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This study provides an extensive review of over 200 journal papers focusing on
Machine Learning (ML) algorithms’ use for promoting a sustainable management of
the marine and coastal environments. The research covers various facets of ML
algorithms, including data preprocessing and handling, modeling algorithms for
distinct phenomena, model evaluation, and use of dynamic and integrated
models. Given that machine learning modeling relies on experience or trial-and-
error, examining previous applications inmarine and coastal modeling is proven to be
beneficial. The performance of different ML methods used to predict wave heights
was analyzed to ascertain which method was superior with various datasets. The
analysis of these papers revealed that properly developed ML methods could
successfully be applied to multiple aspects. Areas of application include data
collection and analysis, pollutant and sediment transport, image processing and
deep learning, and identification of potential regions for aquaculture and wave
energy activities. Additionally, ML methods aid in structural design and
optimization and in the prediction and classification of oceanographic parameters.
However, despite their potential advantages, dynamic and integrated ML models
remain underutilized in marine projects. This research provides insights into ML’s
application and invites future investigations to exploit ML’s untapped potential in
marine and coastal sustainability.
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1 Introduction

Coastal areas are of vital significance due to their crucial role in supporting aspects such
as biodiversity, economic activity, cultural heritage, climate regulation, food security,
recreational opportunities, and strategic importance (Neumann et al., 2017). Ensuring
their sustainability, however, is a challenge that requires addressing various factors,
among which, climate change adaptation, beach protection and water quality
management. One approach to ensuring the sustainability of coastal areas involves
conducting a thorough examination of each contributing factor by employing data
analysis and suitable methods. Effective data analysis and augmentation is, therefore,
essential for informed decision-making and sustainable management of coastal areas.

The amount of data related to coastal systems has dramatically increased recently
(Goldstein et al., 2019). This data, which often covers large areas and spans long periods of
time, is now available in high resolution and can be accessed quickly. This has led to more
opportunities for research on the sustainability of activities evolving in coastal areas.
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However, handling large and complex datasets, as well as identifying
their patterns and trends, is not a convenient task. Despite their
widespread use and mathematical rigor, conventional statistical
techniques, including descriptive statistics (Emmanouil et al.,
2020), inferential statistics (Agarwal and Manuel, 2008),
regression analysis (Davidson et al., 1996; Hall et al., 2002),
correlation analysis (Szmytkiewicz et al., 2000; Kroon et al., 2008;
Ruiz de Alegría-Arzaburu et al., 2010), Analysis of Variance
(ANOVA) (Martins et al., 2010), and Principal Component
Analysis (PCA) (Hua et al., 2007; Miller and Dean, 2007), have
limitations when processing large and complex data sets, and can
present challenges in terms of interpretability. This has prompted
researchers to explore alternative, more sophisticated approaches
such as ML, which enables researchers to draw insights from data in
a more efficient, accurate and automated way.

ML is a rapidly growing field that has the potential to make
significant contributions to the sustainable use and management of
marine and coastal environments. This by helping to better
understand and predict the impacts of human activities and
natural phenomena on coastal ecosystems and identify potential
threats. The link between using machine learning to simulate coastal
and marine events and sustainability revolves around creating
models and taking action. Machine learning employs large
amounts of data to create simulations for different scenarios,
such as wave propagation or water quality management. These
simulations help us fine-tune our actions, like improving wave
energy converters or changing shipping paths to avoid pollution.
Moreover, these simulations can guide our work towards adapting
and mitigating the effects of environmental changes, like coastal
erosion caused by rising sea levels. In essence, machine learning
offers crucial insights that contribute to improved, sustainable care
of our coastal and marine environments.

Typically, the primary input of ML algorithms consists of a data
set in various forms such as numeric, image, DEMs collected by
Lidar (light detection and ranging), video, and geographic
information systems (GIS) data, which are mapped and
visualized using GIS. The main output of ML algorithms in
coastal engineering can vary depending on the specific
application and dataset being used, which includes prediction
[e.g., coastal flooding risk (Park and Lee, 2020), storm surge
(Sajjad et al., 2020), wave height (Dogan et al., 2021), sediment
transport (Pourzangbar et al., 2017b; 2017c; 2017a) and beach
erosion (Beuzen et al., 2019)], image processing using satellite
imagery data (Agrafiotis et al., 2019) or drone footage (Provost
et al., 2020), pattern recognition [e.g., patterns of sediment transport
(Liu et al., 2021)], placement optimisation (Cuadra et al., 2016;
Sarkar et al., 2016; Neshat et al., 2019), optimization by identifying
the most efficient and cost-effective solutions for protecting the
coast from erosion and flooding, monitoring (e.g., using sensor data
to detect erosion or changes in water quality), anomaly detection
(e.g., unusual changes in water quality), and decision making
(Lazuardi et al., 2021) by providing decision support to coastal
managers and engineers. However, the applicability of ML
approaches in coastal engineering is influenced by various factors
such as data quality, computational resources, the complexity of the
coastal system, and the choice of appropriate algorithms.

Several ML methods have been used to study the sustainable use
of coastal areas, including: Artificial Neural Networks (ANNs) used

for predictions such as water quality (Chen and Ma, 2010), river
classification based on the water quality index (Wong et al., 2021),
wave height (Rao and Mandal, 2005; Günaydin, 2008) and beach
erosion (Hashemi et al., 2010) and tidal prediction; Decision Trees
(DTs) used for classifying the dominating environmental factors;
Random Forests (RFs) used for regression and classification tasks,
such as predicting the effect of human activities on the coastal
environment and water quality index modelling (Sakaa et al., 2022);
Support Vector Machines (SVMs) used for solving classification and
regression problems, such as identifying the most vulnerable areas in
coastal zones; K-Nearest Neighbors (KNN) used for clustering and
classification tasks, such as grouping coastal regions based on their
sustainability indicators; Ensemble Methods used for improving the
accuracy of predictions and classifications, such as predicting the
impact of climate change on sustainability of coastal activities,
among others.

ML has been widely used in numerous research studies, but
there still exists a knowledge gap regarding the selection of
parameters, choice of predictive models (be they dynamic or
static), domain adaptation, and use of integrated models for
analyzing complex systems and evaluating the effects of multiple
factors. In relation to data treatment, many existing works have
relied on simple heuristic methods or rules of thumb; however, there
are more solid mathematical and metaheuristic methods for data
preprocessing and parameter identification, highlighted in this
paper. Choosing the correct model can be challenging and there
is not a definitive method to identify the most suitable MLmodel for
a given problem. In general, theML approach used to solve a specific
issue is selected through a process of trial and error. However,
comparing how models perform under different conditions can aid
in selecting the most suitable one for a specific issue. To the best of
authors’ knowledge, there is not one single paper that offers
comprehensive information about the data preprocessing and
preparation phase. This paper provides an extensive review of
various methodologies employed in coastal engineering to handle
datasets. The main focus of this paper is to understand how ML
models contribute to the sustainable use and management of marine
and coastal environments, rather than the technical intricacies of
their setup. The primary goal is to provide a critical review of
literature that utilized ML approaches to manage marine
phenomena. This review sheds some light on how to prepare
parameters and datasets for input into the ML model, the pros
and cons of various models, the suitability of MLmethods for certain
conditions, and their shortcomings and deficiencies.

Although numerous papers have discussed modeling coastal
phenomena using experimental, numerical, and mathematical
methodologies, the focus of the current paper is exclusively on
literature that implementedML techniques for modeling coastal and
marine events. The selected literature spans a broad range of topics
from data preprocessing and parameter considerations to different
kinds of ML models used for various purposes. Due to the large
amount of published papers, the focus of our contribution was
directed towards resources published in reputable international
journals such as Elsevier, Springer, IWA, Taylor and Francis,
Wiley, ASCE, among others. The papers were chosen based on
their publication in reputable international journals and were
retrieved through online searches using relevant keywords.
Among the publications, Coastal Engineering (Elsevier) with

Frontiers in Environmental Engineering frontiersin.org02

Pourzangbar et al. 10.3389/fenve.2023.1235557

https://www.frontiersin.org/journals/environmental-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fenve.2023.1235557


18 papers and Ocean Engineering (Elsevier) with 17 papers, had the
most papers in this area. Themajority of the sources are fairly recent,
predominantly within the past 10 years. Nevertheless, this paper
includes some older references that established the groundwork for
newer methods. Roughly, fewer than 5% of the literature we
reviewed was published before 2000, about 14% between
2000 and 2010, 22% between 2010 and 2015, and over 60% in
the last 10 years.

While ML has been implemented in numerous studies,
knowledge gaps exist in areas such as parameter selection, choice
of models for making predictions (dynamic or static), domain
adaptation, and the use of integrated models for modeling
complex systems. The emphasis of the paper is on the
contribution of ML models to the sustainable use and
management of the marine and coastal environment, rather than
on the technical details of their configuration.

The paper is structured as follows: Section 2 discusses the key
components of data analysis and preprocessing, including data
collection and preparation for the modeling process. Section 3
focuses on studies that have applied AI to coastal engineering for
sustainable outcomes. The paper also evaluates the accuracy and
robustness of the different models in Section 4. Finally, the paper
summarizes all the information presented and concludes with a list
of references.

2 Data preparation (preprocessing)

Data preparation involves transforming raw data into a format
that can be used by ML algorithms for extracting insights or
predicting outcomes. This process is vital in ML as it

considerably affects the performance of the model (Kelleher
et al., 2015). In the event of missing or invalid data, the
algorithm either cannot process it or yields less precise, possibly
erroneous results. This procedure starts with the acquisition of raw
data (refer to Section 2.2), followed by data integration, which entails
consolidating data from various sources into a unified dataset. This
is succeeded by data cleansing to rectify missing values and outliers
(refer to Section 2.4), and then selecting the most pertinent features
from the input parameters (feature selection or dimensionality
reduction) (see Section 2.5). Subsequently, feature engineering is
undertaken, which involves generating new variables from existing
parameters using dimensional analysis (DA). Lastly, data
transformation is carried out, which involves altering the scale or
distribution of variables, such as through data normalization.
Figure 1 depicts the multiple phases required for data
preprocessing and the methods linked with each step. The
upcoming sections provide a detailed explanation of these methods.

