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One year of, almost continuous, measurements of aerosol optical properties and chemical
composition were performed at the outskirts of Praia, Santiago Island, Cape Verde,
within the framework of CV-DUST (Atmospheric aerosol in Cape Verde region: seasonal
evaluation of composition, sources and transport) research project, during 2011. This article
reports the aerosol number and mass concentration measurements using a GRIMM
Optical Aerosol Spectrometer that provides number size discrimination into 31 size ranges
from 0.25 to 32 μm. Time series of 5 min average PM10 concentrations revealed peak
values higher than 1000 μg.m−3 during winter dust storm events originating over Northern
Africa. The 24 h average concentrations exceeded the World Health Organization (WHO)
guidelines for PM2.5 and PM10 in 20 and 30% of the 2001 days, respectively. Annual
average mass concentrations (±standard deviation) for PM1, PM2.5, and PM10 were 5 ± 5,
19 ± 21, and 48 ± 64 μg.m−3, respectively. The annual PM2.5 and PM10 values were also
above the limits prescribed by the WHO (10 and 20 μg.m−3, respectively). The aerosol
mass size distribution revealed two main modes for particles smaller than 10 μm: a fine
mode (0.7–0.8 μm), which possibly results of gas to particle conversion processes; and a
coarse mode with maxima at 3–4 μm, which is associated with desert dust and sea salt
sources. Within the coarse mode two sub-modes with maxima at 5–6 and 10–12 μm were
frequently present.
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INTRODUCTION
Aerosol particles are ubiquitous in the atmosphere; their behav-
ior and effects depend on their physical and chemical properties.
Particles size and size distribution are important physical prop-
erties governing aerosol interaction with atmospheric radiation,
cloud formation, transport and deposition, and health effects.
Atmospheric aerosol particles present sizes ranging from a few
nanometers to hundreds of micrometers. Several classifications
based on particle size have been proposed to differentiate the
atmospheric aerosol; the most common divides the aerosol into
a coarse fraction, for supermicrometer larger particles, usually
produced by mechanical processes, and a fine fraction, for sub-
micrometer smaller particles, resulting mostly from gas to particle
conversion.

One of the largest sources of atmospheric aerosol is the
mechanical action of wind on dry surfaces, originating the so
called atmospheric dust. Dust sources include industry (cement
and mining), road traffic and agriculture, but the overwhelming
source of atmospheric dust is natural soil. Wind-blown dust is
emitted mainly as coarse particles, but an important fraction is
also in the fine size range. Together with sea salt spray forma-
tion over the oceans, soil wind-blown dust is the largest source

of atmospheric aerosol with an estimated global emission rate of
250 Tg.year−1 of fine particles and 1000–4875 Tg.year−1 of coarse
particles (Raes et al., 2000).

The main source regions of wind-blown dust are desert areas.
Although desert regions such as the Arabian Peninsula, Iran,
Afghanistan, China, Namib and Kalahari are important atmo-
spheric dust sources, the North Africa’s Sahara region is by far
the major source of soil dust with an estimated production of
130–760 Tg.yr−1 (Goudie and Middleton, 2001), but some esti-
mates put the number at as high as 1600 Tg.yr−1 (Ozer, 2001).
From satellite data observations, the main dust emission regions
in North Africa are the Bodélé depression, in Chad, and the Mali-
Mauritanian border area, (Engelstaedter et al., 2006), but the
southern Sahel region can contribute also with up to one third
of North African dust emissions (Ginoux et al., 2004).

Multiannual and seasonal significant variability in North
Africa dust concentrations and emissions have been reported
(Engelstaedter et al., 2006); these variations have been attributed
mostly to seasonal and long-term changes in rainfall patterns.
Drought conditions in Sahel seem to affect dust emissions
in these areas in the years immediately following a drought
year (Chiapello et al., 2005), probably as result of decaying in
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vegetation covering. Field and satellite observations show strong
seasonal variations in North African dust emissions. While in
some regions such as Bodélé Depression are active emitters the
whole year, dust emission activity seem to peak during summer
in Western and North Western Sahara areas (Engelstaedter et al.,
2006).

Sahara dust emissions are transported to neighboring areas in
the Mediterranean, Europe, Western Asia and Atlantic. Kaufman
et al. (2005) estimated North African annual dust transport to
the west to be 240 ± 80 Tg, of which 140 Tg are deposited in
the Atlantic Ocean, 20 Tg are transported toward Europe, 50 Tg
fertilize the Amazon basin and 50 Tg reach the Caribe.

The transport of Sahara dust is strongly affected by variations
in the position of the Inter Tropical Convergence Zone (ITCZ).
During winter Hartmattan winds blow, at low altitudes, from
Northeast to the ITCZ located at 5–10◦N, transporting dust at
the surface to regions off the African west coast, such as the Cape
Verde islands (Engelstaedter et al., 2006). In summer the ITCZ
moves to the North and transport of dust to the west Atlantic
region happens preferably at higher altitudes; during summer at
sea level wind blows preferentially from non-continental areas
(Gama et al., submitted).

