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Ultraviolet-B (UV-B; 280-315 nm)-absorbing mycosporine-like amino acids (MAAs) were
extracted and purified from a marine red alga Bryocladia sp. by using high performance
liquid chromatography. We have detected four MAAs having retention times 3.23, 2.94,
3.56, and 2.67 min with absorbance maxima (Amax) at 323, 328, 335, and 340nm,
respectively. The effect of UV-B on the induction of these MAAs was studied. In
comparison to control, there was 3-22% induction of MAAs after 12 and 24 h of UV-B
exposure. Apart from MAAs, other pigments such as chl a, carotenoids and total proteins
were inversely affected by UV-B irradiation. In addition, peroxide scavenging potential of
these MAAs were also investigated. With 2 mM hydrogen peroxide (H,O5) concentration,
only <b% of MAAs were found to be affected. However, with the increased H,O»,
40-60% decline in the MAAs concentration with a corresponding peak shifting toward the
blue wavelength was recorded. In addition, most of the MAAs were found to be reacting
slowly with increasing HoO2 (upto 10 mM) concentration after an incubation period of 5
and 30min, which indicates the remarkable scavenging potential and stability of MAAs
against oxidative stress. Thus, the isolated MAAs from marine red alga Bryocladia sp. may

act as an efficient peroxide scavenger.
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INTRODUCTION
Earth’s atmosphere is surrounded by ozone layer in the strato-
sphere, which absorbs harmful ultraviolet radiation to protect
the living beings (Lee and Shiu, 2009). Anthropogenically and
naturally released atmospheric pollutant such as chlorofluoro-
carbons (CFCs), chlorocarbons (CCs), organobromides (OBs),
and nitrogen containing reactive species (NO, ONOO, N,0O) are
potentially responsible for continuous declining of ozone layer
since 1970 (Crutzen, 1992; Russell et al., 1996; Ravishankara et al.,
2009). The UV-B radiation (280-315nm) on the Earth’s surface
has increased due to depletion of the stratospheric ozone layer
(Hoffman and Deshler, 1991; Madronich et al., 1998; Sahoo et al.,
2005). Ultraviolet radiation is highly energetic short wavelength
radiation that can penetrate up to 70 meter in sea water column
(Smith et al., 1992). Ambient UV-B radiation is more harmful at
low altitude sea level due to high solar angle and reduction in the
thickness of ozone layer which penetrates deeper water column
of sea (Lee and Shiu, 2009). These assumptions suggest that trop-
ical regions of the world face higher impact of UV-B radiation
as compared to the polar and temperate region (Hider, 1993).
UV-B radiation has been reported to have the negative impact
on the life forms of terrestrial (Ballaré et al., 2011) as well as
aquatic ecosystems including photosynthetic cyanobacteria, algae
and phytoplankton (Hader et al., 2011).

UV-B radiation may severely affect the physiological and bio-
chemical processes such as specific growth rate, photosynthesis,

CO, uptake, inorganic, and organic nutrient uptake, DNA dam-
age and destruction of proteins of several organisms thereby
reducing the productivity of ecosystems (Rastogi et al., 2011;
Pessoa, 2012; Richa et al., 2013). In addition, extensive exposure
may have drastic effect on the photosynthetic electron transport
system, resulting in excessive ROS production leading to oxida-
tive stress and consistent damage of cells (Langebartels et al.,
2000). UV-B-induced oxidative stress has been observed in micro
as well as macroalgae (He and Hider, 2002; Rijstenbil, 2002;
Shiu and Lee, 2005). However, certain organisms have devel-
oped defense mechanisms such as induction of photoprotective
compounds, scavenging of free radicals, photorepair, and pro-
grammed cell death that counteract the damaging effects of UV
radiation (Janknegt et al., 2008; Lee and Shiu, 2009; Rastogi
and Incharoensakdi, 2013). Interestingly, most of the algae have
evolved to synthesize mycosporine-like amino acids (MAAs) that
efficiently absorb UV-B radiation and scavenges the reactive oxy-
gen species (ROS) to protect the cells (Riegger and Robinson,
1997; Dunlap and Shick, 1998; Conde et al., 2000).