2.1 Marine data types

In coastal engineering, data can come in different forms (Huang
et al., 2015) and can be classified into different types based on their
identity, format, and structure. Some examples of coastal data types
include:

(1) Numeric data (Timmermans et al., 2020), which includes
measurements of various physical parameters such as water
level, wave height, current velocity, sediment concentration.
Such data are typically collected using instruments such as tide
gauges, wave gauges, current meters, and sediment samplers.

FIGURE 1
Data preprocessing steps and their corresponding necessary tasks that must be accomplished.
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For example, time-series data such as ocean temperature
records, sea level measurements, and storm surge data
represented by a sequence of observations or measurements
taken at regular intervals over time.

(2) Image data (Vos et al., 2019; Turner et al., 2021), which includes
aerial and satellite imagery, as well as ground-based
photographs. These data can be used to study coastal
morphology, vegetation, and land use patterns.

(3) Point Cloud data (Gomez, 2022), represented by a set of 3D
points that can be used to create 3D models of coastal terrain
and structures. Point cloud data is often collected using light
detection and ranging (LiDAR) systems and can be used to
create high-resolution digital elevation models (DEMs) of
coastal topography.

(4) Video data (Smit et al., 2007; Kim et al., 2020; Kim and Kim,
2020), which includes footage captured by cameras, this data
can be used to observe the coastal dynamics and measure the
beach profile, the shoreline position, and the wave breaking
patterns.

(5) Text data (Brown et al., 2021), represented by written or spoken
words, can be analyzed using natural language processing (NLP)
techniques. Examples of text data in coastal engineering include
social media posts, news articles, and scientific publications.

The following are the most well-known methods for collecting
the data mentioned above: field observations, remote sensing
measurements, experimental studies, numerical and mathematical
models. Both the availability of equipment and the objective of the
study influence the selection of the data collection medium (Prata
et al., 2019).

2.2 Marine data resources

Data collection within the realm of marine sciences principally
relies on three distinctive methods: in-situ observations, remote
sensing techniques, and the use of mathematical and numerical
models, as outlined by Verwega et al. (2021). In-situ data collection
encompasses ship-based measurements, the deployment of
moorings, gliders, autonomous underwater vehicles, drifters and
floats, the use of sea-floor optic cables, and laboratory analyses. Field
observations remain essential for the collection of real-world data on
coastal processes, such as wave heights and tidal levels. In-situ
instruments are highly accurate with proper maintenance but
may have low-time frequency data for large areas. They offer
historical climate trend insights not available from remote
sensing and are less affected by atmospheric conditions. These
observations serve to validate numerical models that simulate
coastal processes and predict the behavior of the coastal system,
including wave patterns, tidal currents, and shoreline evolution.

Remote sensing involves acquiring data on coastal topography,
bathymetry, and other significant parameters through satellite and
airborne platforms. Remote sensing technologies are divided into
three categories: satellite, ground-based, and drones (Elsayed et al.,
2021). The data thus collected enable the generation of high-
resolution coastal environmental maps. Although satellites are
powerful tools, they face limitations in obtaining high-resolution
regional-scale imagery. Clouds can hinder data capture, and high-

resolution imagery can be challenging to interpret (Elsayed et al.,
2021). A combination of satellite- and ground-based remote sensing
and drones could be effective in future marine engineering
evaluations. Economically, combining these tools may be
comparable to in-situ techniques in terms of overall cost. Such
technology could enable rapid, high-resolution water condition
assessments and enhance our understanding of water resource
processes. Mathematical and numerical models generate data by
simulating real-life systems or processes using mathematical
equations and algorithms (Xie and Arkin, 1996). They provide
the capability to extend observational data, even to the point of
simulating future climate scenarios (Eyring et al., 2016).
Nonetheless, it is crucial to understand that these models only
approximate real-world scenarios and can encompass spatial and
temporal scales that exceed the scope of observational data (Matthes
et al., 2020). The outputs from these models are typically available on
a unique grid, contingent on the specific simulation. For instance,
climate models customarily provide a four-dimensional space-time
grid. Consequently, the comparison of model outputs with
measurements invariably necessitates interpolation or data
aggregation. Table 1 provides a detailed summary of the
advantages and disadvantages associated with these diverse data
collection methodologies.

2.3 Data cleaning: outlier detection

Several factors can influence the quality of observational data.
These include inaccuracies in the instruments, malfunctions of the
equipment, disruptions from external sources, mistakes during data
conversion, communication mishaps, and significant unforeseen
errors (Yu et al., 2022). Such anomalies can pose major threats
to operational functionality, downstream operations, system
resilience, and cleaner production (Ba-Alawi et al., 2021).
Therefore, these should be detected promptly and their data
rectified to ensure more realistic measurements.

Anomaly detection methods are generally categorized into
various types (see Figure 2) such as Statistical Methods, that
utilize the properties of the underlying data distribution to
identify anomalies (Chandola et al., 2009); Distance-based
Methods, which calculate the distance between data points and
identify the outliers based on a certain distance threshold
(Ramaswamy et al., 2000); Density-based Methods, which
estimate the density of data points and identify outliers as those
points that reside in low-density regions (Ester et al., 1996); Machine
Learning-based Methods, which employ supervised, unsupervised,
or semi-supervised ML algorithms to detect outliers (Pimentel et al.,
2014); and Ensemble Methods, which combine multiple outlier
detection algorithms to improve the overall performance (Zimek
et al., 2012). The choice of method, or combination of methods for
better results, depends on the nature of the data and the specific
problem being addressed.

Mahmoodi and Ghassemi (2018) used outlier detection
algorithms to improve wave height predictions, while Oehmcke
et al. (2015) demonstrated the effectiveness of ML for identifying
significant events in marine long-term data. Daranda and Dzemyda
(2020) developed a method combining the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) clustering
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algorithm and k-nearest neighbors analysis for detecting marine
traffic anomalies. These studies highlight the potential of leveraging
advanced algorithms and ML in marine data analysis and decision-
making. This section aims to provide a survey of contemporary
outlier detection techniques, comparing their motivations,
advantages, and disadvantages. Outliers can significantly impact
the results, which makes addressing or eliminating them before
analysis and model development crucial.

Considering the learning algorithm, three main
methodologies exist for outlier detection (Hodge and Austin,
2004): 1) unsupervised approach, which uses a learning
technique to identify outliers without prior knowledge of the
data. The data is treated as a static distribution, and the most
distant points are flagged as potential outliers; 2) supervised
classification method, which requires pre-labeled data. It allows
for online classification, where the classifier continuously learns
the model and classifies new data as normal or abnormal, and
finally 3) semi-supervised recognition technique, which only
learns the normal class, using pre-classified data. It can
distinguish new data as normal or novel based on its proximity
to the boundary of normality. The choice of an outlier detection
method depends on the data type, the number of vectors and

attributes, speed and accuracy requirements, and the ability to
accurately identify outliers. The key factors in choosing a method
are selecting an algorithm that can handle the data and defining a
suitable neighborhood for the outlier.

2.4 Dimensionality reduction

Incorporating parameters that are not relevant can result in
intricate models that pose significant challenges in interpretation
and execution compared to the models developed using the most
crucial parameters (Pourzangbar, 2012). That is the reason why the
focus is placed on building ML models using the most crucial
parameters. These parameters are not only essential for the model’s
output, but also are unconnectedwith other input parameters. To derive
the most important dimensions (parameters) in the input space, there
are several methods including min/max autocorrelation factor analysis
(MAFA), dynamic factor analysis (DFA), Least Absolute Shrinkage and
Selection Operator (LASSO), Independent Component Analysis (ICA),
multicollinearity test and PCA. Table 2 summarizes some famous
dimensionality reduction approaches used in marine engineering.
The latter two methods are explained below.

TABLE 1 Detailed information of the various data collection methods in coastal engineering.

Method
(example Refs.)

Accuracy Spatio-
temporal
resolution

Selected
measured
parameters

Pros and cons

Data
collection
category

In situ

Sampling Sampling Kit
Paradinas et al.,

(2021)

Extremely precise

Monitoring a single
spot Pressure, Wind Speed,

Wave height, sea level
Very accurate; High
spatial and temporal
resolution; Expensive

method and characterized
by a lot of outlier data

Land fix
instruments

Tide gauges Qiao
et al., (2023)

Good

Offshore
fixed

instruments

Buoy Meng et al.,
(2021))

High

Offshore
campaign

Moving instruments
Knight et al., (2020)

High Monitoring a vast
area

Remote sensing

Satellites Satelite Hagenaars
et al., (2018); Turner

et al., (2021)

Very high

Monitoring a vast
area (meters to
kilometers)

Mean wave period,
significant wave
height, ocean

temperatur, water
level, waves and

currents

Long-term operation;
high data generation;

lower cost compared to in
situmethods; dependence
on empirical equations;

Incomplete data
availability; requirement
for system calibration

Land based
instruments

Coastal radar Gawehn
et al., (2020); LIDAR

Good

Irish and White,
(1998); Video
monitoring

Soloy et al. (2021)

Onboarded
instruments

Drones Joyce et al.,
(2023)

High

Mathematical
and numerical

models

Basin wide
models

The Copernicus
Marine Service

Copernicus, (2023)
Depends on:

benchmarking data;
numerical scheme;

and selected
equations

Depending on the
available

computational
power and input

data

Wave height,
sediment flux, flow
properties, bed level

Synchronization is
maintained between all
computational outposts;
Cost-effective compared
to in situ and remote

sensing; Need to validate
with other methods

Local wide
models

NSWE (Pourzangbar
and Brocchini,

(2022); FUNWAVE
(Shi et al., (2012);
SWAN Booij et al.,

(1997)
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TABLE 2 Some well-known dimensionality reduction approaches and their example references.