African desert dust has significant impacts on atmospheric
heat balance and climate control, weakening Atlantic Tropical
cyclones (Wu, 2007), on biogeochemical cycles in the Atlantic and
Amazon basin (Mahowald et al., 2009) and on human health in
Africa and surrounding regions, since it has been related with the
spreading of meningitis in Sahel (Sultan et al., 2005) and seems
to have an impact on the incidence of asthma and cardio vascular
illnesses (De Longueville et al., 2010).

Although satellite information and transport modeling are
powerful techniques to assess African desert dust role in the atmo-
sphere, in-site aerosol measurements are fundamental comple-
mentary tools to evaluate atmospheric dust loading and transport
from source regions. Long term measurements over the Atlantic
to determine Sahara dust transport to the west are difficult to
implement. Due to its location on the tropical North Atlantic,
off the west coast of Africa, the Cape Verde Islands are particu-
larly suitable to study the transport of Saharan dust plumes to the
Atlantic, Caribbean Sea, and Amazon Basin (Prospero et al., 1981;
Reid et al., 2003; Muhs et al., 2007). The geographical location
of the Cape Verde Islands has attracted a number of important
field experiments during the last decades (Jaenicke and Schutz,
1978; Moulin et al., 1997; Caquineau et al., 1998; Ratmeyer
et al., 1999; Tanré et al., 2003; Nalli et al., 2005; Ansmann et al.,
2009; Assmann et al., 2011; Chen et al., 2011). Most of these
experiments consisted of short-term intensive campaigns and
long term measurements covering all seasons are still scarce.
Therefore, a 1 year continuous field measurement campaign was
conducted during 2011 in Santiago Island, Cape Verde, within
the framework of CV-DUST project, to collect and measure the
atmospheric aerosol on air masses passing over the island. The
aerosol physical and chemical properties, as well as the aerosol
origin, estimated by transport and source apportionment model-
ing, were already described elsewhere (Almeida-Silva et al., 2013,
2014; Gama et al., submitted; Gross et al., submitted; Almeida
et al., in preparation). This article only describes and discusses

the results of measurements performed with a GRIMM aerosol
spectrometer, relative to aerosol size distribution and PM1 (par-
ticles mass, smaller than 1 μm), PM2.5 (particles mass, smaller
than 2.5 μm), and PM10 (particles mass, smaller than 10 μm)
concentration variability, across seasons. There is very little pub-
lished information concerning standard PM concentrations and
size distributions for this region of Africa, on a seasonal scale, and
therefore this information will be quite useful for modeling and
health evaluation studies.

MATERIALS AND METHODS
THE GRIMM AEROSOL OPTICAL SPECTROMETER
Several types of instrumentation can be used to physically char-
acterize atmospheric particles but none is capable of fully specify
all aerosol size ranges. Aerosol Optical Spectrometers (AOS) are
relatively affordable devices employed in the measurement of
atmospheric aerosol size differentiated concentrations. Operation
of these instruments is based on the univocal relation between
particle size and its light scattering properties. AOSs are sensi-
tive to measure atmospheric particles, but only for size ranges
above 100–300 nm, and are specially adapted to the measurement
of mechanically produced coarse aerosols such as soil dust and
sea salt spray. Aerosol light scattering characteristics are highly
dependent on particle size, shape and Refractive Index (RI), in
accordance with the equation:

I
(
Dp, RI

) = k ·
∫ θstop

θstart

d2 · f
(
θ, Dp, RI

) · sin (θ) dθ,

where I is the light scattering intensity from the particle, k is a
constant depending on the instrument geometry characteristics,
� is the scattering angle, Dp is the particle size (and shape) and f
is the scattering intensity function (intensity of light scattering in
� direction for a particle of size Dp and RI = n-ik). For spherical
particles function f is given by the Mie theory. For non-spherical
particles the function is more complex and several methods such
as the Discrete Dipole Approximation can be employed (Yurkin
and Hoekstra, 2007).

The GRIMM Spectrometer model EDM 164 employed in
the present work uses multi-channel light scattering optics as
the measuring principle; a detailed description with schematic
diagrams of a similar instrument can be found in Grimm
and Eatough (2009). The instrument is provided with a laser
diode emitting at γ = 660 nm. Air is sucked continuously, at
1.2 l.min−1, into a measuring chamber. There, each single par-
ticle is illuminated by the laser beam, providing a scattering pulse
height, directly related to the particle size. The particle scatters
light in all directions in accordance with Maxwell theory. One
fraction of this light is collected by a photo diode located at a
90◦ angle with the laser beam, with the help of a parabolic mir-
ror located in the opposite direction. All scattered light between
�start = 60◦ and �stop = 120◦ is reflected by the parabolic mirror
to the photo-detector, which collects and measures the arriving
scattered and reflected laser photons. An algorithm (a manu-
facturer secret but probably based on Mie theory) relates the
intensity of the measured scattered light impulse with the size
of the particle. Grimm spectrometers are factory calibrated with
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polystyrene latex (PSL). The calibration is used for tuning the
algorithm relating measured scattered light with particle size, for
each instrument.