MAAs are colorless, water soluble, and small (<400 Da)
nitrogenous substances structurally characterized by an aminocy-
clohexenone or aminocyclohexenimine ring chromophore con-
jugated with the nitrogen substituent of an amino acid or
imino alcohol group, having absorption maxima between 310
and 362nm (Nakamura et al, 1982; Sinha et al., 2007).
MAAs have very high molar extinction coefficient (e = 28,
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100-50,000 M~'cm~!) with photosensitized chromophore that
indicates additional photo stability in both terrestrial as well as
aquatic habitats (Shick and Dunlap, 2002).

UV-B radiation has been shown to have remarkable inhibitory
effects on photosynthetic electron transport and photochemical
reaction thereby (Foyer et al., 1994; Shimizu et al., 2010) induc-
ing the ROS formation (Langebartels et al., 2000). Enhanced
ROS production causes rapid disruption of macromolecules
(Rijstenbil, 2002). The cyanobacteria have developed enzymatic
as well as non-enzymatic defense mechanisms in order to avoid
excessive ROS production (Wada et al., 2013). Hydrogen peroxide
is most efficient ROS inevitably produced as by-products in pho-
tochemical reactions. The detoxification of hydrogen peroxide has
been attributed by catalase, peroxidase and ascorbic peroxidase
(Karyotou and Donaldson, 2005). In the present investigation an
attempt has been made to elucidate the stability and scavenging
potential of MAAs against peroxide.

MATERIALS AND METHODS

GEOGRAPHICAL REGION AND COLLECTION OF ALGAL MATERIAL

The test organism Bryocladia sp. (Sahoo et al., 2001) belong-
ing to the family rhodophyceae was collected from the rock
surface near Bheemli beach (17°46'49.13”N, 83°23'10.98”E),
Vishakhapatnam, Andhra Pradesh, India (Figure 1A). The mor-
phology of alga was observed by light microscopy (Dewinter Light
Microscope, New Delhi, India). The alga was growing in close
association with the green alga Ulva sp. (Figure 1B). Bryocladia
sp. is dark red-brown in color, prostrate, polysiphonous

branchlets spirally arranged with 2-5cm long plant height
(Figures 1C,D).

SOURCE AND MODE OF UV-B IRRADIATION

Algal sample was thoroughly washed with Mili Q water, trans-
ferred into sterile transparent Petri dishes (75 x 75 mm) filled
with artificial sea water and placed on a rotary shaker for uni-
form exposure of | Wm~2 UV-B radiation reaching to the culture
(Philips Ultraviolet-B TL 40 W:12, Holland). Temperature was
maintained at 20 & 5°C to avoid heat shock effects. A 295 nm cut-
off filter foil (Ultraphan, UV Opak Digefra, Munich, Germany)
was used to get the required regime of UV-B radiation. Aliquots
(1.0 g) were withdrawn after 12, 24, and 48 h of UV-B irradia-
tion. All the experiments were done twice (in triplicates) with
consistently the same results.

EXTRACTION AND PURIFICATION OF MYCOSPORINE-LIKE AMINO
ACIDS (MAAs)

Extraction and purification of MAAs were done following the
method of Sinha et al. (1999). Briefly, the samples were homoge-
nized in 100% methanol (HPLC grade, Spectrochem, Mumbai)
with the help of Mortar and Pestle and incubated for 24h at
4°C. Thereafter, aliquots were centrifuged at 5000 g for 5min.
The supernatant was evaporated to dryness, redissolved in 1 ml
Mili Q water and centrifuged (10000g for 10 min) to remove
the pigment contamination. The supernatant was filtered through
0.2 wm (Axiva Biotech., New Delhi) size membrane filter. Further
purification and separation of MAAs was done by HPLC.
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FIGURE 1 | Map of sampling area (Bheemli beach, Vishakhapatnam, Andhra Pradesh, India) (A), Aerial view of red brown algal mat of Bryocladia sp.
on rock surface (arrow) (B), Morphology (C), and microscopic view of the collected alga (D).
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HIGH PERFORMANCE LIQUID CHROMATOGRAPHY AND
QUANTIFICATION OF MAAs