Method References Field of study Remark

Tolerance and VIF
based

Kaplan et al. (2010) Explanatory Variables (Meteorological and
hydrological variables)

• The best explanatory variable was identified, enhancing the overall
model fit.

• The selected variables were not collinear, ensuring independent influence
on the model.

Pourghasemi et al.
(2018)

Landslide conditioning factors

• The study found no collinearity among the 17 landslide conditioning
factors.

• Logistic Regression and LogitBoost demonstrated superior performance
compared to the NaïveBayes method.

Izadi et al. (2021) The euphotic depth, sea surface temperature,
and chlorophyll

• Stacking the same variables across different days increased the feature space
significantly, even though this approach may introduce potential
multicollinearity.

• Input parameters that have a high correlation with the output parameter
are considered significant.

El-Haddad et al.
(2021)

Flood susceptibility prediction

• A multicollinearity analysis was conducted among nine flood-influencing
factors.

• The analysis showed that the tolerance (>0.1) and VIF (<10) of all flood-
influencing factors meet the accepted standards, indicating no
multicollinearity.

• Therefore, all the independent flood-influencing factors can participate in
the model establishment for the current study.

Deroliya et al. (2022) Flood risk mapping

• Variance Inflation Factor (VIF) analysis was performed. As a result,
multicollinearity-free geomorphic flood descriptors (MFGFDs) were used
as input features in the ML models.

• Pearson correlation coefficients were calculated between all indicators with
no high intercorrelations. As a result, the model was used to aggregate all
available indicators after standardization, without the need for PCA.

MAFA and DFA
based

Kuo et al. (2019) water quality variables

• MAFA results identified the main water quality variables in densely
populated zones (Zones 1 and 3).

• Primary water quality variations in agricultural cultivation zone were
found.

• DFA results suggest influence of domestic and municipal effluent
pollutants.

F-test Hessami et al. (2008) Automated regression-based statistical
downscaling tool

• They examined the level of statistical significance of the predictors

PCA

Zhuang et al. (2022) Port Planning

• PCA was used to predict the throughput of Dongjiakou Port.

• The model’s effectiveness was verified by comparing predicted outputs with
actual outputs.

Park and Oh (2022) Ship Propulsion Engine

• Principal Component Analysis and K-Nearest Neighbors were used for
data preprocessing. These techniques were employed to check if data were
classified based on engine control characteristics.

• Two types of Principal Components were derived using PCA to simplify the
data collected in full-navigation mode. This approach was used to analyze
the impact of each factor and reduce the analysis time.

Hua et al. (2007) Temperature–Frequency Correlation

• PCA was initially used to extract principal components from the measured
temperatures for dimensionality reduction.

• The dominant feature vectors, along with the measured modal frequencies,
were then used in a support vector algorithm to create regression models.

Arslan et al. (2020) Coastline Extraction on hyperspectral imagery

• SVM and Neural Network classification accuracies did not significantly
differ on the provided images. Therefore, it could be concluded that using
Dimensionality Reduction (DR) strategies on the dataset does not have a
significant impact on identifying the location of coastlines.

Freeman et al. (2021) Marine hydrokinetic (MHK) turbines

• PCA enabled the maximum separation between classes to be depicted.
Compared to other studies, the authors believe their method allows for
more insightful inferences from PCA.

(Continued on following page)
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2.4.1 Multicollinearity
Multicollinearity is a common issue that can arise in regression

analysis when two or more predictor variables in a model are highly
correlated with each other. This can cause problems in the analysis,
such as unstable and unreliable coefficient estimates. There are

several methods to detect multicollinearity in a regression model.
Here are a few commonly used tests:

• Correlation matrix: A correlation matrix can be used to
identify the degree of correlation between each pair of

TABLE 2 (Continued) Some well-known dimensionality reduction approaches and their example references.

Method References Field of study Remark

• The authors’ proposed framework can identify the most important
dimensions/features (i.e., RMS, Skewness) for fault detection when
applying PCA on their feature space data matrix.

Sierra et al. (2017) Analyzing coastal environments (grain size
frequency curves)

• Functional Principal Component Analysis (FPCA) was identified as a
suitable alternative with significant advantages over conventional vector
analysis methods.

• This is particularly true in the field of sedimentary geography studies.

Tayfur et al. (2013) Sediment
Load Prediction

• Predictive models were developed based on the outcomes of PCA.

• The results show that PCA is beneficial in these types of studies.

El-Rahman (2016) Hyperspectral image

• PCA was used as a data analysis technique to reduce the dimensions of
hyperspectral images before the classification process.

• This process employs an unsupervised Iterative Self-Organizing Data
Analysis Technique (ISODATA) Algorithm.

LASSO

Tan et al. (2018) Tropical cyclone

• After dimension reduction, the selected predictors retained a high
explanatory capability for the complex information in the original data.

• They also maintained the features of each predictor effectively.

Tan et al. (2021) Typhoon intensity

• Lasso and PCA were used for variable selection and dimensionality
reduction.

• A ML method, Hierarchical Bayesian Model (HBP), was employed to
correct the storm intensity predicted by the Regional Climate
Model (RCM).

ICA Najafi et al. (2011) Statistical downscaling of precipitation

• Performance assessment showed the procedure successfully selects
predictors for downscaling Global Climate Model (GCM) data on both
monthly and seasonal timescales.

• The study indicated that by choosing the appropriate predictors, the
Multiple Linear Regression (MLR) model is an effective method for
precipitation downscaling.

FIGURE 2
Various outlier detection appproaches.
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predictor variables. High correlation coefficients (e.g., greater
than 0.7 or 0.8) may indicate multicollinearity.

• Variance Inflation Factor (VIF) quantifies howmuch the variance of
the estimated regression coefficients is expanded due to
multicollinearity. Suppose there are three input parameters:
x1, x2, and x3, and the goal is to compute VIF for x1. To
accomplish this, we predict x1 using linear regression based on
x2 and x3. Next, we determine the correlation coefficient between
the predicted and actual values of x1, which we use to calculate VIF
using the formula VIF � 1/(1 − R2). Often, VIF values exceeding
5 or 10 serve as a benchmark for identifying variables that might
pose problems.

If the VIF values for the independent variables are high, it
indicates that multicollinearity is impacting the regression model.
This issue might need to be resolved, possibly by removing one of the
correlated variables, combining them, or applying methods such as
ridge regression, or principal component analysis.

• Condition number: The condition number is a measure of the
overall multicollinearity in the model and is calculated as the
square root of the ratio of the largest to smallest eigenvalue of
the correlation matrix. Condition numbers greater than
30 may indicate problematic multicollinearity.

• Eigenvalues: Eigenvalues of the correlation matrix can also be
used to detect multicollinearity. Large eigenvalues (for example,
greater than 1) may indicate high levels of multicollinearity.

• Tolerance (TOL) is another measure that can be used to detect
multicollinearity in a regression model. It is the reciprocal of
the VIF (variance inflation factor) and measures the
proportion of the variance in a predictor variable that is
not explained by the other predictor variables in the model.
If the Tolerance value for a variable is close to 1, it suggests that
there is no multicollinearity between that variable and the
other predictor variables in the model. On the other hand, if
the Tolerance value is close to 0, it indicates a high degree of
multicollinearity between that variable and the other predictor
variables in themodel. In general, Tolerance values of less than
0.1 or 0.2 are indicative of problematic multicollinearity.

It is important to note that none of these tests can definitively
prove the presence of multicollinearity, but rather provide evidence
that it may be present in a model. Therefore, it is important to use
multiple tests and to interpret the results in the context of the specific
research question and data being analyzed.

2.4.2 Principle component analysis
PCA can be utilized for dimensionality reduction (Pearson, 1901).

PCA reduces the dimensions of datasets in away that their interpretability
increases. To achieve this, PCA maximizes the variance of datasets by
mapping them in a new coordinate (new uncorrelated variables). The
most correlated parameters are deleted while information loss is
minimum. The initially proposed method was limited to up to three
parameters; however, Harold Hotelling has described methods for
computing multivariate PCA since 1933 (Hotelling, 1933).

In the mathematical description, it is assumed that the input
environment contains n parameters and m measurements for each
parameter. Hence, the input matrix X has n × m components. The

input environment can be transformed into a feature environment
whose dimensions are not dependent on each other. Accordingly,
the feature environment can be represented by a n × m matrix,
i.e., Yn×m. The transformation can be done using a whitening or
sphering transformation matrix (Qn×n) as follows:

Y � QT .X (1)

where Y n×m( ) �
Y1
Y2
. . .
Yn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ; X n×m( ) �
X1
X2
. . .
Xn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ; QT
n × n( )

�
q11 q12 . . . q1n
q21 q22 . . . q2n

. . .
qn1 qn2 . . . qnn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The primary goal of PCA is to identify the components of the

transformation matrix in such a way that the new variables exhibit
maximum discrepancy (represented by variance). With some
mathematical manipulation, the following equation for the
transformation matrix can be derived:

RQ � ΩQ (2)
where R is the covariance matrix of the input environment (X), Ω is a
diagonalmatrix whose components are the eigenvalues (λ) of thematrix
R, and Q is a matrix that its components are the eigenvectors of R.

2.5 Dimensional analysis

Although numerous methods exist for DA, the majority of
studies employ the Buckingham π Theorem to render the
parameters dimensionless. Table 3 summarizes some of the
studies used DA before feeding their ML models.

2.6 Normalization

Normalizing data helps to ensure comparability by transforming
it into a common scale, avoiding bias in statistical analyses and
allowing for accurate and meaningful results by removing the
impact of unit differences, especially when comparing data from
different sources. Normalization plays a crucial role in efficient
machine and deep learning by ensuring that large numerical inputs
are processed effectively (Van Komen et al., 2022). The choice of
normalization method depends on the specific requirements of the
data and the problem being solved. Some of the famous methods for
data normalization are summarized in Table 4.