The instrument provides information on number concentra-
tion, in 31 size bins, for particles with sizes from 0.25 to 32 μm,
for atmospheric aerosol loadings in the range 0.1–6000 μg.m−3.
Number concentration time averages can be registered in the
internal data logger for periods from 6 s to 1 h; during the CV-
DUST sampling campaign, 5 min averaged number concentra-
tions were registered for the 31 size bins.

The instrument is provided with a screened entrance head in
accordance with Johannesburg Convention which, in accordance
with the manufacturer, permits efficient entrance of particles of
sizes up to 10–20 μm, for wind speeds up to 8 m.s−1 (Grimm and
Eatough, 2009).

GRIMM FIELD CALIBRATION
Volume size distributions can be derived from number size dis-
tributions if the form of particles is known or guessed. The Cape
Verde atmospheric aerosol is a mixture of different types of par-
ticles with predominance of soil dust and sea salt spray. In the
present study, we consider that dust is the prevailing compo-
nent of the aerosol, making all calculations as if the aerosol is
only formed by dust, as a valid approximation. Although desert
dust particles are not truly spherical, presenting a Dynamic Shape
Factor (χ) of around 1.25 (Kaaden et al., 2009), sphericity was
used as an approximation in number to volume transforma-
tion. For comparison purposes, the dynamic shape factor for
sodium chloride in the continuum regime is χ = 1.08 (Kelly and
McMurry, 1992; Gysel et al., 2002).

Sahara dust particles measured previously at Cape Verde
and in Morocco showed a specific dry mass between 2.45 and
2.7 g.cm−3 (Haywood et al., 2001; Kaaden et al., 2009). An aver-
age density of 2.5 g.cm−3 was employed here to calculate mass
concentration and mass size distribution from the number distri-
bution of GRIMM measurements. For comparison, the dry den-
sity of sodium chloride is approximately 2.16 g.cm−3 (Schladitz
et al., 2011).

The GRIMM AOS is calibrated at the factory with PSL. As
PSL is colorless, having a RI of 1.59 and desert dust has a
reddish-brownish color, it is possible that the factory calibra-
tion does not reproduce correctly the light scattering behavior
of the Cape Verde dust aerosol. During the CVDUST campaign
the aerosol was collected in parallel, as PM10 (mass concentra-
tion of particles with diameters lower than 10 μm), in filters, and
mass concentrations determined gravimetrically. A comparison
between calculated time averaged GRIMM mass concentrations
and PM10 gravimetric measurements is possible for equivalent
sampling/measurement periods. The comparison is not direct
because the GRIMM provides geometric size distributions while
gravimetric PM10 determination is based on the pre-removal of
coarser particles with a size selective inlet that uses impaction to
separate particles according to their aerodynamic equivalent size.
PM10 inlets present a sigmoidal efficiency curve, in accordance
with USEPA (United States Environmental Protection Agency)
regulations (USEPA, 1998). Therefore, to calculate aerodynamic
PM10 from GRIMM mass size distribution, the aerodynamic

equivalent size efficiency curve of the PM10 inlet needs to be
transformed into an efficiency curve for the dust geometric size.
The transformation was done using Stokes Law approximation:

Dpgeo = Dpaer

√
χ

ρ/ρ0
,

where Dpgeo and Dpaer are respectively the geometric and aerody-
namic equivalent diameters, χ is the dynamic shape factor, ρ is
the density of the particle and ρ0 is the density of water.

An adapted impactor efficiency curve for geometric size par-
ticles based on previous equation for particles with a χ = 1.25
and a ρ of 2.5 g.cm−3 can be seen in Figure 1. Aerodynamic
PM10 concentrations were calculated for GRIMM measurements
using the transformed sampling inlet efficiency curve shown in
Figure 1. The intercomparison results between the GRIMM cal-
culated PM10 and gravimetric aerodynamic PM10 are given in
Figure 2. The figure shows a good linear correlation between
the two measurement sets (R2 = 0.96) but the GRIMM under-
predicts true mass concentrations by more than 40%. A better
ratio for GRIMM measurements can be achieved by increas-
ing substantially the proposed density of particles, which does
not seem reasonable given what is known from experimental
measurements, or by recalculating the particles size, from light
scattering values, for the instrument, taking into account the RI
characteristics of sampled dust.