MAAs were analyzed with HPLC (Water 2998 with PDA detec-
tor, 515 PUMP, auto injector 717 plus, Milford, USA) equipped
with Empower-2 software. The system has an ODS-2 (RP18) col-
umn (Water, Spherisorb analytical column, 5im, 4.6 x 250 mm
diameter, Ireland) along with guard (4.6 x 10 mm). A 50 1] sam-
ple volume was used for injection and 0.2% acetic acid was used
as mobile phase. The wavelength of detection was 330 nm with a
flow rate of 1 ml min~!. The compounds showing variable peaks
were eluted and lyophilized. The quantification of MAAs was car-
ried out by using molar extinction coefficient of standard MAAs
(P-334).

ABSORPTION SPECTROSCOPY

The spectroscopic analysis of the water soluble aliquots was
performed by using a UV-Vis double beam spectrophotome-
ter (U-2910, 2J1-0012, Hitachi, Tokyo, Japan) in the range of
200-700nm. The raw spectra were transferred to computer
and peaks were analyzed by UV-solution software (Version-2.2,
Hitachi, Tokyo, Japan).

DETERMINATION OF PHOTOSYNTHETIC PIGMENTS

Extraction of Chl a from Bryocladia sp. was carried out by the
method as described by Tripathi (1983). Samples were sonicated
(130 W, 20 kHz; Sonic and Materials, USA) with sodium carbon-
ate in 80% acetone and kept for 15 min at 80°C in a water bath.
The supernatant obtained after centrifugation was stored and
pellet was repeatedly washed with acetone till the pellet became
colorless. The pool supernatants were mixed with equal volume of
water and petroleum ether followed by centrifugation at 5000 x g
for 15 min. The green top layer of supernatant was collected and
lyophilized to evaporate the petroleum ether. Dried pellet was
further dissolved in 80% acetone (3 ml) and spectra were taken
in a UV-Vis spectrophotometer. Quantification of chlorophyll a

and carotenoids were carried out by the formula as described by
Mackinney (1941) and Myers and Kratz (1955), respectively.

CELLULAR PROTEIN CONTENTS

Cellular protein was extracted by using the method of Wagner
et al. (2002). Quantification of protein was done by measuring
the absorbance of samples at both 280 and 260 nm and applying
a correction formula of Warburg and Christian (1942).

PEROXIDE STABILITY AND SCAVENGING POTENTIAL OF MAAs
Peroxide stability and scavenging potential of MAAs was analyzed
in the presence of hydrogen peroxide. For the analysis of stability
of MAAs, 30% H,0, (0-10 mM) was mixed with 0.074 mmol. g
dry wt™! of different MAAs and absorbance was taken at 323, 328,
335, and 340 nm by UV-Vis spectrophotometer after 5 and 30 min
of incubation at 20 + 5°C. The stability was analyzed by the
percentage inhibition. The quantification of scavenging poten-
tial of MAAs against peroxide was determined by the relationship
between absorbance of different MAAs and H,O, (240 nm). The
molar extinction coefficient of H,O; (43.6 M~! cm™!) was used
for the calculation of relative inhibition.

STATISTICAL ANALYSIS

All the experiments were conducted in triplicate. Results were
expressed as mean = SD (n =3). A One Way ANOVA was
applied for the statistical (P < 0.05) analysis. Sigma plot 11
and SPSS-16 software were used for the purpose of statistical
analyses.

RESULTS

HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY ANALYSIS OF MAAs
Mycosporine-like amino acids were extracted in Mili Q water and
purified by high performance liquid chromatography (HPLC).
Four peaks at retention times 2.65, 2.94, 3.23, and 3.56 min
(Figure 2A) having absorption maxima at 340, 328, 323, and
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FIGURE 2 | HPLC chromatogram of MAAs extracted from Bryocladia sp., showing retention times 2.65, 2.94, 3.56, and 3.23 min (A) with
corresponding absorption maxima 340, 328, 335, and 323 nm, respectively (B).
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335 nm, respectively, were eluted (Figure 2B). Eluted MAAs were
collected and lyophilized for oxidative analyses.