In Table 4, the transformed data, referred to as xN, is obtained
by normalizing the original data (xi) in a new range. The original
data is contained within a vector, denoted as X, and its minimum
and maximum values are represented as min X and maxX,
respectively. The chosen minimum and maximum values for the
transformed range areNewmax andNewmin, which are typically set
to zero and one, respectively. μX is the mean of the data, and σX is
the standard deviation of the data.

Min-Max normalization is a technique used to rescale a feature
to a specific range, usually between 0 and 1. However, to avoid
having zero data in the model, an alternative approach is to expand
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the range to include values between 0.1 and 0.9. It is a commonly
used method for transforming variables so that they are
comparable, as it scales the data linearly to a specific range.
Through this normalization process, the values in xN are
transformed such that the minimum value of X is mapped to
0, the maximum value to 1, and intermediate values are mapped
to corresponding values between 0 and 1. The Z-score
normalization, also known as standardization, is a method of
transforming data to a standard normal distribution with a mean
of 0 and a standard deviation of 1. This normalization process
rescales the data and centers it around the mean, allowing for

easier comparison of values. It is commonly used in various
fields, such as statistics, ML and data analysis. Sigmoid
normalization uses a sigmoid function to transform the data,
proving useful in instances where the data distribution is
asymmetrical. The sigmoid function maps any input value to a
value between 0 and 1 and it is commonly used in ML and ANN
models to represent a probability or to rescale data. Additionally,
the sigmoid function is differentiable, which makes it useful in
optimization problems and backpropagation in neural networks.

In coastal phenomena, the relationship between inputs and
outputs typically displays nonlinearity, but certain models, such

TABLE 3 Comparative overview of various studies utilizing DA and their derived dimensionless parameters.

Method References Field of study Dimensionless relationship (well-known
numbers)

The Buckingham π
theorem

Bateni et al. (2007) Scour depth prediction around bridge piers using ML
approaches

d50
D � f(U

Uc
, U��

gY
√ , YD,

D
d50
, ρUDμ ) (The Reynolds Number and The

Froude Number)

Tayfur et al. (2013) PCA and data-driven methods for enhancing sediment
load prediction

u*h
v ,

um�������
g(GS−1)d50

√ , v2

g(GS−1)d50 3
,

ρs×u
*
2

Ys × d50

(The Reynolds Number; The Froude Number; Dimensionless
sediment diameter; The Mobility Number)

Macayeal et al. (2011) Iceberg-capsize tsunamigenesis The Froude Number

Jayaratne et al. (2016) Tsunami-Induced Local Scour and Failure Mechanisms
in Coastal Structures

The Shields parameter

Deng et al. (2016) Wave force on a vertical cylinder Fmax
ρgdD2 � f(DL, HD, dD, hD, v���

gL3
√ ) (The Reynolds Number; Scattering

parameter; The Keulegan– Carpenter number; The Froude
Number)

Ranasinghe et al. (2010) Reaction of the Shoreline to a Single Submerged, Shore-
Parallel Breakwater

hB
H0

� f(SBhB, LBhB, A
hB
)

Nakamura et al. (2008) Tsunami-Induced Scour Surrounding a Square
Structure

zs
B � f(2H0−dw

B , h0L0 ,
h0
B ,

d
d50
, d50B

Peña et al. (2011) Comparative experimental analysis of wave
transmission coefficients, mooring line and module
connector forces across various floating breakwater

designs

Ct � f(kB, θ, Bd, drd , hB)

Hong et al. (2013) Propeller Jet-Induced Scour ds,t
Dp

� f2(F0 ,
y0

Dp
, y0

d50
, t
Dp
U0

) (The Froude Number; Offset height

ration; Relative Submergence)

Karimpour et al. (2016) Impacts of wind waves and currents on saltmarsh fringe
deterioration

f(�uhv , Hm0i
h , h

L1
, h
hs
, h
dv
, 1
h2Nv

) (The Reynolds Number)

Santamaria Cervantes
et al. (2022)

Uncertainties in coastal protection slope formulas f(hL, H1
L , Re,w, fcomposition) (The Reynolds Number; Wave

Steepness; Relative Water Depth)

Kitsikoudis et al. (2015) Evaluating sand-bed river sediment transport (The Reynolds Number; The Froude Number; The Shields
parameter)

TABLE 4 Well known Normalization techniques used in ML modeling.

Method Equation Literatures used this method

Max-min normalization xN � xi−min X
max X −min X

(Newmax −Newmin) +Newmin Pourzangbar et al. (2017b); Kramer (2013)

Z-score normalization xN � xi−μX
σX

Ewuzie et al. (2021); Masmoudi et al. (2021)

Sigmoid normalization xN � 1
1+exp (−(xi−μX )

σX
) Latif et al. (2023)

log scaling xN � lnxi Bai et al. (2015); Pourzangbar et al. (2017a)
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as the M5 model tree, are unable to handle nonlinearity. To address
this limitation, M5 models have been implemented using a
logarithmic form for both inputs and outputs (i.e., the natural
logarithm of inputs and outputs). This logarithmic form is more
accurate than a linear formulation because it better captures the
nonlinear nature of the contributing parameters (Pourzangbar et al.,
2017a; Afsarian et al., 2018). Log scaling entails transforming data
points through the application of a logarithmic function. The
logarithm maps large values to smaller ones and vice versa,
helping to make skewed data more symmetrical and manageable
for analysis. The selection of a specific logarithmic function depends
on the needs of the data and the analysis to be performed, such as log
base 10, log base 2, or natural logarithm. Despite its advantages,
normalization may result in a loss of interpretability, increased
sensitivity to outliers (as seen in techniques like min-max scaling
and z-score), loss of information, dependence on the entire dataset,
impacts on categorical features, and varying sensitivity across
algorithms.

3 AI learning algorithms and their
application in marine/coastal
engineering

3.1 Supervised-based ML methods

Supervised ML presents a powerful approach, necessitating
labeled data for model training. Its versatility permits its usage
across a variety of applications, such as image and speech
recognition, natural language processing, and predictive
analytics. Common algorithms used in supervised learning
encompass linear regression, logistic regression (LR), decision
trees, random forests, support vector machines, and neural
networks. A key advantage of supervised learning is its
capacity to generate precise predictions for novel and unseen
data (Jiang et al., 2020). However, it also has certain drawbacks,
including the requirement for labeled data, the quality and
quantity of the training data, and the potential for overfitting.

TABLE 5 Various ML learning approaches utilized in coastal studies, along with their associated models and methods.

Learning
approach

Model type Algorithm Output (Reference)

Supervised learning

Classification

ANN

Coastal vulnerability map Ennouali et al., (2023); Coastal waters classification Pereira and
Ebecken, (2009); Coastal Altimetric Waveforms Xu et al., (2021); Sea Surface Temperature

Imagery Reggiannini et al., (2022)

SVM

RF

K-Nearest neighbor

Naive-Bayes classifer

Regression

ANN

Wave condition James et al., (2018); Significant wave height Ali et al., (2023); Breaking wave
height Duong et al., (2023); Sediment load Latif et al., (2023);Wave attenuation Kim et al., (2022)

SVM

Regression (linear,
logistic)

Unsupervised learning

Clustring

K-means and
K-median

Seabed color Wattelez et al., (2022); Land cover classification (Moody et al., (2014);
Characteristics of Wastewater Discharges Di et al., (2019); Smart Port Construction Yao et al.,

(2018); Spatiotemporal Outlier Detection Chen et al., (2016); Ouliers in coastal water
temperature Cho et al., (2013); Coastal environmental and atmospheric data reductionMészáros

et al., (2022); Surface water quality Moncada et al., (2021)

Hierarchical clustering

Density-based
clustering

Gaussian mixture
models

Anomaly detection

Statistical-based

Distance-based

Clustring-based

Density-based

Dimensionality
reduction

PCA

Reinforcment learning

Model-free

Q-Learning

Real-time control of coastal urban stormwater systems Bowes et al., (2022); Flood mitigation
Bowes et al., (2021); Maximize Energy Efficiency Sarkar et al., (2022)

Hybrid

Policy optimization

Model-based Q-learning

Given the model
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Despite these challenges, supervised learning is seen as an
essential method in ML and data science, demonstrating high
accuracy and less computational time compared to physical
models. Despite the inherent complexity of marine processes,
supervised-based ML models have demonstrated benefits in
understanding coastal phenomena, thereby finding extensive
application in coastal engineering to drive innovative models
and solve intricate problems (as summarized in Table 5).
Supervised ML models have been employed to predict wave
parameters like significant wave height and period, wave
reflection and transmission coefficients (van Gent et al., 2007;
Gandomi et al., 2020; Kuntoji et al., 2020), tide levels (Lee, 2004),
ocean currents and wind files (James et al., 2018; Shamshirband
et al., 2020), prediction of wind Characteristics under future
Climate Change scenarios (Yeganeh-Bakhtiary et al., 2022), flood
inundation using Gaussian process model (Donnelly et al., 2022)
and breakwater stability number and wave overtopping
discharge, among others. Various ML models, such as ANN
and SVM, can be employed to do these predictions. ML
models have also found application in morphological and
morphodynamic predictions, including profile elevation, area,
and length, based on parameters like wind speed, direction, wave
height, and beach angle (Hashemi et al., 2010).