Using the algorithm relating light scattering with aerosol size,
that was developed based on the Mie theory, specifically for this
instrument optical geometry, and gently provided by Thomas
Müller (Leibniz Institute for Tropospheric Research, Leipzig,
Germany), the particle diameters were recalculated from original

FIGURE 1 | PM10 Sampling inlet efficiency curve in accordance with

the USA EPA regulations, expressed originally in terms of aerodynamic

equivalent sizes, and for dust aerosol particles having a specific mass

density ρ = 2.5 g.cm−3 and a Dynamic Shape Factor χ = 1.25.
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FIGURE 2 | Comparison between PM10 concentrations measured in

parallel with the GRIMM and with the gravimetric method. The best fit
regression line and the respective equation and correlation coefficient are
given in the figure.

factory calibration for different RIs. For γ = 660 nm, aerosol dust
RIs vary between 1.53-0.001i and 1.53-0.005i (Kandler et al.,
2011a,b; Muller et al., 2011). Figure 3 presents the recalculated
diameter curve for dust particles having a RI = 1.53-0.005i; this
figure shows that the new value of the RI increases the esti-
mated value of bin diameters, principally for particles above
1 μm. Figure 4 shows the intercomparison between GRIMM and
gravimetric PM10, after GRIMM diameter recalculation. The
recalculated diameter values give mass concentration estimations
much closer to gravimetric values (only 11% below); therefore
the recalculated size bins are used in present measurements as a
more correct estimate of concentrations and size distribution. As
the Mie theory only applies to spherical particles and atmospheric
dust has an irregular form, probably the new fitting gives exces-
sive diameter values for most coarse measured particles. Also the
GRIMM aerosol inlet is not prepared to efficiently collect giant
particles. Therefore, particle concentrations with sizes greater
than 10 μm measured with GRIMM were used with caution in
this study.

LOCAL AND SAMPLING CONDITIONS
The CVDUST measurement station was installed at approxi-
mately 8 m above the ground, in the roof platform of the Cape
Verde Meteorological Institute (CVMI), on the eastern outskirts
of Praia city, the capital of the Republic of Cape Verde (90,000
inhabitants), in Santiago Island, at about 650 Km from the west-
ern coast of Senegal (see Map in Figure 5). The CVMI is located
in the ex-traffic control tower of the former Praia airport, (14◦
55′N; 23◦ 29′W; 98 m a.s.l.), at a distance of 200 m from the road
connecting the new airport to the city center and 1700 m from sea
shore. Therefore, aerosol concentrations are affected by both the
transport of dust from Africa and by local dust and anthropogenic

FIGURE 3 | Recalibration curve for GRIMM AOS diameters from

original factory values, using Mie equation applied to the equipment

geometry, for particles with a RI = 1.53-0.005i.

FIGURE 4 | Comparison between PM10 concentrations measured in

parallel with the GRIMM, after RI recalibration, and with the

gravimetric method. The best fit regression line and the respective
equation and correlation coefficient are given in the figure.

emissions. Other important particle sources are sea salt spray and
long-range transport of pollution.

The aerosol was collected and measured continuously dur-
ing 2011, with exception of periods of electric power supply
failure, which were quite frequent. Longer sampling interrup-
tions occurred during the months of September and December
as a result of equipment breakdown and/or removal; overall
the equipment was able to gather aerosol data during 83% of
the sampling campaign period. During the measuring campaign
more than 100,000, 5 min averaged, samples were taken with the
GRIMM. The data set contains approximately 2.5 million data
concentration points for all size bins.
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FIGURE 5 | Map of sampling site (CVMI—Cape Verde Meteorological

Institute) in the isle of Santiago, Cape Verde archipelago, off-shore of

the North-west Africa coast. Letters from A to J show sampling sites of
previous sampling campaigns referred and discussed in the text: A,
Chiapello et al. (1997); B, Afeti and Resch (2000); C, Caquineau et al. (2002);
D, Sunnu et al. (2008); E, Rajot et al. (2008); F, Kandler et al. (2009); G,
Kandler et al. (2011b); H, Flament et al. (2011); I, Rodriguez et al. (2011); J,
Gelado-Caballero et al. (2012).

The local climate is humid but with scarce rainfall and the
region is classified as semi-desert. The islands have a short wet
season during the period of July to October, with some rain, and
a dry season in the rest of the year. Total rainfall during the study
period was 150 mm, and most of it was collected from August
to October. Monthly averaged relative humidity varied between
a minimum of 65% in February and a maximum of 81% in
August. Monthly temperature averages were in the range 21 to
27◦C.

During the period of November to March wind conditions
favor the transport of air masses from west Africa at low altitudes,
in the boundary layer, resulting in a quite dusty atmospheric
environment, locally designed by “bruma seca” (dry fog).

