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Climate models predict more frequent and more severe extreme events (e.g., heat waves,
extended drought periods, flooding) in many regions for the next decades. The impact of
adverse environmental conditions on crop plants is ecologically and economically relevant.
This review is focused on drought and heat effects on physiological status and productivity
of agronomically important plants. Stomatal opening represents an important regulatory
mechanism during drought and heat stress since it influences simultaneously water
loss via transpiration and CO2 diffusion into the leaf apoplast which further is utilized
in photosynthesis. Along with the reversible short-term control of stomatal opening,
stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the
stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis
will be negatively affected. Rubisco activase—a key enzyme in keeping the Calvin cycle
functional—is heat-sensitive and may become a limiting factor at elevated temperature.
The accumulated reactive oxygen species (ROS) during stress represent an additional
challenge under unfavorable conditions. Drought and heat cause accumulation of free
amino acids which are partially converted into compatible solutes such as proline. This is
accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis.
Protective proteins (e.g., dehydrins, chaperones, antioxidant enzymes or the key enzyme
for proline biosynthesis) play an important role in leaves and may be present at higher
levels under water deprivation or high temperatures. On the whole plant level, effects on
long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g.,
anticipated, accelerated or delayed senescence) are important. The factors mentioned
above are relevant for the overall performance of crops under drought and heat and must
be considered for genotype selection and breeding programs.
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INTRODUCTION
Besides the general temperature increase global change mod-
els predict more frequent and more severe extreme events such
as drought periods, heat waves or flooding (Easterling et al.,
2000; Schar et al., 2004; Fuhrer et al., 2006; Wehner et al., 2011;
Mittal et al., 2014). These regional climatic extremes (Gilgen and
Buchmann, 2009) are ecologically and economically relevant for
agriculture and forestry (IPCC, 2012; Smith and Gregory, 2013;
Nair, 2014). The susceptibility to abiotic stresses may differ con-
siderably among species or varieties of a crop (Yordanov et al.,
2000; Simova-Stoilova et al., 2009; Vassileva et al., 2011; Chen
et al., 2012; Wishart et al., 2014). Therefore, the selection of suit-
able genotypes and breeding of less susceptible varieties could
reduce negative effects of extreme climate events on plant pro-
ductivity (Neumann, 2008; Mir et al., 2012; Jogaiah et al., 2013),
which is particularly important for the annual crops.

The apparent significance of stress period for the crop
productivity does not rule out the fact that subsequent recovery

stages are equally crucial for a proper evaluation of the overall
performance (Subramanian and Charest, 1998; Gallé and Feller,
2007; Gallé et al., 2007; Vassileva et al., 2011). The progression
and duration of stress, plant developmental stage and other biotic
and abiotic factors may influence the stress response. For exam-
ple certain species may be affected at early developmental stage,
but still be capable to recover and finally to survive. Others could
cope with suboptimal conditions comparatively well at the begin-
ning of the stress period remaining still quite productive. Later
on their surviving potential could be exhausted leaving the plants
irreversibly damaged. A comprehensive evaluation of plant stress
response includes the overall characterization of plant physiolog-
ical behavior and survival. Here we summarize some of the major
physiological parameters which characterize stress response reac-
tions and which could be implemented as tools for evaluation of
stress effects.

The impact of drought and heat on physiological status and
productivity of agronomically important plants will become even
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more relevant during the next decades since these two major
stress factors are associated with the predicted extreme events in
the course of the global climate change. Assimilatory processes
in leaves, long-distance translocation of solutes via xylem and
phloem, changes in protein patterns and free amino acids, as
well as the physiological phenomena associated with induced leaf
senescence are addressed.