3.2 Unsupervised-based ML methods

Unsupervised learning is a form of ML that functions without
predefined labels or target outcomes (Bishop and Nasrabadi,
2006). Its main purpose is to independently discover patterns,
structures, and relationships in data. Common applications
include clustering, anomaly detection, and dimensionality
reduction. Clustering groups similar data points, anomaly
detection spotlights unusual patterns (as detailed in Section
2.3), and dimensionality reduction simplifies the number of
features while preserving essential information (as seen in
Section 2.4). Algorithms like k-means clustering, hierarchical
clustering, PCA, and autoencoders are frequently used in
unsupervised learning to identify patterns in data. While
unsupervised learning can pose challenges due to the lack of a
distinct optimization goal, it still holds a vital position in ML,
contributing to advancements in fields such as computer vision,
natural language processing, and recommendation systems. In
the context of coastal engineering, k-means clustering can be
used to classify centroid values for data like the maximum
oceanic wind. Average centroid clustering can be obtained
from both the previously chosen values and the currently
selected clustering data (Baboo and Tajudin, 2013). PCA can
be employed in coastal engineering to examine correlation
matrices (Roseman et al., 2005) and pinpoint major changes
in beach profiles and sand grain distributions (Tsujimoto et al.,
2012). Moreover, PCA and hierarchical clustering can help
characterize coastal plane shape and hydrodynamics. For
instance, the form of arc-shaped coasts, largely influenced by
geological structure, can be divided into four broad categories
that reflect actual conditions using clustering (Scott et al., 2011).
By identifying key data components, PCA can aid in elucidating
the underlying patterns and structures of the data.

3.3 Reinforcement-based ML methods

Reinforcement learning (RL) is a type of ML where a program,
known as an agent, learns to perform tasks by getting feedback from
its environment in the form of rewards or penalties (Rengarajan
et al., 2022). The agent executes a series of decisions in a mutable
environment, aiming to learn the optimal way (or policy) to
maximize rewards over time. This process is typically structured
as a Markov Decision Process (MDP), encompassing states, actions,
transition functions, and reward functions. There are two main
types of reinforcement learning algorithms: model-based and
model-free. Model-based RL is like making a map to understand
the surroundings. On the other hand, model-free RL does not make
a map; it just figures out what to do based on where it is at the
moment. So, model-based RL is more about planning ahead, while
model-free RL is more about learning on the go (Plaat et al., 2023).
Model-free methods, like Q-learning, do not need a model of the
environment and calculate the expected total of future rewards for
each possible action at each state using the so-called the Bellman
equation. Q-learning has been used successfully in many different
tasks, which is why it is one of the most commonly used model-free
RL algorithms. In coastal engineering, RL can be used to develop
control policies to reduce the risk of flooding (Bowes et al., 2021).
Deep reinforcement learning (DRL), an advanced form of RL, can be
used to control devices that convert wave energy, and has been
found to work better than traditional control methods (Anderlini
et al., 2020). DRL can also adjust itself to changes in system
dynamics, allowing for control even when faults occur. Moreover,
RL has been used to maximize the electricity produced by wave
energy converters (Zou et al., 2022). In addition, a type of RL called
multiagent reinforcement learning can simulate the social and
economic effects of sea level rise. This can be a useful tool for
planning scenarios, analyzing costs and benefits, and optimizing
strategies to adapt to changes (Shuvo et al., 2022).

Table 4 summarizes the various ML learning approaches and
their corresponding model types. Each model type utilizes a unique
set of algorithms. For instance, in the case of classification tasks,
ANNs or SVMs may be utilized. The final column of the table
highlights the research studies focusing on each specific learning
approach, targeting the investigation of a specific coastal process or
event.

3.4 AI contribution to the sustainability of
marine environments

Predictive models, such as statistical, numerical, or ML models,
play a vital role in marine and coastal engineering to safeguard
structures from natural forces. Statistical models use past data to
forecast future conditions, while numerical models simulate the
event using mathematical equations and formulas. ML models,
using artificial intelligence (AI), learn from past data for
prediction purposes. Each model has its unique approach and is
chosen based on data availability and specific project needs.

Various ML techniques have been implemented in the study of
coastal and marine environments. Figure 3, sourced from Scopus,
provides a visual representation of the percentage of published
papers that used different ML methods since the year 2000.
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Upon reviewing this figure, it is evident that Principal Components
Regression (PCR), Linear Model (LM), Regression Tree (RT), and
ANN are the most frequently employed ML algorithms for
analyzing coastal and marine phenomena. However, certain ML
techniques, such as General Regression Neural Networks (GRNN),
M5 model tree, Bayesian Model Averaging method (BMA),
Generalized Boosted Regression (GBM), and Extreme Gradient

Lift (Xgboost) have been applied less frequently in the
investigation of coastal and marine events.

Figure 4 shows the application trend of different ML approaches
for coastal and marine phenomena. Previously, techniques such as
Deep Neural Networks (DNN), Convolutional Neural Networks
(CNN), and RF were sparingly employed in diverse studies.
However, there has been a significant increase in their use over

FIGURE 3
Percentage of different ML methods application in coastal and marine environments in terms of the published papers indexed in Scopus.

FIGURE 4
The trend of varios ML algorithms in coastal and marine applicatins.
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the past 5 years, demonstrating a growing reliance on these methods
in recent research.

Figure 5 illustrates the trend of various ML algorithms since
2008 in coastal and marine applications. Some methods are not
frequently used which are colored in red (these low-important
approaches are not reported in Figure 4).

3.4.1 Prediction of oceanographic and
morphologic parameters

Researchers use ML algorithms and soft computing techniques
to predict oceanographic and morphological parameters, as shown
in Figure 6. These methods include ANNs, SVMs, Support Vector
Regression (SVR), Fuzzy Logic (FL), evolutionary algorithms, such

FIGURE 5
Annual publication trends of papers implementing ML methods for predicting coastal and marine phenomena, as extracted from scopus.

FIGURE 6
Oceanographic Parameters predicted by ML algoithms.
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TABLE 6 Details of the selected reviewed papers, where the ML methods were used to predict the wave height.

References Method Dataset Inputs Results

Mahjoobi and
Etemad-Shahidi

(2008)

C5 algorithm

wind and wave data from Lake
Michigan, 2000–2004

Wind speed Decision trees, having similar error
statistics to ANNs and an acceptable
error range, are efficient for predictions

and advantageous because they
represent classification rules and linear

equations.

CART

Wind direction
ANN

Mahjoobi and Adeli
Mosabbeb, (2009)

SVM (RBF)

2086 records for Training and
2007 records for Testing

Wind speed In modeling the wind speed, SVM
outperformed ANN.

SVM (polynomial)

ANN (MLP)

ANN (RBF)

Fernández et al.
(2015)

ELMOR*; KDLOR*;
ONN*; POM*;
SVOREX*

Meteorological reanalysis and standard
data from buoys were collected for the
entire years of 2012 and 2013, from

January 1st to December 31st.

Meteorological variables including air
temperature, sea level pressure, the

zonal component of the wind and the
meridional component of the wind.

In modeling the meteorological
variables ordinal classifiers (SVOREX
and SVORIM) outperformed nominal
classification and regression methods.

SVORIM*; SVR

Cornejo-Bueno et al.
(2016)

GGA-ELM Data for two complete years (1st January
2009–31st December 2010) are used.

Wind direction and speed; Gust speed;
Significant wave height; Dominant and
Average wave period; Direction DPD;
Atmospheric pressure; Air and water

temperature

A hybrid GGA-ELM approach is
proposed for accuracy in prediction of

wind speed and direction.

The GGA-ELM selected features were
tested using ELM and Support Vector
Machine on a real-world problem,

yielding good results.

Berbić et al. (2017) ANN and SVM Collected wave height data from two
Adriatic Sea locations, November

2007–2008.

Previous wave heights The study utilized Weka software to
predict significant wave heights using
ANN and SVMmethods, incorporating

wind data.

Kumar et al. (2017) MRAN*

Data from 13 stations across diverse
global regions was collected from

2011–2015 for the study.

Wind speed MRAN and GAP-RBF outperform SVR
and ELM in daily wave height

prediction, with MRAN surpassing
GAP-RBF, using minimal network
resources and accurately predicting

significant wave heights.

GAP-RBF*

Wave height
SVR

Kumar et al. (2018)

SLFN

The oel is trained via 10 diverse terrain
stations from 2011 to 2014, and was
tested using data from early to mid-

2015.

Wave and atmospheric data The Ens-ELM outperforms ELM, OS-
ELM and SVR in the daily wave height

prediction.

Ens-ELM

SVR

OS-ELM

Ali and Prasad (2019) ICEEMDAN-ELM Hs data from Queensland, 2000–2018.
Half-hourly intervals

Wave height at previous times

Hybrid ICEEMDAN-ELM
outperforms comparative models like
RF, ELM andMLR in Australia’s energy

sites.

Fan et al. (2020) LSTM neural
network

Hourly data from ten global ocean buoys
was used. Number of datapoints are

428770.

The previous wave height, sea surface
temperature, wind direction and speed,

and pressure

In predicting wave height, LSTM
showed strong long-term prediction
capacity, with the proposed SWAN-
LSTM model improving prediction

accuracy by over 65% compared to the
standard SWAN model.

Shamshirband et al.
(2020)

ANN

The wavedata recorded in Bushehr and
Assaluye ports during 2008 are
employed as target variables

Wind speed

All models, such as ANN, ELM and
SVR, effectively predict outcomes, with
a nested grid approach proving efficient

for the study bathymetry.

ELM*

Wave height

The ELM slightly outperforms ANN
and SVR, despite generally similar

performances.SVR

*MRAN: minimal resource allocation network; Growing and Pruning Radial Basis Function (GAP-RBF); Extreme Learning Machine (ELM); Grouping Genetic Algorithm—Extreme Learning

Machine approach (GGA-ELM); Ensemble of Extreme Learning Machine (Ens-ELM); Online Sequential ELM (OS-ELM); Kernel Discriminant Learning for Ordinal Regression (KDLOR);

SVOR, with Implicit constraints (SVOR-IM); SVOR, with Explicit constraints (SVOR-EX); Proportional Odds Model (POM); Ordinal Neural Networks (ONN); ELMs have been adapted to

ordinal regression (ELMOR)

Frontiers in Environmental Engineering frontiersin.org14

Pourzangbar et al. 10.3389/fenve.2023.1235557

https://www.frontiersin.org/journals/environmental-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fenve.2023.1235557


as Genetic Programming (GP) and DTs, among others. Predictive
models are widely used in oceanography and coastal management.
Their accuracy critically depends on several factors. These include
the dataset used for training, the type and configuration of the ML
model, tuning parameters, termination condition, and input and
output parameters. It is important to note that specific algorithms,
with carefully adjusted parameters, are particularly valuable in
various research endeavors, depending on the problem being
addressed.