RESULTS AND DISCUSSION
PM CONCENTRATIONS
Number concentrations measured with the GRIMM were used
to calculate PM1 (mass concentration of particles with diame-
ters lower than 1 μm), PM2.5 (mass concentration of particles
with diameters lower than 2.5 μm) and PM10. The stored and
calculated PM, 5 min averaged, mass concentrations show a large
temporal variability, revealing the inhomogeneity of dust plumes
transported from the African continent (standard deviations of
89, 115, and 133% for PM1, PM2.5, and PM10, respectively).
Therefore, for PM climatology purposes, PM data are presented
graphically in Figure 6, as 24 h run averages to permit enough
variability attenuation and a better visualization of concentra-
tion values along all year. The results confirm the presence of
substantial dust contamination during “bruma seca” months of
December to February and lower values during the rest of the
year. During winter months dust episodes can last for more than
1 week with important concentration variability within periods
of hours. During dust events, 5 min average PM10 concentrations

FIGURE 6 | PM1, PM2.5, and PM10, 24 h geometric mass concentration

running averages, for GRIMM recalibrated measurements.

FIGURE 7 | Five minutes averaged PM1, PM2.5, and PM10 concentration

variability of a dust episode during the month of January, 2011.

can reach values higher than 1000 μg.m−3, while 24 h run average
values can reach maxima of 460 μg.m−3. Figure 7 represents one
of those peak events, in January; the figure shows that short-
term concentration variability happens principally for coarser size
fractions.

Backward trajectories were calculated for all year using the
Hysplit model (Draxler and Hess, 1998; Draxler and Rolph,
2014) show that increased dust concentrations resulted from
direct air mass transport, in the boundary layer, from desert
areas in Northern Africa during the winter season. Examples
of two different situations (the dust episode given in Figure 7,
a period without direct dust transport from Africa), are given
in Figure 8. More detailed accounting of backward trajectories
for the entire CV-DUST campaign is shown in Gama et al.
(submitted).
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FIGURE 8 | Hysplit 48 h backward trajectories of air masses arriving

at Praia, for two distinct periods in 2011. (A) End of April and
beginning of May, when PM10 mass concentrations exhibited
minimum values; (B) 11–14 January with strong dust transport from
West Africa, when PM10 mass concentrations were peaking. Each
color represents a 48 backward trajectory. Trajectories were evaluated
at each 6 h intervals.

Although the aerosol number concentration is mostly asso-
ciated with submicrometer particles, the aerosol mass is mainly
associated with the coarse supermicrometer fraction, preferen-
tially above 2.5 μm. Annual average concentrations for PM1,
PM2.5, and PM10 were 5 ± 5, 19 ± 21, and 48 ± 64 μg.m−3,
respectively.

Up to now there is no consistent published information about
annual average PM mass concentration from other studies to
compare with our results. Published data on African dust con-
centrations usually refer to short term sampling campaigns or to
measuring methodologies, such as bulk sampling, that do not per-
mit direct retrieval of for PM1, PM2.5, or PM10 seasonal orannual
averaged levels. Chiapello et al. (1997) used the Sal Island, also
in Cape Verde, as a platform to sample atmospheric aerosol, on
a daily basis, between 1991 and 1994, with a filter system, but
only bulk aerosol samples were collected, presuming an effec-
tive filtration of particles smaller than 20 μm. The long-term
data set of 24 h average mass concentrations was described later
by Caquineau et al. (2002) and was characterized by intensive
concentration pulses of short duration, principally during winter
months, with maxima of 500 μg.m−3.

An intensive 1 month field experiment run in Praia during
January 2008 integrated in the SAMUM-2 campaign revealed
PM10 values of the order of 29 μg.m−3, during transport of mar-
itime air masses, and of 223 μg.m−3, during dust events with air
masses transported directly from Africa (Kandler et al., 2011b);
the mass ratio between PM10 and PM2.5 did not present a sig-
nificant variation during the field experiment, with an average of
2.67, not very different from our annual average ratio of 2.53.

World Health Organization prescribed maxima annual average
concentrations of 10 and 20 μg.m−3, and 24 h average concen-
trations of 25 and 50 μg.m−3, for PM2.5 and PM10, respectively,
which were recommended to provide public health protection
(WHO, 2006). The annual average PM2.5 and PM10 concentra-
tions at Praia during 2011 are well above the WHO recommended
guidelines. Exceedances to the 24 h average limit value for PM2.5

and PM10 concentrations were also common. Twenty percent of
2011 days had average concentrations above the 25 μg.m−3 WHO
guideline for PM2.5. Thirty percent of 2011 days had average
concentrations above the 50 μg.m−3 WHO guideline for PM10.
Exceedances of the daily limit value accumulated during the
“bruma seca” period, from December to February, but a signif-
icant number of daily exceedances was also observed in most of
the other months of the year. Monthly averaged PM mass con-
centrations, given in Figure 9, show that PM levels maintain an
average monthly concentration value relatively high even during
summer non dust events periods.