INDUCTION OF MAAs

MAAs were induced by UV-B irradiation (~1Wm™2)
(Figure 3A). Absorption spectrum obtained from HPLC
showed significant induction of MAAs at wavelength 323 nm
(RT 3.23 min) after 24 h of exposure in comparison to control.
However, MAAs at 328 (RT 2.94min), 335 (RT 3.56 min),
and 340nm (RT 2.65min) were significantly induced up to
12h of irradiation (Figure3B). There was 22% induction in
MAAs concentration as compared to control at 3.23 min with
significant p-value (<0.05) after 24 h of exposure, whereas MAAs
at 2.65 (5.3%), 2.94 (3.7%), and 3.56 (11.6%) min retention
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FIGURE 3 | Absorption spectra of control and UV-B irradiated
Bryocladia sp. extracts (A) and showing relative induction of MAAs at
retention times 2.65 (Amax 340nm), 2.94 (Amax 328 nm), 3.56 (Amax
335nm), and 3.23 min (Amax 323 nm) after 12, 24, and 48 h of UV-B
irradiation (B). Actual percentage induction/reduction of MAAs (C).

times were comparatively less induced after 12h of exposure.
Further exposure resulted in the decline of MAAs concentration
(Figure 3C). There was 42% reduction in MAAs concentration
at 3.23 min after 48 h of exposure. Similarly, peak maxima with
retention time of 2.65, 2.94, and 3.56 min showed significant
(25-33%) decline (p < 0.05) after 48 h of exposure.

IMPACT OF UV-B ON PIGMENTS AND CELLULAR PROTEINS

The amount of chlorophyll (chl a) had declined up to 34, 66,
and 98% after 12, 24, and 48h of UV-B radiation, respec-
tively (Figure 4A). However, the concentration of carotenoids was
declined up to 33, 50, and 72% after 12, 24, and 48h expo-
sure of UV-B radiation, respectively (Figure4B). The level of
protein was significantly declined 23% after 12h of exposure;
however, it reached up to 40% after 48h of UV-B irradiation
(Figure 4C).
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FIGURE 4 | The concentration of chl a (A), carotenoids (B), and total
protein (C) after increasing time period of UV-B irradiation.
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STABILITY AND SCAVENGING POTENTIAL OF MAAs

The overall stability of MAAs and their antioxidative behav-
ior were analyzed by the treatment with different concentration
(0-10mM) of H,O, (Figure5). MAAs were significantly sta-
ble at 2 mM of H,O, concentration. The increase (4—10 mM) in
the concentration of H,O; resulted in continuous decline in the
absorbance maxima with a slight peak shift toward the shorter
wavelength indicating the decline in absorbance of MAAs along
with increasing absorbance of H,O; at 240 nm.

Absorbance
~N

300 350
Wavelength (nm)

200 250

FIGURE 5 | Absorption spectrum of MAAs (0.075 mmol.g dry wt~) in
0-10 mM of H,0,(30%) showing peak shifting toward shorter
wavelengths with increasing peroxide concentration.

STABILITY OF MAAs IN PEROXIDE TOXICITY

The stability of MAAs was analyzed in the presence of 0—10 mM
H;,0; concentration with an incubation period of 5 and 30 min.
Spectrophotometric analysis showed that MAAs were stable
(>95%) up to 2mM concentration of HyO,. Thereafter, there
was a gradual decline in the MAAs concentration with increas-
ing (4-10 mM) concentration of H,O,. Figure 6A indicates only
4 and 5% decline in MAAs concentration (323 nm) with 2 mM
H,0; after 5 and 30 min of incubation, respectively. However,
further increase in H,O, concentration (10 mM) had resulted 45
and 50% decline in MAAs concentration after 5 and 30 min of
incubation, respectively. Similarily, the concentration of MAAs
at wavelengths of 328 and 335nm had declined up to 35-44%
and 49-58% after 5 and 30 min, respectively, after incubation at
10 mM H,0, concentration (Figures 6B,C). Interestingly, MAAs
at 340 nm had invariably reduced (48-68%) after 5 and 30 min
of incubation at 10 mM H,0,, suggesting that this MAA was less
stable after 30 min of incubation in H,O, (Figure 6D).

