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Traditional methods of air pollution monitoring require substantial investment in
equipment and infrastructure. However, efficient and cost-effective alternatives
offer promising solutions for region-specific pollution assessments and
understanding their impact on local populations. This review explores
examples of low-cost monitoring methods, focusing on natural bioindicators,
human interaction-based techniques, and the outcomes associated with air
pollution exposure. Bioindicators such as spider webs, lichens, mosses, and
Tradescantia pallida (T. pallida) are discussed as potential tools for air pollution
monitoring. Human biomonitoring techniques, including the micronucleus assay
and the assessment of pulmonary anthracosis, are examined for their ability to
provide valuable insights into genotoxic effects and long-term exposure. The
advantages and limitations of eachmethod are highlighted. The review advocates
for continued research and development to refine these approaches, with the aim
of mitigating the adverse health impacts of air pollution on both individuals and
communities.
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1 Introduction

Air pollution poses a significant threat to human health, causing approximately
4.2 million premature deaths in 2019, as reported by the World Health Organization
(World Health Organization, 2022). Assessing human exposure to air pollution is critical
for understanding the potential health risks associated with airborne particles.
Conventional methods for air pollution monitoring and estimating human exposure are
widely used by environmental agencies, research institutions, and industries for regulatory
compliance, public health assessment, and scientific research. They involve a range of
established techniques and equipment, and assessing air quality requires a significant
investment in the appropriate infrastructure for such measurements (Knox et al., 2012;
World Health Organization, 2023).

In response to these challenges, efficient, cost-effective, and innovative solutions for
assessing pollutants in specific regions and their impact on local populations have
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continuously emerged. Alternative methods for monitoring air
pollution and assessing human exposure or the effects of air
pollution often complement traditional techniques. They provide
innovative perspectives to deepen our understanding and devise
effective strategies to address air quality concerns.

This review provides an overview of selected monitoring
methods that focus on natural bioindicators commonly used for
environmental air pollution monitoring. Additionally, it covers
individualized health-related monitoring methods and health
outcomes associated with air pollution exposure. We explore
examples of alternative and cost-effective methods used to
monitor air pollution and measure exposure to airborne particles,
as well as the effects caused by such exposure. Aspects of their
methodologies, strengths, and limitations are summarized.

2 Bioindicators

Different living organisms can serve as bioindicators. This
approach uses plants and animals with the capacity to monitor
environmental conditions. What is important, all the bioindicators
can be used in a defined time of exposure. Certain bioindicators
exhibit changes or responses to immediate or short-lived
fluctuations in air pollutant levels. They might reflect acute
exposure or fluctuations over hours, days, or few weeks. On the
other hand, changes or effects that occur over an extended period
due to chronic exposure to air pollutants reflect the cumulative
impact of pollutants on biological systems over months, years, or
even decades.

Biological monitoring complements the chemical analyses by
providing biological information about the effect and the interaction
with pollutants. In the sections that follow, we will explore an
assortment of interesting examples of these environmental
sentinels. Summarized information about the examples of
bioindicators mentioned in this review is described in Table 1.

2.1 Spider webs

Recently spider webs seem to be a reliable and cheap air
monitoring method. Webs are made of silk, a protein that is
produced by the spider’s spinnerets. The feature that allows using
it for air pollution monitoring is that dust particles can be trapped
inside the web as prey. The first studies were conducted in Australia
(Hose et al., 2002). The scientists found that spider webs can be a
useful indicator of environmental pollution. Since then, this method
has become increasingly popular and researchers have used it for
monitoring various pollutants such as metals and metalloids, trace
elements, polycyclic aromatic compounds, dioxins, magnetic
susceptibility, and even for the assessment of pollutants’ origin
(Rybak, 2014; Rybak and Olejniczak, 2014; Rybak, 2015; Rachwał
et al., 2018; Rutkowski et al., 2019; Stojanowska et al., 2020; van
Laaten et al., 2020). This tool can be used in a defined time of
exposure, usually from two to 3 months. This bioindicator is not
specific for different air pollutants, although according to studies,
spider webs are probably more suitable for the indication of organic
compounds such as PAHs due to their chemical affinity to the
fibroin which is the basic component of web. Organic pollutants
penetrate webs more deeply than other air pollutants (Stojanowska
et al., 2020). Although, the mechanism of accumulation of organic
compounds is still unknown. What is interesting, it has been found
that only compounds with high molecular weight were trapped in
webs, suggesting that more volatile compounds can be lost and are
not detected. Therefore, applying webs in closed polluted areas,
i.e., car parks, homes can remove this problem (Stojanowska et al.,
2020). The control quality is possible and relies on obtaining the
clean web woven under laboratory conditions.