ANNs, SVRs, M5 decision tree algorithm, and Recurrent Neural
Networks (RNNs) including Long-Short-Term Memory (LSTM)
models are used to predict wave heights, as per studies by Duong
et al. (2023) and Rizianiza and Aisjah (2015). These ML techniques
have shown reliable wave prediction capabilities, maintaining
accuracy up to 72 h ahead (Jain and Deo, 2008). The use of
intact structural data for predicting significant wave heights has
been explored, with emphasis on the critical role of data quality in
training ANNs for wave height predictions (Ciortan and Rusu, 2018;
Demetriou et al., 2021). ANNs have also been implemented to
estimate wave breaking heights considering various factors like
seabed slope, water depth, and deep-sea wavelength (Duong
et al., 2023). In the field of marine energy forecasting, researchers
have used multi-class classification methods with ordinal classifiers,
such as SVOREX and SVORIM yielding precise results (Fernández
et al., 2015). RNN, especially LSTM models, have been employed to
predict motion responses in irregular wave patterns (Kagemoto,
2020). Table 6 provides a summary of the top 10 highly-cited papers
focused on predicting significant wave height using ML algorithms.
Themajority of these studies usedmeteorological data and past wave
height as input parameters. The results demonstrate that LSTM
neural networks, ANN, kernel-based predictors like SVM and SVR,
as well as decision trees, are capable of accurately predicting wave
height.

To enhance understanding of the effectiveness of various ML
methods in predicting wave height, visual representations of the
correlation coefficient and Root Mean Square Error (RMSE) values
for different ML techniques applied across multiple data sets have
been created (Figure 7). To achieve this, we carefully selected studies
that used several ML methods for wave height predictions, ensuring
each study used a consistent dataset. This allowed for a visual
representation of the performance of these ML techniques with
specific datasets. By comparing the overall performance of these ML
models across various datasets, certain conclusions can be drawn.

• ANN and SVR algorithms are commonly used in predicting
wave height.

• The count of neurons present in the hidden layers of ANNs
slightly influences the precision of the model.

• Integrated algorithms, like ICEEMDAN-ELM, exhibit
superior performance in terms of accuracy and error
indices compared to other ML methods.

• There has been a significant increase in the adoption of ML
algorithms, especially integrated algorithms, in recent years
(see Figure 8).

The M5 decision tree algorithm, ANNs, and gradient boosting
decision trees serve as robust tools for predicting wave overtopping
discharge on coastal infrastructure such as breakwaters. When

focusing on wave overtopping and runup, the M5 decision tree
algorithm exhibits promising capabilities for predicting runup
waves, taking into account laboratory data and multiple
parameters (Abolfathi et al., 2016). ANNs are also used to
predict wave reflection and transmission coefficients (Zanuttigh
et al., 2016; Formentin et al., 2017). It has been proven that
gradient boosting decision trees, as a novel ML technique, has
improved the accuracy of predicting average wave overtopping
discharges by nearly threefold in comparison to traditional neural
networks (den Bieman et al., 2020). Kernel-based approaches, such
as Gaussian Process Regression (GPR) and SVR, have also been
utilized in predicting wave overtopping, with GPR showing superior
performance over ANNs and empirical formulas (Hosseinzadeh
et al., 2021).

The measurement of Sea Surface Temperature (SST) is vital for
understanding the global climate. It significantly contributes to
climate modeling, weather forecasting, and studies on marine
ecosystems. Accurately predicting SST can aid in mitigating the
environmental harm resulting from rising water temperatures due to
human-induced climate change. This prediction not only benefits
marine ecosystems but also preserves coastal economies and the
broader coastal environment (Choi et al., 2023). LSTM neural
networks have proven effective in forecasting SST, showing
enhanced performances when the right amount of input data is
used (Xu et al., 2020). Multivariate LSTM models, which take into
account factors such as wind speed and sea-level air pressure
alongside SST, have demonstrated superior results compared to
univariate models that only factor in SST (Balogun and Adebisi,
2021). Traditional MLmodels have been studied for spatio-temporal
time series prediction, highlighting the importance of spatial data.
Among these, the LSTM model emerged as the most efficient,
showing a 25% improvement in forecasting performance (based
on RMSE) when spatial information was incorporated (Kartal,
2023). Research indicates that LSTMs, whether using single or
multiple variables, surpass other ML models in predicting SST
(Xu et al., 2020; Kartal, 2023).

Moreover, accurate predictions of coastal sediment transport are
crucial for managing coastal erosion and development, with
researchers traditionally estimating sediment transport using
experimental methods. Artificial intelligence-based methods
potentially improve decision-making for managing coastal
erosion and development (Bakhtyar et al., 2008; Kabiri-Samani
et al., 2011), given the importance of selecting valid input data
and appropriate activation functions (Pourzangbar, 2012; Yeganeh-
bakhtiary et al., 2012). Artificial intelligence and ML methods, such
as Adaptive Network Based Fuzzy Inference Systems (ANFIS),
Fuzzy Inference System (FIS), CERC (Coastal Engineering
Research Center), Walton-Bruno (WB), Van Ridge (VR), and
ANNs, have been employed to model sediment transport, with
ANFIS showing higher accuracy and reliability for estimating
longshore sediment transport rates (LSTR) (Bakhtyar et al., 2008;
Hashemi et al., 2010). SVR has also been employed, demonstrating
superiority over neural networks when the dataset is small or the
relationships are linear or non-linear but with a clear margin
(Dezvareh and Shafaghat, 2020). Deep learning models, like
ANNs, have been developed to address the shortcomings of
numerical models in analyzing simultaneous sand and sediment
transport (Kim and Aoki, 2021).

Frontiers in Environmental Engineering frontiersin.org15

Pourzangbar et al. 10.3389/fenve.2023.1235557

https://www.frontiersin.org/journals/environmental-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fenve.2023.1235557


FIGURE 7
Comparison of CC (upper panel) and RMSE (lower panel) across differentML approaches and datasets. Each color symbolizes a unique study. Results
are extracted fromMakarynskyy et al. (2005); Mahjoobi and Etemad-Shahidi (2008); Mahjoobi and Adeli Mosabbeb, (2009); Cornejo-Bueno et al. (2016);
Berbić et al. (2017); Akbarifard and Radmanesh (2018); Kumar et al. (2018); Nikoo et al. (2018); Ali and Prasad (2019); Shamshirband et al. (2020); Kaloop
et al. (2020). The abbreviations are: Online sequential ELM (OSELM), Extreme Learning Machine (ELM), Improved Complete Ensemble Empirical
Mode Decomposition method with Adaptive Noise (ICEEMDAN), Online Sequential (OS), RF, Grouping Genetic Algorithm (GGA).
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3.4.2 Classification models
Classification involves categorizing items or data into groups

based on their features, and is crucial in fields such as statistics, ML
and data analysis. The goal is to create models that predict the class
of new items by identifying patterns in their features. SVM was
introduced in the 1990s, RF in the early 2000s, and LR has roots
going back to the 19th century. These algorithms are capable of
executing simple tasks such as recognition and classification (Lou
et al., 2021). In addition to these algorithms, a variety of other
classification algorithms, including naive Bayes classifier, DTs, and
K-Nearest Neighbors, have been utilized in remote sensing and in
situ data analysis to enhance the understanding and monitoring of
the environment. Table 7 summarizes the most well-known
classification models used in coastal and marine engineering.
These algorithms have proven effective in unraveling complex
environmental data and facilitating informed decision-making
(Tsiakos and Chalkias, 2023). Accordingly, the most famous
classification methods are:

• SVM (Cortes and Vapnik, 1995): focuses on training samples
near the optimal class boundary, aiming to maximize the
margin between support vectors. Fundamentally, it is a binary
classifier, and the processing time is managed by applying the
classifier to every class combination.

• Regression Tree (RT) (Goldstein et al., 2019): break down
prediction tasks into binary splits, forming a tree structure.
This tool excels at classification tasks and enables an
understanding of the influence of input variables.
However, RTs may not be as effective for continuous
variables and are prone to overfitting if not properly
pruned. Accuracy can be boosted by merging small
sequential RT models, giving more weight to poorly
predicted data.

• Decision Trees (Pal and Mather, 2003): easy to understand,
DTs recursively split data. They can use categorical data and
perform classification quickly. However, DTs may suffer from

overfitting and non-optimal solutions, which can be addressed
through pruning.

• RF (Breiman, 2001): an ensemble classifier using multiple DTs
to overcome their limitations. Each tree uses a random subset
of training data and features, resulting in a more accurate
ensemble. RF classifiers are known for their speed, resistance
to overfitting, and ability to handle multicollinearity. They can
also assess the importance of variables, although they may be
sensitive to certain sampling strategies (Belgiu and Drăgu,
2016).

• Kernel and Nearest Neighbor (K-NN) classifier (Altman,
1992): The K-NN classifier is distinct from other classifiers
because it does not create a model during the training phase.
Instead, every unclassified sample is directly compared with
the original training data.

• Naive-Bayes classifer: it is a classification algorithm that is
based on Bayes’ theorem and assumes that the presence or
absence of one feature is independent of the presence or
absence of other features. It learns the probability
distribution of features and corresponding labels from a
training dataset and uses it to classify new examples. This
algorithm is widely used in applications that have many
features and large datasets, such as text classification,
sentiment analysis, and spam filtering. The Naive Bayes
classifier is computationally efficient and can handle high-
dimensional data well.