REGULATION OF STOMATAL OPENING BY DROUGHT AND
HEAT
Together with internal CO2 concentration, light and hormone
levels, leaf temperature is one of the important factors for the reg-
ulation of stomatal opening. The three parameters: leaf tempera-
ture, water status and stomatal conductance represent a so-called
� magic triangle� (Valladares and Pearcy, 1997; Reynolds-
Henne et al., 2010). Leaf temperature may increase throughout
the day reaching values above 40◦C during the late afternoon in
a sunny day in summer (Figure 1). Temperature sensors which
monitor leaf temperature are integrated in modern equipment
for measuring CO2-assimilation, fluorescence or stomatal con-
ductance. However, the measuring equipment itself influences
leaf temperature by affecting external conditions (e.g., air convec-
tion, local air temperature, local humidity or photon flux density)
therefore the detected values can differ considerably from the
real temperature on the surface of undisturbed leaves. Ergo such
leaf temperature data must be interpreted with certain precau-
tion. Additional measurements from undisturbed leaves taken
with an infrared thermometer which does not enter in contact
and does not shadow the leaf are therefore recommended in this
context.

Temperature of fully sun-exposed leaves is often 5–10◦C
higher than the one of shady leaves from the same plant. The
interactions between leaf temperature and stomatal conductance
are illustrated for a series of plants in Figure 2.

CO2 is a major player in the regulation of stomatal opening
(Medlyn et al., 2001). Opened stomata facilitate CO2 diffusion
from the ambient air into the leaf, but at the same time this
is accompanied with additional water loss via enhanced tran-
spiration. Therefore, the continuous increase in CO2 partial
pressure in the context of Global Change should be regarded as
an important environmental factor capable to influence stom-
atal regulation. Although the relevance of stomatal opening for
CO2 assimilation is obvious, it must be considered that non-
stomatal limitations such as changes in mesophyll conductance
for CO2 or in metabolic processes can also occur under drought
and/or elevated temperature (Rosati et al., 2006; Signarbieux
and Feller, 2011). Oscillations of leaf temperature after transi-
tion from darkness to high light intensity were reported recently
(Feller, 2006; Reynolds-Henne et al., 2010) and are illustrated
in Figure 3. After the transfer from shadow to strong light leaf
temperature rises immediately, while stomates react within sev-
eral minutes which explains the delay in cooling via transpi-
ration. Stomatal opening and transpiration result in decreased
leaf temperature which may lead again to a partial closure of
stomates.

The water status of crop plants strongly depends on rainfall
patterns and soil properties. Furthermore, agronomic practices

FIGURE 1 | Leaf and air temperature during a sunny day (August 13) of

the exceptionally hot and dry summer 2003. Air temperature was
measured with an electronic thermometer at the level of the top leaves.
Leaf temperatures for various plant species were monitored in a field near
Bern (Switzerland) with an infrared thermometer avoiding leaf contact and
shadowing. Means and standard deviations (in one direction only for clarity)
of 6 replicates are shown for leaf temperatures.

influence soil water availability which affects plant water sta-
tus (Lenssen et al., 2007; Sturny et al., 2007; Gan et al., 2010).
Abscisic acid (ABA) produced in roots exposed to soil with a
low water potential, reaches the leaves via transpiration stream
and causes stomatal closure. It also has been observed that ABA
shifts the heat-induced stomatal opening toward a higher tem-
perature (Feller, 2006; Reynolds-Henne et al., 2010; Figure 4).
Thus, heat and drought act in an opposite manner on stom-
ates. Sustainable agronomic techniques focused on good soil
structure may contribute to a better productivity under abiotic
stress. This is documented by a comparison of till and no-
till plots at the same location during a dry and hot summer
(Figure 5).

Another physiological phenomenon which may affect stom-
atal conductance is the deposition of waxy substances on the
leaf surface. The cuticle is situated at the interface between
the plant and its atmospheric environment. It is continuously
exposed to natural and anthropogenic influences (Percy and
Baker, 1987). Air pollutants and other environmental stresses may
induce deposition of cuticular waxes which results in morpho-
logical changes to epicuticular wax layers. This could provoke
reduced transpiration (Sanchez et al., 2001; Gallé and Feller,
2007; Seo et al., 2011; Yang et al., 2011; Zhu et al., 2014).
Such effects become relevant immediately, but are not (or are
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FIGURE 2 | Leaf temperature (measured at the undisturbed leaf with an

infrared thermometer) and stomatal conductance in plant species

grown at the same farm. Total stomatal conductance of lower and upper
leaf surfaces are shown as means + SD of 5 measurements during the time
intervals indicated. The photon flux densities were 1300–1900 μmol m−2 s−1

for sun-exposed leaves and around 100 μmol m−2 s−1 for shadowed leaves.