Spider webs have many advantages as they are cheap, organic,
widely available, and non-selective i.e., they can accumulate various
pollutants. They can be applied in both long-term and short-term
monitoring (Rutkowski et al., 2018). The web can also be obtained
from laboratory-bred spiders and then applied to indoor and

TABLE 1 Comprehensive summary of bioindicators examples and their responses to air pollutants.

Bioindicator Air pollutants Time of
exposure

Location of
bioindicator

Authors

Spider webs Trace elements (e.g., Mg, Al, K, Ca, Ti, V,
Cr, Mn, Fe, Co, Ni, Cu, Zn, W, Pt, Pb, etc.),
organic compounds (PAHs), particulate
matter (PM), genotoxic studies,
microplastic

Short term (one to
3 months)

Urban, industrial, rural areas,
indoor

Rybak (2014), Rybak (2015), Rybak and
Olejniczak (2014), Górka et al. (2018),
Rutkowski et al. (2019), Goßmann et al. (2022)

Lichens Trace elements (e.g., Cd, Cr, Cu, Fe, Mn,
Ni, Pb, V, Zn, Ti, Hg, K, S, B, Al, Ba, Ca,
Co, Mg, Na, Ni, P, Sr, Bi, Cs, Rb, Tl, etc.),
sulfur compounds, nitrogen and
phosphorus compounds, ozone, fluorides,
chlorides, radionuclides, PAHs,
chlorophyll, lichen physiological,
morphological changes, PM

Short and long term
(one to 12 months)

Rural, industrial areas, forests,
mountains, agricultural area,
indoor

Conti and Cecchetti (2001), Abas (2021)

Mosses Trace elements (e.g., Pb, Zn, Cu, Cd, Fe,
Ni, Cr, Cu, V, Zn, Al, Mn, Sb, As, Hg, etc.),
radionuclides, PAHs, PBDEs, PCBs, NO3
-, S, δ34, S, PM, microplastic, PAHs

Short and long term
(1 month to years)

Rural, industrial areas, forests Ares et al. (2012), Baczewska-Dąbrowska et al.
(2023)

T. pallida Trace elements (e.g., Fe, Pb, Cd, Ni, Cu,
Zn), genotoxic studies

Long-term
monitoring:
(4 months to 2 years)

Urban and industrial areas Sumita et al. (2003), Santos et al. (2015), Da
Costa et al. (2016), Vargas et al. (2023)
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outdoor studies with a defined time of exposure (Rachwał et al.,
2018). The main obstacle is the tiny structure of the web, which
makes it difficult to collect and analyze them. Therefore, not all
spider families can be used for bioindication. Spider webs have been
considered a biomonitoring tool that can be used to determine air
quality, especially in preliminary studies, used to indicate the most
polluted areas “hotspots” for later application, more detailed and
accessible monitoring using conventional methods.

2.2 Lichens

Lichens have a long history as bioindicators (Adamo et al., 2003;
Kłos et al., 2018; Stojanowska et al., 2020). They are applied to assess
various types of contaminants, similar to spider webs (Shukla et al.,
2010). As lichens do not have cuticles and roots to absorb water and
minerals, they are dependent on atmospheric deposition. What is
important, the presence of lichen species alone in defined area can
indicate a good air quality. Another method relies on transplanting
lichens from the pristine area to a polluted one and measuring the
morphological changes in the thallus along with assessing the
physiological parameters and level of bioaccumulation of the
contaminants. The physiological parameters such as
photosynthesis, chlorophyll level and biodegradation of
chlorophyll, respiration, etc., are used for monitoring of
environmental pollution with lichens (Conti and Cecchetti,
2001). Various studies found a positive correlation between the
sulphur, ozone and nitrogen content of lichens and SO2, NOx, O3 in
the air. Furthermore, lichens are very good bioaccumulators of trace
elements. For other atmospheric contaminants, such as fluorides,
chlorides, polychlorinated dibenzodioxins and polychlorinated
dibenzofurans (PCDDs/PCDFs), the application of lichens are
very scarce. The concentration of trace elements in lichens is
usually correlated with their content in air. To evaluate the
pollution level it is necessary to assess the background level of
the contaminants in the air and in the lichens (Conti and Cecchetti,
2001). Lichens are usually exposed to pollutants from two to
3 months. They are not specific for different air pollutants,
although their application for the assessment of SO2, NOx, O3

content in the air as well as the level of bioaccumulation of trace
metals seems to be the most popular.