KNN classifier has been used in various marine-related projects.
For the design of marine hydrokinetic turbines, KNN was used to
identify and categorize the severity of the rotor blade pitch
imbalance encountered by marine current turbines. This
approach was found useful for fault detection and severity
classification (Freeman et al., 2021). In ocean surface current
forecasting, KNN was used as an alternate method
(Jirakittayakorn et al., 2017). The KNN algorithm proved capable
of forecasting future surface currents up to 24 h in advance. The

FIGURE 8
Wave height prediction using different ML algorithms during 2005–2023.
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TABLE 7 Overview of highly-cited literature studies (extracted from Scopus) on classification models in coastal and marine phenomena.

References Method Dataset
Inputs

Results
Output(s)

Heumann (2011) Object-Based Image Analysis
(OBIA) that melded a DT with
SVM classification methods

Images from the Worldview-2
sensor

Vegetation field data The study correctly identified true
mangroves with over 94% accuracy.
However, it struggled to map fringe
mangroves due to spectral and zoning
issues, especially in sparse or
degraded areas.

Mangrove Associates

Kalkan et al. (2013) object-based classification (OBC)
and SVM

The Lakeland region of Turkey

Coastline features

Automatic coastline extraction
methods were compared to manual
digitization, showing both methods
achieved sub-pixel accuracy in
detecting coastline features from
Landsat 8 imagery.

and Landsat 8 data

Kong et al. (2017) GS optimized SVM 324 sampling sites collected across
the Yellow Sea and East China Sea

DO, Chl-a, C1, C2, C3, and
C4 and the TRIX index

The method demonstrated high
predictive performance and accurate
eutrophication status classification

eutrophication status of coastal
waters

The findings support the feasibility of
using SVM technique for rapid
evaluation of eutrophication status
with easily measured parameters.

Adam et al. (2014) RF A dataset from the 2010 KwaZulu-
Natal provincial LULC map

RapidEye image High spectral variation challenges RF
and SVM in classifying certain LULC
types, but incorporating the red-edge
band significantly improves
vegetation cover type classification
accuracy.

land-use/cover (LULC) map

Li and Wang (2011) RF and Markov chain 1998 to 2009 in Tianjin
Environmental Aspect Bulletin

Time-series Sea water quality Random Forests and Markov chain
were used to fit a function relating
transition probability to pollution and
environmental investment, based on
historical data.

Sea water quality

Liu et al. (2021) CNN Coastal images and tidal data (20+
years)

Hourly coastal images and tidal
data

CNN provides location and shape
information of offshore dam,
coastline, waves at the coastal dam,
and trough data for classification
decision-making.

Categorized beach states
(8 classes)

It has good generalization ability.

Hoonhout et al.
(2015)

Structured Support Vector
Machine (SSVM)

Manually annotated dataset of
192 coastal images

Coastal images Pixel classification accuracy: 93.0%

Pixel-wise classification (water,
sand, vegetation, sky, object)

Algorithm extracts beach widths and
water lines from coastal camera
images without manual quality
control.

It enables the analysis of large, long-
term coastal imagery datasets and the
application to various types of coastal
images.

Annotated dataset and open-source
software are provided for free,
promoting further research in coastal
image analysis.

Shafaghat and
Dezvareh (2021)

SVM Coasts of Hormozgan province

Wave height, direction, period,
and particle size

SVM accurately categorizes sediment
transport rate into critical and non-
critical states for each beach, using a
Gaussian kernel (RBF) and optimal
coefficients of C = 9 and σ = 0.28.

Sediment transport rate

(Continued on following page)
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KNN approach was compared with other prediction techniques
such as ARIMA, exponential smoothing, and LSTM, and it was
found that the KNN model had the highest accuracy. KNN was one
of the six ML classifiers used to generate precise geographic

estimates of seabed substrate and seabed habitat mapping
(Diesing and Stephens, 2015; Leon et al., 2020). The accuracy of
the predictions was evaluated using ground-truth sample data
segmented into classes of seabed substrate. In coastal hazards

TABLE 7 (Continued) Overview of highly-cited literature studies (extracted from Scopus) on classification models in coastal and marine phenomena.

References Method Dataset
Inputs

Results
Output(s)

Mahjoobi and
Etemad-Shahidi

(2008)

CART

5 years (2000–2004) of wave and
wind data from Lake Michigan

Wave and wind data

The results of decision trees were
compared to those of ANNs, showing
similar error statistics.

and C5 algorithm Significant wave height

The decision tree approach is
considered efficient and successful for
predicting significant wave heights
and offers the advantage of visualizing
decision rules compared to neural
networks.

Çelik and Gazioğlu
(2022)

SVM, MLP and Ensemble
Learning (EL)

bedrock, beaches, and artificial
coasts

Coastlines

Classifiers were accurate on unshaded
bedrock coasts, and their results were
similar.

Extraction errors were encountered
on bedrock coasts due to shadows,
and MLP classifiers with Linear,
Logarithmic, and Tanh activation
functions were found to be the most
accurate.

Beach type coasts presented
challenges due to shallow depths and
suspended solids affecting
classification accuracy. EL classifiers
and SVMs with sigmoidal kernel
function were adversely affected, but
the best results were obtained by other
SVMs and MLP classifiers.

On artificial coasts, all classifiers
provided accurate categorizations.

Shenbagaraj et al.
(2014)

ISODATA (unsupervised
classifiers)

sensor, Toposheet and Google Earth
Images were used over a 60 year
period from 1953 to 2013 between

Kolachel and Kayalpattanam

Coastline changes

This approach effectively identified
the areas of coastline transgression
and regression in the study area.

Rokni et al. (2015)
ANN; SVM; Maximum Likelihood August 2000 to July 2010; Lake

Urmia, Northwest of Iran
Fused images highlighting

changed areas, classified maps

The proposed approach effectively
detected surface water changes,
especially when using the Gram
Schmidt-ANN and Gram Schmidt-
SVM techniques. The results show
that Lake Urmia lost about one third
of its surface area in the
2000–2010 period.

Sekovski et al. (2014) The satellite imagery is from 2011,
and lidar data is from 2005. 40 km

stretch of coastline in the
Municipality of Ravenna, Northern

Adriatic Sea, Italy.

Four supervised image classification
techniques (Parallelepiped,

Gaussian Maximum Likelihood,
Minimum-Distance-to-Means, and
Mahalanobis distance) and the

unsupervised ISODATA

High-resolution multispectral
WorldView-2 satellite imagery
from 2011, and airborne lidar

data from 2005.

Shorelines produced by ISODATA
and Mahalanobis show the highest
agreement with reference shorelines,
having an average median distance of
2.2 m. Parallelepiped and Maximum
Likelihood shorelines had the highest
average median distance from the
reference shoreline (5.1 and 5.6 m,
respectively). Heterogeneous coastal
stretches exhibited a larger offset
between extracted and reference
shorelines than homogeneous ones.
The comparison between the
Mahalanobis classification results and
lidar data detected an erosive trend in
a wide portion of the study area.

Delineated shorelines
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projection, KNN was used to project dangers using several
representative concentration route climate change scenarios,
regional climate models, and sea level rise ratios (Park and Lee,
2020). Seafloor classification is another marine-related project where
KNN was used along with ANN to class the structure of the seafloor
and to pinpoint potential anthropogenic effects on delicate benthic
assemblages (Gauci et al., 2016). Finally, in sea-land segmentation,
KNNwas used to produce a pixel-level, sea-land segmentation of the
scene based on the Doppler bandwidth of a returns vector in
maritime surveillance radars (Shui et al., 2020).

The Naive Bayes classifier is a machine learning algorithm
commonly utilized in various applications to enhance model
accuracy. A prominent application of the Naive Bayes classifier
involves predicting water quality classes utilizing seven
popular Water Quality Index (WQI) models (Uddin et al.,
2023). There is some confusion about the proper
classification of water quality due to differing techniques
used in current WQI models. To address this, the Naive
Bayes was compared with other ML classifiers. These
included SVM, Random Forest, K-Nearest Neighbor, and
Gradient Boosting. The goal was to determine the best
classifier for evaluating water quality. Another application of
the Naive Bayes classifier is in detecting small-scale
assemblages of drifting vegetation and beach cast in
Germany’s Baltic coast (Uhl et al., 2022). To obtain the best
classification results, the classifier was used as part of an
ensemble of five classifiers, including a RF, CART, SVM,
and stochastic gradient boosting classifier to predict tropical
Cyclone based on multi-model fusion across Indian coastal
region (Varalakshmi et al., 2021). In all applications, the Naive
Bayes classifier was effective in improving the accuracy of the
models, particularly in predicting the quality of coastal water
and detecting small-scale assemblages of drifting vegetation
and beach cast. Its versatility and usefulness in different

domains make it a popular choice for improving the
accuracy of models in various applications.

Given coastaline extraction from satellite images, three well
known methods including image processing techniques,
unsupervised classifiers and supervised classifiers have been
implemented. Shenbagaraj et al. (2014) employed visual
interpretation and ISODATA (Iterative Self-Organizing Data
Analysis Technique) classification techniques to extract
shorelines from Landsat Thematic Mapper (TM), Enhanced
Thematic Mapper Plus (ETM+) sensor images, Toposheet and
Google Earth Images spanning a 60-year period from 1953 to
2013 between Kolachel and Kayalpattanam. This approach
effectively identified the areas of coastline transgression and
regression in the study area. Supervised classifiers such as
Maximum Likelihood (Rokni et al., 2015), SVM & ANN & EL
(Çelik and Gazioğlu, 2022), RF (Bayram et al., 2017), Minimum-
Distance-to-Means, and Mahalanobis distance (Sekovski et al.,
2014) also have been employed to classify and detect the coastline
position based on the satellite images. As depicted in Figure 9, the
average median distance of all shorelines, observed in relation to
the reference, suggests that the shorelines produced by the
ISODATA and Mahalanobis methods demonstrate the best
alignment, with a discrepancy of 2.2 m, thereby being closer to
the reference than other methods. Conversely, the Parallelepiped
and Maximum Likelihood methods resulted in shorelines with
the highest average median distance from the reference shoreline,
measuring 5.1 m and 5.6 m respectively.