PEROXIDE SCAVENGING POTENTIAL OF MAAs

All the purified MAAs effectively scavenges H,O, upto a concen-
tration of <2 mM. There was negligible decline in MAAs (323 and
328 nm) concentration as compared to control (0.075 mmol.g dry
wt™1) up to 2mM H,0, (Figures 7A,B). However, other MAAs
(335 and 340 nm) were declined up to 0.008 and 0.012 mmol.g
dry wt™! after 2mM H,O, treatment (Figures 7C,D). Further
increase in H,O, concentration (10 mM), the MAAs at wave-
lengths 323, 328, 335, and 340 nm had declined up to 0.026, 0.036,
0.029, and 0.021 mmol.g dry wt ™!, respectively.
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FIGURE 6 | Percentage inhibition of MAAs (0.075 mmol.g dry wt~") against H,0, (0-10 mM) at 323 nm (A), 328 nm (B), 335 nm (C), and 340 nm (D)
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FIGURE 7 | Diagonal relationship of scavenging potential of MAAs in different concentrations of H0> (0-10 mM). Inactivation of Hy O, by MAAs at
323nm (A), 328 nm (B), 335 nm (C), and 340 nm (D).

DISCUSSION

It is well established that highly energetic UV-B radiation is dele-
terious to all living organisms on the Earth’s surface (Sinha et al.,
2000). It has been reported that UV-B radiation promotes oxida-
tive damage due to the overproduction of ROS inside the cells
of several algae, cyanobacteria and plants (Rijstenbil, 2002; Shiu
and Lee, 2005). HyO; is the principle component of ROS that is
initiated by UV-B irradiation in red algae (Lee and Shiu, 2009).

To cope up with such harsh oxidative conditions organisms
have developed stress inhibition compounds that minimize the
deterioration of biosynthetic, metabolic and native protein com-
ponents with stable amino acids orientation. The database of
one such UV-absorbing compounds MAAs has been reported
in fungi, cyanobacteria, macroalgae, phytoplankton and animals
(Sinha et al., 2007). MAAs are protective agent in living organ-
isms that prevent 3 out of 10 photons of UV-B radiation thereby
providing protection from irradiation to cyanobacteria (Garcia-
Pichel et al., 1993). The algae of median tidal area are more
efficient in producing UV-B screening compounds to cope up
with its deleterious effect (van de Poll et al., 2003). Our results
indicate that MAAs are inducible with UV-B radiation and can
maintain good stability in peroxide stress conditions. Induction
of MAA having RT 3.23 min (323 nm) after UV-B irradiation is
unique in red algae because this MAA is more static in the range
of 330340 nm. Rastogi and Incharoensakdi (2013) have recently
reported the presence of MAAs at 322 and 324 nm wavelengths in
fresh water alga Tetraspora sp. CU2551 species that have potent
photoprotective and antioxidative properties.

After UV-B irradiation, the chl a and carotenoids have been
reported to be bleached due to the photooxidation of endoge-
nous chromophores (Marwood and Greenberg, 1996; Sinha et al.,
2000). Sinha et al. (2000) reported similar result of continuous
decline in absorption peak at 665 and 475nm in the red alga

Gracilaria cornea after UV-B radiation. The stability of growth
and photosynthetic pigments in algae depends on the adapta-
tion of species in harsh environmental conditions (Karsten et al.,
2007). Production of antioxidative enzymes and induction of
MAAs may help the organisms to reduce the impact of UV-B irra-
diation (Sinha et al., 2000; Rastogi et al., 2011). As stated earlier,
UV-B irradiation induces the production of more ROS including
peroxide and to cope up with this harsh condition of oxidative
damage organisms have developed the ability to synthesize photo-
protective MAAs. An oxo-carbonyl derivative linked MAAs have
oxidative inhibition properties while imino-MAAs (P-334 and
shinorine) present in red alga Gracilaria cornea are oxidatively
inert (Sinha et al., 2000). We have first analyzed the in vitro effects
of hydrogen peroxide on algal MAAs with a view to illustrate their
level of stability and scavenging properties against ROS. It has
been reported that mycosporine-glycine have oxidative quench-
ing ability to protect the biological system against light oriented
damage (Suh et al., 2003).
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