However, this method also has its limitations as lichens can
reach a saturation point at which pollutants cannot be absorbed
anymore (Garty et al., 1993). The other problem with applying this
method is that the use of lichens could be restricted to unfavorable
weather conditions. Lichens’ sensitivity to sulfur dioxide can be an
additional obstacle as their application could be limited to some
places (Nash, 2008).

2.3 Mosses

Mosses are also commonly used in biomonitoring (Bargagli
et al., 2002; Liu et al., 2009). Similar to lichens, mosses do not have
roots, epidermis, and cuticles which makes them dependent on
atmospheric deposition too. They are abundant worldwide, and
present in different environments which makes them a very good
bioindicator (Szczepaniak and Biziuk, 2003). Mosses are applied in

elements and organic pollutants assessment (Holoubek et al., 2000).
Although, they are mainly used in assessment of metals and nitrogen
deposition (Díaz-Álvarez et al., 2018). The methods are three: the
application of native moses, the use of naturally growing mosses and
the transplantation of mosses into the study area (Baczewska-
Dąbrowska et al., 2023). Świsłowski et al. (2022) studied two
methods of mosses application (moss bags and native mosses). It
was found that moss bags accumulated more pollutants. In order to
evaluate the level of contamination, it becomes essential to
determine the baseline levels of the pollutants in both the air and
in the mosses. Mosses the same as other biomonitors are usually
exposed to pollutants from two to 3 months.

However, they can also have limitations. Sometimes it is difficult
to obtain mosses from a clean area for transplantation as they can be
hidden by snow in wintertime (Lodenius, 2014). Another problem
is, that when using ‘moss bags’ they can dry out and thus could lose
their efficiency in accumulating pollutants (Szczepaniak and Biziuk,
2003). According to Bargagli (2016) the assessment of some
elements, e.g., Hg content in mosses does not exactly reflect its
atmospheric deposition. The biomonitoring with mosses defines Hg
hot spots and changes in its spatial distribution only.

2.4 Others

The use of higher plants, including trees, as passive samplers in
biomonitoring gives advantages due to the excellent availability of
plants and the low cost of sample collection. Many higher plants
have been used for monitoring air pollution. Although trees are not
as good indicators as lower plants such as lichens or mosses, they are
widely distributed across many countries and have long lifecycles, so
the studies can be repeated after few decades for a comparative air
monitoring and for the assessment a time-trend distribution of trace
elements (Sawidis et al., 2011). While some plant bioindicators can
be sensitive to only one type of pollutant, others respond to a wide
range of stressors.

Plants can also be utilized for pollution monitoring through
active methods, which involve transplanting them into the study
area for a specified period of time. In this context, T. pallida
(Tradescantia pallida), commonly known as Purple Heart, has
been recognized for its sensitivity as a passive and active
biomonitoring of air pollution (Sumita et al., 2003; Santos et al.,
2015; Da Costa et al., 2016). These studies have demonstrated that
elements associated with air pollution from vehicle emissions and
anthropogenic sources, such as iron (Fe), lead (Pb), cadmium (Cd),
nickel (Ni), copper (Cu), and zinc (Zn), exhibit higher
concentrations in leaf samples collected in highly trafficked areas
compared to those in low-traffic or soil samples. The selection of
monitoring sites is typically guided by data on air pollution levels,
including measurements of CO, NO2, SO2, and PM10 provided by
monitoring agencies. Based on the amount of pollutant elements
measured in the plants, it is possible to distinguish the polluted areas
with good precision. Its ability to accumulate and reflect the
presence of trace elements in the air makes it a valuable tool for
assessing air quality without the need for very complex
laboratory equipment.