These dust contamination levels may have important health
effects on the Cape Verde human population. Although, detailed
statistical health information is not available for the country, it
is widely recognized locally that hospital admissions in relation
to respiratory/cardiovascular diseases increase during the “bruma
seca” periods.

Despite the high aerosol mass concentrations found in the
Cape Verde atmosphere during CV-DUST, these values were
clearly lower than those reported before in continental West
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FIGURE 9 | Monthly averaged PM1, PM2.5, and PM10 concentrations,

for each month of 2011. Values for December are less representative of
average conditions during this month because of important measuring
interruptions.

African areas, near dust sources. Kandler et al. (2009) found back-
ground PM2.5 and PM10 concentrations of 30 and 80 μg.m−3,
respectively, during SAMUM-1 experiment, that took place in
Morocco, between May and June 2006. During haze periods,
aerosol concentrations increased one order of magnitude and
were dependent on wind intensity. PM10 concentrations up to
3000 μg.m−3 and PM2.5 concentrations up to 1000 μg.m−3 were
observed under moderate winds. Aerosol particles greater than
10 μm accounted for more than 90% of airborne aerosol mass
under the influence of strong winds.

An intensive field campaign of aerosol measurement was per-
formed in Senegal during February 2006, as part of the AMMA
project (Flament et al., 2011). Although, no major dust event
occurred during the campaign period, measurements with a R&P
TEOM revealed 5 min average PM10 concentrations between 10
and 500 μg.m−3. Concentration levels were dependent on the ori-
gin of air masses and wind direction. While an average PM10 con-
centration of 47 μg.m−3 was observed for marine air masses, an
increase to values of the order of 100–114 μg.m−3 was reported
to occur during coastal and continental wind direction/air mass
transport.

Dust particles resulting from African desert emissions can
impact regions located a significant distance from source emis-
sion areas. Average Total Suspended Particles (TSP) concentra-
tions (0.5–25 μm particles) of 18, 53, and 134 μg.m−3, were
found in 1996, 1997, and 1998, respectively, in Ghana, at
a distance of 3000 Km from dust production zones, during
Hartmattan wind periods (Afeti and Resch, 2000). These val-
ues were much lower than measurements performed in the same
country by Sunnu et al. (2008) with an OAS instrument, dur-
ing a 9 year period between 1996 and 2005 where annual mean
concentrations ranged from 160 to 1204 μg.m−3.

Measurements performed during 2005–2008 at the Izaña GAW
Observatory, in Tenerife Island (Canary Islands), at 2367 m
a.s.l., revealed, most of the time, PM10 levels of the order of
1–5 μg.m−3, characteristic of the free troposphere. Twenty-four
hour average PM10 concentrations could reach values as high as
150 μg.m−3 during periods of Saharan dust advection (Rodriguez

FIGURE 10 | Yearly averaged mass and number concentration size

distributions for the Praia atmospheric aerosol during 2011.

et al., 2011). TSP measurements, taken in Gran Canary island at
lower altitudes, within the marine boundary layer, during 2002–
2005 revealed much higher peak concentrations during dust
events, up to 5586 μg.m−3 in January 2005 (Gelado-Caballero
et al., 2012); TSP background concentrations during periods
without Saharan dust transport influence were of the order of
11–28 μg.m−3.

SIZE DISTRIBUTIONS
Particles size distribution provides important information con-
cerning atmospheric aerosol behavior and its effect on radiative
transfer and health. The GRIMM is sensitive only to parti-
cles above 0.25 μm and therefore no information concerning
Nucleation and Aitken particles can be taken from this instru-
ment. Figure 10 shows the annual average number and mass
size distribution of Cape Verde aerosol during 2011. While for
number, most of the particles concentrate in diameters lower
than 0.6 μm, for mass the bulk of the aerosol is above 1 μm.
The annual mass size distribution shows clearly the existence of
two main modes under 10 μm size: a smaller mode with maxi-
mum at 0.7–0.8 μm and a larger coarse mode with a maximum
at 3–4 μm. The instrument measurements also reveals the exis-
tence of a second coarser mode for particles larger than 10 μm
but neither the instrument entrance geometry nor the mea-
surement principle were developed to measure giant particles
and therefore these results will not be discussed in detail. The
annual average size distribution is mainly influenced by peak con-
centrations in January and February during the “bruma seca”
period.