Values for leaves of Trifolium pratense could not be determined (n. d.) in the
shadow. Sun-exposed leaves of different species with the same letter
(a,b,c,d) and shadowed leaves with the same letter (A,B) in the same diagram
are not significantly different at P = 0.05. Significant differences between
sun-exposed and shadowed leaves of the same species at the ∗P = 0.05,
∗∗P = 0.01, and ∗∗∗P = 0.001 are indicated above the column pair.

only partially) reversible, since the deposits remain after drought
period.

On the cellular level, aquaporins—channels involved in water
and CO2 transport across membranes—are also integrated in

drought and heat stress response by influencing the water flux
from the xylem to the leaf surface and may indirectly influence
stomatal opening (Prado and Maurel, 2013). Aquaporins serve
in a double function facilitating water and CO2 fluxes across
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FIGURE 3 | Changes in sunflower leaf temperature during dark/light

cycles. A dark-adapted sunflower plant was illuminated with a strong halogen
light source for 30 min and then kept in darkness for 30 min before starting
two other cycles with 30 min light (30L) followed by 30 min dark (30D). Leaf

temperature was visualized in regular intervals with an infrared camera. The
numbers below each picture indicate the pretreatment with the number of
min in light (L) and dark (D). The white pixels at 30L/30D/5L were caused by a
leaf temperature above 30◦C.

membranes and must be considered as important players in
the response of plants to abiotic stresses (Uehlein et al., 2003;
Katsuhara and Hanba, 2008).

PHOTOSYNTHETIC CAPACITY DURING AND AFTER
EXTREME EVENTS
Some drought and heat effects on photosynthesis are reversible
and may even change repeatedly during 1 day, while other

processes lead to irreversible damages. It is important to consider
the reversibility of such effects on the organ and on the whole
plant level when evaluating overall impacts. A reversible decrease
of CO2 fixation was observed in tree leaves and in grassland
species (although less pronounced) at midday or in the afternoon
under moderate drought (Haldimann et al., 2008; Bollig and
Feller, 2014). An extended drought period may irreversibly dam-
age leaves causing an anticipated and often atypical senescence
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FIGURE 4 | Stomatal opening of bean leaf segments incubated at

elevated temperature in dark in the presence (+ABA) and absence

(−ABA) of 0.1 µM abscisic acid. The leaf segments were preincubated
with ABA for 30 min before starting the temperature treatments. The
pictures at the top were taken with a microsope camera from a
pre-incubated leaf segment without any further preparation to avoid
changes in stomatal opening. Some easily visible stomates are encircled in
each picture. The diagram at the bottom illustrates the opening of the
stomates in the presence of 0.1 μM abscisic acid at 47◦C and the closure
during a subsequent recovery phase at 23◦C.

characterized by an incomplete nitrogen remobilization as a con-
sequence of altered source/sink pattern (Feller and Fischer, 1994).
The early loss of leaves reduces plant assimilatory capacity and
prolonged drought period leads to plant death (Haldimann et al.,
2008).

Photosynthesis and plant productivity can be reversibly or
irreversibly affected by extreme environmental conditions such
as drought or heat (Haldimann and Feller, 2005; Sharkey, 2005;
Signarbieux and Feller, 2012). Stomatal opening as well as non-
stomatal limitations (e.g., effects on mesophyll conductance for
CO2 or on metabolic processes) may influence CO2 assimila-
tion in drought-stressed leaves (Signarbieux and Feller, 2011).
Since photon flux density is often very high during drought
periods or heat waves and the demand for ATP and reduction
equivalents for assimilatory processes is decreased, the channel-
ing of absorbed light energy becomes crucial to avoid detrimental
effects of reactive oxygen species (ROS) often accumulating under

abiotic stresses (Velikova and Loreto, 2005; Vickers et al., 2009).
Particularly important in this regard is the antioxidant capac-
ity of the plants comprising a system of enzymatic reactions
as well as biosynthesis and accumulation of non-enzymatic low
molecular metabolites, such as ascorbate, reduced glutathione, α-
tocopherol, carotenoids, flavonoids and proline (reviewed by Gill
and Tuteja, 2010).