Given its wide availability, easy cultivation, and cost-
effectiveness, T. pallida is a suitable choice for long-term
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monitoring projects that last for months (Santos et al., 2015) and
years (Da Costa et al., 2016). To ensure quality assurance when using
T. pallida as an air pollution bioindicator, it is important to cultivate
samples in uniform, uncontaminated soil with controlled water
supply enriched by a nutritive solution before exposure to
pollution, while maintaining validated standard operating
procedures (SOPs) consistently throughout the study. Utilizing
conditions considered as reference standards and replicating
extracted samples serve as examples of quality control measures
for this alternative method of assessing air pollutants. Then, through
proper study design and data analysis, T. pallida can serve as a
valuable complementary tool for assessing air pollution levels in
urban areas with different traffic intensities and under varying
environmental conditions, as well as in industrial settings. It is
interesting to note that T. pallida (and other plants) can act as early
warning indicators, and because they are located near people, they
can offer a true representation of exposure scenarios.

Despite its advantages, T. pallida-based air pollution monitoring
has some limitations. The plant’s sensitivity to pollutants can also be
influenced by environmental factors such as weather conditions and
seasonal variations (Santos et al., 2015), potentially affecting the
accuracy of results. Moreover, the plant’s response to specific
pollutants may vary, making it essential to consider the local
context when interpreting data. However, research efforts have
identified T. pallida as a reference for biomonitoring air
genotoxicity. These studies have revealed a significant correlation
between the levels of air pollutants and the genetic damage observed
when using this remarkable natural tool (Da Costa et al., 2016;
Amato-Lourenco et al., 2017; Rocha et al., 2018; Vargas et al., 2023).

3 Human biomarkers and monitoring

3.1 Micronucleus assay

Numerous approaches exist for assessing the biomarkers of the
effects of air pollution through the collection of human samples.Within
this context, a plethora of studies have contributed valuable insights into
the genetic damage induced by exposure to environmental pollutants.
An interesting method for measuring the levels of potential genotoxic
effects of air pollutants on exposed populations is the micronucleus
(MN) assay. This is a cytogenetic technique used to assess particularly
DNA damage and chromosome breakage in cells (Fenech, 1993;
Sommer et al., 2020). It involves the detection of micronuclei, which
are small additional nuclei formed during cell division when
chromosome fragments or whole chromosomes are not incorporated
into the daughter nuclei. The methodology for assessing MN is notably
simple and it can be conducted on various cell types, including human
peripheral blood lymphocytes and buccal cells.

A summary of the steps for conducting the MN assay in buccal
cells (cells from the inner lining of the mouth) includes sample
collection, fixation, preparation of slides, staining, microscopic
examination, scoring and analysis, and data interpretation
(Thomas et al., 2009; Kashyap and Reddy, 2012). It is important
to note that theMN assay requires careful handling, standardization,
and appropriate controls to ensure reliable and meaningful results.
Additionally, variations in the procedure may exist depending on
the specific laboratory protocols and research objectives.

Several studies have explored the association between air
pollution exposure and MN frequencies, yielding interesting
findings. O’Callaghan-Gordo et al., 2015 demonstrated the
genotoxic repercussions of air pollution on pregnant women. The
study revealed that exposure to air pollution, particularly particulate
matter (PM), resulted in increased MN frequencies in mothers,
especially those with lower vitamin C intake and who smoked during
pregnancy. Ishikawa et al. (2006) observed higherMN frequencies in
women residing in industrial areas of Shenyang City compared to
those in rural areas, highlighting the influence of industrial air
pollution on MN formation. In parallel, the frequency of MN
also demonstrated a positive association with quasi-ultrafine
particulate matter (PM0.5) and traffic proximity near the homes
of children residing in an industrialized area, in contrast to that
observed in children living in a control area without significant
anthropogenic influences (Panico et al., 2020). The study conducted
by Zhao et al. (1998), which compared MN frequencies between
traffic police and household register police, revealed that traffic
police exhibited significantly higher MN frequencies. This finding
underscores the role of intense automobile exhaust exposure in
inducing genotoxic effects. Additionally, another scenario
demonstrating an association between the MN test and trace
element concentrations found in the blood and urine was
observed in workers from areas of artisanal gem mining in the
state of Minas Gerais (Brazil) (Santos et al., 2023).

