Among the anaerobic technologies, AnMBR is more efficient
than conventional AD systems in biogas production and is currently
in potential for practical application (Wang et al., 2020). The
combined process of AnMBR and anammox has shown high
effectiveness in energy production, where anammox could
preserve OC from the denitrification (Dai et al., 2015). The
process achieved 70% of energy self-sufficiency with a low energy
consumption of 0.09 kWh/m3 (Dai et al., 2015). Whereas membrane
fouling is the key issue of AnMBR which increases energy
consumption and operation fee. The evaluation of the feasibility
of AnMBR to the targeted wastewater and further studies on
membrane fouling reduction are required.

METs enabled the generation of electricity or H2 from organic in
wastewater (Vadillo et al., 2013). Their main advantages include
either positive energy gain or low energy consumption due to
biological intervention and relatively inexpensive operation costs
(Kim et al., 2020). These advantages signified their potential to
contribute to the circular economy and carbon neutrality.
Nonetheless, up-scaled research and life cycle assessment (LCA)
are still lacking in promoting application.

3.2 Recovery of nutrients

Various technologies have been devised for nutrient recovery
from wastewater (Wu and Vaneeckhaute, 2021), including
physicochemical technologies (e.g., crystallization and stripping),

anaerobic technologies, photo-based biotechnologies (PBTs, e.g.,
microalgae-based technologies and photobacteria-based
technologies) and METs.

Anaerobic technologies, e.g., AnMBR, also enables nutrients
together with energy generation (Wang et al., 2022). However,
coupled techniques, e.g., MgNH4PO4•6H2O (MAP) formation,
NH3 stripping-absorption, membrane distillation or PBTs, are
required for nutrient recovery from AnMBR-treated effluent.
PBTs are promising alternatives for nutrient recovery, capturing
CO2 from the air and producing a small carbon footprint (You et al.,
2023). The combined AnMBR-PBTs process enabled the efficient
simultaneous recovery of energy and nutrients and addressed the
problem of microalgae and photobacteria harvest in traditional
PBTs (Li et al., 2022). However, PBTs are sensitive to toxicity
from heavy metals or organics (Tiang et al., 2020). Hence, they
are mainly considered for DWW treatment, whereas the
development of toxicity resistance photobacteria and
corresponding treatment systems are in need to widen the
application of PBTs (Li et al., 2022; You et al., 2023).

METs, especially MRCs, also could recover nutrients during
energy generation and exhibited a much higher toxicity tolerance
than PBTs. Huggins et al. (2016) developed an MRC based on a
tubular overflow style MFC for resource recovery from actual
industrial wastewater. The system achieved a COD removal rate
of 0.55 kg/(m3·d) and a maximum power density of 6 W/m3, and
recovered 2 g P/kg and cathode 1 g K/kg on the cathode in 20 days’
continuous operation (Huggins et al., 2016). METs are constructed
from low-cost, biogenic and biocompatible materials that recover
organic carbon and nutrients (Goglio et al., 2019b). With the
development of MRCs, the electrodes saturated by micro- and
macro-nutrients could be reused as organic-mineral fertilizers
(Goglio et al., 2019a). The concept of MRCs also greatly

FIGURE 2
Potential technologies for the minimization of energy consumption and GHG emission and resource recovery in wastewater treatment. GHG,
greenhouse gas; ADN, autotrophic denitrification; HD, heterotrophic denitrification; OC, organic carbon; AOPs, advanced oxidation processes; UASB,
up-flow anaerobic sludge blanket; AnMBR, anaerobic membrane bioreactor; METs, microbial electrochemical processes; MFCs, microbial fuel cells;
MECs, microbial electrolysis cells; MRCs, microbial recycling cells; MAP, magnesium ammonium phosphate; PBTs, photo-based biotechnologies.
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increased the possibility of scaling up of METs (Deng et al., 2023).
Thus, MRCs are potential biotechnology for energy and nutrient
recovery from wastewater, and efficiency improvement and up-
scaling are the future perspectives.

3.3 Recovery of minerals and salts

MRCs also enable the recovery of minerals, especially those that
can be utilized as nutrients (e.g., K and Mg), and the products could
be applied as organic-mineral conditioners or fertilizers for
agricultural soil improvement (Goglio et al., 2019a). Nevertheless,
many of the other minerals, e.g., the toxic heavy metals, are not
suitable to be recovered by MRCs due to their side effects in
agricultural application (Goglio et al., 2019b). Otherwise, they
can be effectively recovered by traditional adsorption,
sedimentation, electro-deposition and electrodialysis processes
(Taghvaie Nakhjiri et al., 2022). As MRCs have the risk
enriching toxic minerals, the risk of the products to agricultural
soil should be evaluated prior to application.

Several technologies have been developed and applied for the
valuable salts recovery from industrial and domestic wastewater,
such as the thermal process (e.g., multi-effect distillation and multi-
stage flash distillation), electrochemical process, and membrane
process (e.g., high-pressure reverse osmosis and forward osmosis)
(Panagopoulos and Giannika, 2022b). Panagopoulos et al., 2022b
treated brine with high-pressure reverse osmosis (HPRO) and
obtained a salt recovery of up to 0.435 under the optimum
conditions. In addition, the use of energy recovery systems has
reduced energy consumption by about 26% (Panagopoulos, 2022).
Although HPRO is a promising technology for saline wastewater
and salt recovery, its performance is also limited by problems such as
scaling, membrane fouling and membrane compaction
(Panagopoulos, 2022). Future research should focus on the
development of new membrane materials and the stability of the
membrane treatment process.

4 Discussion and conclusion

A considerable amount of energy is consumed and GHGs are
released during wastewater treatment. Treatment technology
selection and optimization, and technological advancement could
markedly minimize energy consumption and GHG emission.
Moreover, wastewater is an abundant energy source, nutrients,
and minerals. Instead of releasing resource-rich waste streams
into the water bodies increasing the environmental risk, resource
recovery could lead to multiple benefits, such as generating valuable
products and reducing carbon footprint, contributing to the circular
economy and carbon neutrality.

To achieve the goal of circular economy and carbon
neutralization, the development, optimization and application of
advanced technologies have been proceeded for low consumption
and resource recovery. Figure 2 summarizes the technological
suggestions on energy and GHG minimization and resource
recovery in wastewater treatment. Treatment technology
selection, operation condition optimization and technological

advancement are critical for energy consumption reduction and
GHG emission minimization. In terms of resource recovery, the
proper application and optimization of technologies corresponding
to the targeted resource are essential. While in many cases, a
technology or a technology combination should be considered
aiming for the simultaneous recovery of several valuables.

This paper first overviewed the development, optimization and
application of the advanced technologies for low consumption and
resource recovery. Technological opinions on energy consumption
reduction, GHG emission minimization and resource recovery are
also proposed. It could direct the follow-up research, development
and successful implementation of technologies toward the circular
economy and carbon neutrality in wastewater treatment.

Although technology are being advanced, benchmark projects
and standard protocols are rarely found in the literature, and
comparison among the appropriate benchmarks can hardly be
conducted. Challenges are still existing in practical
implementation. Therefore, further efforts are essential in up-
scaled research for benchmarking, LCA, risk assessment and
standard protocols are required for promoting and guiding
successful implementation.
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