4 Summary and conclusion

This study provides a comprehensive review of machine
learning applications to model the marine and coastal
environments, with comprehensive coverage from data

FIGURE 9
Comparison of different classifiers’ performance in detecting shoreline position given the reference shoreline position at different sectors of
Ravenna coastal area (Sekovski et al., 2014). Sector 1: Bellocchio Channel. To Reno River; sector 2: Reno River to Destra Reno channel; sector 3: Destra
Reno channel to Lamone River; sector 4: Lamone River to Porto Corsini; sector 5: Marina di Ravenna to Fiumi Uniti River; sector 6: Fiumi Uniti River to
Bevano stream; sector 7: Bevano stream to Savio River.
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preprocessing to the application of different models. The review
indicates that appropriately implemented and optimized ML
methods can significantly contribute to marine and coastal
sustainability through developing accurate and robust models for
prediction of wave height, oceanographic parameters, and sediment
transport, image processing, optimization of coastal and marine
structures design.

Here are some insights based on your review:

1. Dependence on data quality: the study concludes by reminding
us that the efficacy of ML models heavily relies on factors such as
the quality of datasets, the type and configuration of the ML
model, and tuning parameters. It reemphasizes the importance of
sound data science practices in applying ML.

2. Exploitation of data: this paper underlines the importance of data
preprocessing, including data cleaning, dimensionality reduction,
and normalization inmachine learningmodels. This emphasizes the
pivotal role of quality data in the effectiveness of ML applications in
modelling phenomena such as wave patterns, coastal erosion, and
sediment transport in marine and coastal environments.

3. Diversemachine learning approaches: the current paper is examined
three primary types of ML including supervised, unsupervised and
reinforcement learning, and their respective applications in marine
and coastal science. Supervised learning, using algorithms such as
decision trees and neural networks, leverages labeled data to predict
parameters like wave height and wind speed, and make
morphodynamic predictions. Unsupervised learning, on the other
hand, independently discovers patterns and relationships in data for
tasks like clustering and anomaly detection, and has been employed
to classify wind values and examine beach profiles. Reinforcement
learning, operating on a reward or penalty system, plays a vital role
in devising control policies and planning for future scenarios in areas
like flood risk reduction and wave energy conversion. Various ML
methods such as PCR, LM, RT, and ANN are instrumental in
facilitating these applications.

4. Classification algorithms: classification algorithms such as
Kernel- and Tree-based models play crucial roles in
environmental data interpretation and decision-making. SVM
is known for its binary classification capabilities, while RT and
DT provide swift classification and a better understanding of
input variables. RF offers robustness against overfitting and
efficiently manages multicollinearity. The KNN classifier
performs well in comparing unclassified samples with training
data. Naive Bayes, using Bayes’ theorem, efficiently processes and
analyzes high-dimensional data and is often used in predicting
water quality and tropical cyclone trajectories.

5. Application of ML: from forecasting oceanographic and
morphologic parameters to estimating longshore sediment
transport rates, the use of ML significantly enhances the
capacity for prediction and understanding of marine and
coastal environments. ANNs and SVR are frequently used for
wave height predictions. Their accuracy and reliability help in
crucial areas such as managing coastal erosion and development.
The prediction of SST using ML, specifically LSTM neural
networks, has shown great promise. Accurate SST prediction
can contribute significantly to climate modeling, weather
forecasting and the preservation of marine ecosystems. ANFIS
has shown accuracy and reliability in estimating longshore

sediment transport rates, which is essential for managing
coastal erosion and development.

6. The growing role of new techniques: the rising prominence of deep
neural networks, convolutional neural networks, and random forests
is indicative of the evolution of thefield, and the increasing complexity
of the problems being addressed. These advanced techniques often
deliver superior performance and can manage more complex and
high-dimensional datasets. Integrated algorithms such as
ICEEMDAN-ELM exhibit superior performance. The adoption of
ML algorithms has seen a significant increase in recent years.

4.1 Recommendations for future research
endeavours

• Developing hybrid models: the employment of combined
and hybrid models has exhibited significant success,
notably in addressing multifaceted issues. Eslaminezhad
et al. (2022) advanced the efficiency of tree-structured
machine learning models in determining the crucial
parameters for forecasting flood susceptibility and
constructing flood susceptibility maps, through the
incorporation of the BPSO algorithm.

• Developoing physical-based machine learning: it is apparent
that machine learning models do not adequately consider the
actual physical elements of the problem. Consequently, the
prospect of integrating physical-based machine learning
approaches is recommended for further contemplation.

• Implementing domain adaptation techniques: to address the
regional restrictions inherent in existing models, it might be
prudent to consider the application of domain adaptation
techniques.

• Evaluating models’ uncertainty: it is essential to acknowledge
that inherent uncertainty is a fundamental aspect of any
model. Thus, it is proposed that the models’ uncertainty be
consistently documented, and appropriate methodologies be
utilized to alleviate it.

• Development of appropriate scaling techniques: by developing
appropriate scaling techniques, one ensures that all features
contribute equally to the final prediction, thereby improving
the performance of the machine learning model.
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Glossary

Abbreviation symbol Definition

AI Artificial Intelligence

ANFIS Adaptive Network Based Fuzzy Inference Systems

ANN Artificial Neural Network

ANN-MLP Artificial Neural Network (Multilayer Perceptron)

ANN-RBF Artificial Neural Network (Radial Basis Function)

ANOVA Analysis of Variance

BMA Bayesian Model Averaging method

CART Classification And Regression Trees

CERC Coastal Engineering Research Center

CNN Convolutional Neural Networks

DA Dimensional Analysis

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DEM Digital Elevation Model

DFA Dynamic Factor Analysis

DNN Deep Neural Networks

DRL Deep Reinforcement Learning

DT Decision Tree

ELM Extreme Learning Machine

ELMOR Extreme Learning Machine for Ordinal Regression

Ens-ELM Ensemble of Extreme Learning Machine

FIS Fuzzy Inference System

FL Fuzzy Logic

FUNWAVE Fully Nonlinear Boussinesq Wave model

GAP-RBF Growing and Pruning Radial Basis Function

GBM Generalized Boosted Regression

GCM Global Climate Model

GGA-ELM Grouping Genetic Algorithm—Extreme Learning Machine
approach

GIS Geographic Information Systems

GP Genetic Programming

GPR Gaussian Process Regression

GRNN General Regression Neural Networks

HBP Hierarchical Bayesian Model

ICA Independent Component Analysis

ICEEMDAN-ELM Improved Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise-Extreme Learning
Machine

ISODATA Iterative Self-Organizing Data Analysis Technique

KDLOR Kernel Discriminant Learning for Ordinal Regression

KNN K-Nearest Neighbors

LASSO Least Absolute Shrinkage and Selection Operator

LiDAR Light Detection and Ranging

LM Linear Model

LSTM Long-Short-Term Memory model

LSTM neural
network:

Long Short-Term Memory neural network

LSTR Longshore Sediment Transport Rates

MAFA Min/Max Autocorrelation Factor Analysis

MDP Markov Decision Process

ML Machine Learning

MLR Multiple Linear Regression

MRAN Minimal Resource Allocation Network

NLP Natural Language Processing

NSWE Nonlinear Shallow Water Equations

ONN Ordinal Neural Networks

OS-ELM Online Sequential Extreme Learning Machine

PCA Principal Component Analysis

POM Proportional Odds Model

Q-Learning: A model-free reinforcement learning algorithm

RCM Regional Climate Model

RF Random Forest

RL Reinforcement Learning

RNN Recurrent Neural Network

RT Regression Tree

SLFN Single Layer Feedforward Neural Network

SST Sea Surface Temperature

SVM Support Vector Machine

SVM (polynomial) Support Vector Machine (Polynomial)

SVM-RBF Support Vector Machine (Radial Basis Function)

SVOR-EX Support Vector Ordinal Regression with Explicit constraints

SVOR-IM Support Vector Ordinal Regression with Implicit constraints

SVR Support Vector Regression

SWAN Simulating WAves Nearshore model

TOL Tolerance

VIF Variance Inflation Factor

VR Van Ridge formula

WB Walton-Bruno formula

X Vector of original data

μ Mean

σ Standard Deviation

xi Individual data point in X

xN Normalized data

max X Minimum value of X

min X Maximum value of X

Frontiers in Environmental Engineering frontiersin.org27

Pourzangbar et al. 10.3389/fenve.2023.1235557

https://www.frontiersin.org/journals/environmental-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fenve.2023.1235557

	Machine learning application in modelling marine and coastal phenomena: a critical review
	1 Introduction
	2 Data preparation (preprocessing)
	2.1 Marine data types
	2.2 Marine data resources
	2.3 Data cleaning: outlier detection
	2.4 Dimensionality reduction
	2.4.1 Multicollinearity
	2.4.2 Principle component analysis

	2.5 Dimensional analysis
	2.6 Normalization

	3 AI learning algorithms and their application in marine/coastal engineering
	3.1 Supervised-based ML methods
	3.2 Unsupervised-based ML methods
	3.3 Reinforcement-based ML methods
	3.4 AI contribution to the sustainability of marine environments
	3.4.1 Prediction of oceanographic and morphologic parameters
	3.4.2 Classification models


	4 Summary and conclusion
	4.1 Recommendations for future research endeavours

	Author contributions
	Conflict of interest
	Publisher’s note
	References
	Glossary