Figure 11 presents the monthly averaged mass size distribu-
tions for each of the 2011 months. The figure reveals the existence
of multimodal size distributions for particles above 1 μm. The
main mode with maximum at 4 μm is more evident during
months with strong dust events. A second mode at 5–6 μm
becomes predominant at lower intermediate aerosol loadings.
There is also a constant presence of a mode with maximum at
10–12 μm. These multiple aerosol modes in coarse particles may
reflect the multiple sources and formation/transport processes
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FIGURE 11 | Monthly averaged mass concentration size distributions

of the Praia atmospheric aerosol, for every 2011 month.

contributing to the coarse aerosol loading in Praia atmosphere,
at ground level. The coarse aerosol at this site results from dust
transport from Africa at low altitude, from local emission of
dust by the action of the wind on the island bare and dusty
soil (Santiago island has a semi desert landscape), from human
activities (road traffic, building construction, etc.) and from the
constant presence of sea salt spray from the surrounding ocean.
Each one of those sources may imprint the size distribution with
slightly different mode maxima. Local intense human activities
and soil characteristics result in the constant emission of dust that
adds to the long range transported atmospheric dust loading. In
periods of “bruma seca” this local emissions are difficultly dis-
cerned from North Africa imports because of the high variability
of this contamination (see Figure 7). But in periods non-affected
by direct African plumes the local dust imprint can easily be seen
from the daily patterns in concentration variability. As shown
in Figure 12 hourly variations in size distributions presented a
common daily pattern in the coarser size bins (>2.5 μm) with
minimum coarse particle concentration values during night and
maximum values during the daytime period when road traffic
and human activities peak.

FIGURE 12 | Four hours average mass concentration size distributions

during 2 days without direct Saharan dust intrusions. (A) 2nd May,
2011; (B) 12th June, 2011.

Goudie and Middleton (2001) reviewed and summarized pub-
lished information concerning North African dust particle size
characteristic. The authors concluded that exists a lack of infor-
mation concerning dust size in dust producing areas. Most of the
information relates with dust storms that have already traveled
outwards the major source regions; in these conditions dust may
have modal and median sizes between 5 and 30 μm in diameter in
areas such as Nigeria. Conversely samples from Gana, Bermudas
and South Europe have shown sizes lower than 5 μm. Besides
modal information experiments revealed the presence of giant
particles of up to 350 μm at distances of more than a thousand
kilometers from dust sources.

Our results compare well with Goudie and Middleton (2001)
published data and with other size distribution measurements
performed during field experiments in Western Africa. Kandler
et al. (2011b) observed the presence of 4 size distribution modes
during the SAMUM-2 campaign, in January of 2008, at Praia
airport, using a Differential Mobility Particle Sizer (DMPS) for
the size range 26–800 nm and an Aerodynamic Particle Sizer
(APS) for the aerodynamic size range of 570 nm–10 μm. The
finest mode of the volume size distribution was found for Dp

of 200–300 nm and was attributed to sulfate. The second mode
with maxima at 2–3 μm particle diameters was interpreted to be
characteristic of marine aerosol and advected mineral dust. The
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third mode with maxima at 7–10 μm was attributed to sea salt
and dust in changing proportions. The 4th mode in sizes above
10 μm was attributed only to mineral dust. The authors consid-
ered that the giant aerosol particles had a predominantly local
origin.

Rajot et al. (2008) performed a 1 month campaign in January-
February 2006 at the Amma supersite in Niger. Mass Size distribu-
tion measurements with an AOS Grimm OPC1.108 revealed the
existence of two distinct supermicrometric modes with maxima
at 4–5 and 7.5–10 μm. During local dust events the 7.5–10 μm
mode was clearly dominant, whereas regional dust transported
events had a mixture of both modes. A closer examination of
the size distributions suggested that a coarser mode above 10 μm
might also be present, in a size range too large to be well char-
acterized with the AOS. Similarly to our measurements, a sub-
micrometer mode with maxima in the range 0.8–1 μm was also
observed in the Niger atmospheric aerosol.

Rodriguez et al. (2011) measured aerosol particle size distri-
bution in the low free troposphere at Izaña station, in Tenerife
Island, during dust episodes, with a combination of a SMPS
and APS. Two main modes were observed. The smaller, cen-
tered at 240 nm, was attributed to ammonium nitrate. The larger
mode had a maximum at 3 μm, being attributed to Saharan
advected dust. Sunnu et al. (2008) performed extensive parti-
cle size distribution measurements in Ghana during Harmattan
periods (November to March), between 1996 and 2005, with
an AOS instrument measuring in the size range of 0.5–25 μm.
Annual mass size distributions revealed two modes: a smaller
mode at Dp < 0.5 μm and a higher mode for coarser particles
with maxima in the range 3–9 μm.