While many studies have investigated the association between PM
exposure andMN frequency (Da Silva Junior et al., 2023), the results of
the MN frequency usually cannot be linked to a particular compound.
Instead, they are associated with the intricate blend of pollutants in the
atmosphere, originating from sources such as vehicular emissions,
industrial activities, and occupational exposure (Da Costa et al.,
2016). Other limitations associated with this technique include the
variability in baseline values, the influence of inter-individual
differences, and the potential confounding effects of environmental
factors (Thomas et al., 2009; Kirsch-Volders et al., 2011; Bolognesi and
Fenech, 2013; Luzhna et al., 2013). Employing questionnaires for the
population under study can be instrumental in gaining insights into
their background information, thereby enhancing the interpretation of
the results.

3.2 Pulmonary anthracosis

Developing innovative approaches to accurately estimate
individual exposure is also extremely necessary. Methods for
assessing individual air pollution exposure by focusing on the
utilization of anthracosis or black carbon deposition within the
lung are considered promising. Decades ago, Zeidberg and Prindle
(1963) proposed that pleural anthracosis could serve as an indicator
of air pollution exposure. Their study involved the histopathological
examination of autopsied lungs from Nashville residents, a city
known for coal-derived pollution. The lungs were categorized based
on the extent of anthracosis. Their findings revealed a positive
correlation between the amount of anthracosis deposited in the
lungs and the duration of exposure, measured as the time residents
had lived in the city. Given the robust supporting evidence from
subsequent studies (Brauer et al., 2001; Tsuda et al., 2013), which
demonstrated that human lungs retain ambient particles, further
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research was undertaken to explore whether exposure to urban air
pollution correlates with the degree of pleural anthracosis. This
investigation considered potential modifying factors, such as
personal habits, mobility patterns, and occupational activities,
obtained through a questionnaire administered to the relatives of
the study subjects (Takano et al., 2019; Da Motta Singer et al., 2023).

To summarize, the methodology involves the following steps
during post-mortem examinations: removal of the lungs and
thorough cleaning of the pleural surface; placement of a Petri dish
strategically on the anterior surfaces of lung lobes to create a flat
observation area; capture of high-resolution images of the pleura surface
using a camera; image processing using ImageJ software; calculation
and estimation of the proportion of black spots in each lobe; aggregation
of these individual lobe values to calculate the mean proportion of
anthracosis for the entire lung (Takano et al., 2019).

The primary limitation of this method is its reliance on an
autopsy service, coupled with the requirement for a relatively
substantial sample size. Furthermore, it overlooks the analysis of
the composition of pigments deposited in the lungs. Although
previous studies have already identified and measured the
chemical element profile of anthracosis in the lungs of residents
in Sao Paulo (Saieg et al., 2011; Dos Santos et al., 2022), it is not
possible to relate the health effects associated to anthracosis
deposition with a specific compound. Establishing a suitable
control group is particularly intricate; however, collected data can
be analyzed effectively with statistical support.

Nonetheless, when evaluating the entire procedure of data
collection and analysis, it emerges as a remarkably cost-effective
approach. The method for assessing individual exposure based on
pleural anthracosis is significant, as it can aid in evaluating long-
term exposure to urban air pollution and its impact on health.

4 Conclusion and further perspectives

This review explores bioindicators such as spider webs, lichens,
mosses, and higher plants as potential methods for air pollution
monitoring due to their organic nature, widespread availability, and
non-selective accumulation of various pollutants. However, each
bioindicator method has limitations related to practical challenges
and environmental dependencies, necessitating careful
consideration in their application, which does not diminish the
fact that they can be successfully used in the initial, low-cost phase of
studies (screening tests), which can quickly give the information
about the scale of the problem. Within the scope of human
biomonitoring, techniques like the micronucleus assay and
assessing pulmonary anthracosis offer valuable insights into
biological consequences after contaminants have crossed one of
the body’s surfaces and entered tissues or fluids. While these

methods provide cost-effective means for evaluating individual
exposure, they also have limitations related to variations in
baseline values, inter-individual differences, and dependency on
post-mortem services.

The significance of employing combined methods for measuring
air pollutants must be emphasized. The cost-effective alternative
methods mentioned in the manuscript have the potential to
complement conventional methods, offering a valuable approach
for local areas, cities, and countries. It is important to note that no
single method is perfect, and multiple methods are used, as models
require measurements for calibration and validation. A concerted
focus on refining and developing these alternative methods holds the
promise of revolutionizing air pollution monitoring, facilitating a
better understanding, and aiding in the implementation of targeted
intervention strategies to mitigate the adverse health effects of air
pollution on individuals and communities.
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