The AERONET station in Sal Island, Cape Verde, (http://
aeronet.gsfc.nasa.gov) provides Aerosol Optical Depth (AOD)
information related with the aerosol column in the atmosphere.
The AOD values show that the intense aerosol layer over the
Cape Verde Islands in 2011 was not only observed during the
“bruma seca” winter period but also during summer months.
Aerosol transport modeling applied to Saharan dust transport
in 2011 (Gama et al., submitted) revealed that while, in winter,
the aerosol is transported to the islands at low altitudes, impact-
ing directly the surface, during summer, transport occurs only at
higher altitudes. A similar behavior was observed in Cape Verde
in previous studies (Assmann et al., 2011; Kandler et al., 2011a,b).
During this summer period it is probable that the coarser parti-
cles, having a higher sedimentation velocity, will fall from higher
atmospheric layers to the surface, influencing the aerosol distri-
bution with peaks at sizes larger than those resulting from direct
transport. Figure 13 was created with aerosol size distribution
data retrieved from the AERONET web site and shows monthly
averaged distributions for most of the 2011 months (for August-
October no monthly data is available). The retrieved AERONET
size distribution data confirms the existence of two volume size
modes, a smaller one in the submicrometer region with maxi-
mum values at 0.2–0.3 μm and a predominant coarse mode with
maximum values in the 3–5 μm size range. The maxima in the
fine aerosol mode are at lower sizes than GRIMM results which
may be explained by the AOS lack of sensitivity in the lower

FIGURE 13 | Monthly averaged, column integrated, volumetric size

distributions retrieved from AOD measurements in AERONET station

at Sal Island, Cape Verde. No data is available for August-October.

submicrometer size region. In the coarse size region the max-
ima values of AERONET measurements compare very favorably
with GRIMM measurements, although no presence is obvious
for multiple coarse aerosol modes in AERONET data. This may
result from the height integrated characteristics of AERONET size
modes that smooth any variability that may happen for shorter
residence times of boundary layer coarse particle populations.
Differently from GRIMM measurements, the aerosol loading in
AERONET retrieval does not show a peak maxima during the
“bruma seca” season, as result of the opposite patterns of dust
transport at low and high altitudes over the Cape Verde region in
the different seasons of the year (see Gama et al., submitted for a
more detailed discussion of transport patterns).

CONCLUSIONS
Aerosol concentrations were measured almost continuously dur-
ing the entire year of 2011 with a GRIMM Optical Aerosol
Spectrometer that provides number concentrations in 31 size bins
between 0.25 and 32 μm. The GRIMM AOS was recalibrated
from co-collected gravimetric PM10 aerosol measurements, tak-
ing into account the real dust aerosol RI, thus permitting a much
better comparison with gravimetric aerosol concentration data.

Mass size distributions and PM1, PM2.5, and PM10 were cal-
culated from number concentration measurements, with basis
on dust specific density. PM concentration values peaked during
winter months and were much lower during the rest of the year.
Annual average mass concentrations for PM1, PM2.5, and PM10

were 5, 19, and 48 μg.m−3, respectively. During some dust events,
5 min average PM10 concentrations increased to values higher
than 1000 μg.m−3, while 24 h run average values reached maxima
of 460 μg.m−3. Daily concentration levels were above the WHO
recommended guidelines during 20–30% of the days, in 2011.
Also the PM2.5 and PM10 annual averages were well above the
WHO recommended limits. As pointed by De Longueville et al.
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(2010) West African populations are subject to elevated amounts
of aerosol particles resulting mostly from soil dust production and
transport, with possible important impacts on their health. Cape
Verde is one of those cases.

Mass concentration size distributions revealed the presence of
two main modes under the 10 μm size range: a smaller mode
with a maximum at 0.7–0.8 μm and a larger broad coarse mode
with a maximum at 3–4 μm. While the fine mode is possibly the
result of gas to particle conversion processes, the coarser particles,
above 1 μm, have a clear origin in dust or/and sea salt forma-
tion and transport. A closer inspection for particles above 1 μm
reveals the existence of multimodal size distributions. The main
mode, with maximum at 4 μm is more evident during strong
dust events. A second mode at 5–6 μm becomes predominant
at lower intermediate aerosol loadings. There is also a constant
presence of a mode with maximum at 10–12 μm. These mul-
tiple aerosol modes in coarse particles may reflect the multiple
sources and formation/transport processes contributing to the
coarse aerosol loading in the Praia atmosphere at ground level.
The coarse aerosol at this site is the result of dust transport from
Africa at low altitude, from local emission of dust by the action
of wind on the island bare soil, from human activities (road traf-
fic, building construction, etc.) and from the constant presence
of sea salt spray from the surrounding ocean. Each one of those
sources may imprint the size distribution with slightly different
mode maxima.

Comparison of Cape Verde measurements with previously
reported concentration data from Western Africa reveals that
although high the PM levels at Cape Verde are significantly lower
than in Western Africa continental regions, principally in relation
to giant particle loadings. Measured size distributions compare
reasonably well with AERONET size information taken from AOT
measurements in the Cape Verde’s Sal Island and with other
size distribution measurements performed under Saharan dust
intrusions.
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