ELECTRON TRANSPORT
Plant ecophysiology under adverse environmental conditions
such as reduced water availability or heat can be investigated by
non-destructive � in situ� analyses of photosystem II function-
ality based on chlorophyll fluorescence measurements (Maxwell
and Johnson, 2000). The ratio of variable fluorescence Fv to max-
imal fluorescence Fm in dark-adapted leaves is a measure of the
maximum efficiency of photosystem II and in healthy leaves it
is around 0.8 (Maxwell and Johnson, 2000). A decrease in this
value is an indicator for irreversible damages and may be used to
evaluate impacts of extreme events in field conditions. The differ-
ent leaves of one and the same plant may be unequally affected
by abiotic stress as demonstrated on Figure 6. Changes in non-
photochemical quenching (which increases during abiotic stress)
and in φPSII (PSII quantum yield which decreases during abiotic
stress) are at least initially reversible and serve as indicators for
the actual status of the photosynthetic apparatus. More sophisti-
cated analyses indicate that the thermostability of photosystem
II is improved under drought stress (Oukarroum et al., 2009)
and as well as after growth at moderately elevated temperature
(Haldimann and Feller, 2005). Some studies have indicated that
photosystem II and the thylakoid membrane can be considered as
comparatively thermotolerant components of the photosynthetic
apparatus (Sharkey, 2005).

RUBISCO ACTIVASE
Rubisco—the key enzyme for CO2 assimilation—is the most
abundant protein on earth and it is quite heat-tolerant (Crafts-
Brandner and Salvucci, 2000). Rubisco remains functional at
temperatures above 50◦C. However, high temperature causes a
more rapid inactivation which is reverted in an ATP-dependent
reaction (carbamylation) catalyzed by Rubisco activase (Crafts-
Brandner and Salvucci, 2004; Kim and Portis, 2006). Since
Rubisco activase is highly heat-sensitive, this enzyme becomes
a key player for the rate of photosynthesis at elevated temper-
ature (Feller et al., 1998; Salvucci et al., 2001; Yamori et al.,
2012). Depending on the plant species, Rubisco activase activity
is negatively affected by temperatures above 30◦C (Salvucci and
Crafts-Brandner, 2004). Rubisco activase is present under two
forms which may be encoded by only one gene (the two forms
originate by alternative splicing of the pre-mRNA) or by differ-
ent genes (Salvucci et al., 2003). The slightly larger form contains
two cysteine residues in the C-terminal extension allowing a redox
regulation via the thioredoxin system (Portis et al., 2008). The
heat sensitivity of photosynthesis was found to be due to ther-
mal denaturation of Rubisco activase and not to the oxidation
of the cysteine residues in the larger form (Salvucci et al., 2006).
The complex regulation of Rubisco activase (and as a consequence
of Rubisco) and CO2 fixation is not yet fully explored for all
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FIGURE 5 | Leaf temperature and stomatal conductance in sugar beet

leaves of till and no-till plots in the same field during sunny days of the

exceptionally hot and dry summer 2003. Temperature of the undisturbed
leaves were measured with an infrared thermometer in field plots near Bern

(Switzerland). Stomatal conductances of the upper and lower leaf surface are
shown separately. The columns represent means + SD of 5 replicates.
Significant differences between till and no-till at ∗P = 0.05 and ∗∗P = 0.01 are
indicated.

major crop plants and will remain a subject of research during the
next years.

Considerable differences in the heat tolerance of Rubisco acti-
vase in various plant species were reported (Salvucci and Crafts-
Brandner, 2004). Rubisco activase has been identified as a possible
target for novel breeding practices of crop plants which are still
productive during a heat phase (Kim and Portis, 2005; Kurek
et al., 2007; Kumar et al., 2009; Parry et al., 2011). Furthermore,
Rubisco may be regulated via inhibitor levels making the evalu-
ation of its functionality under stress even more complex (Parry
et al., 2008).

ACCUMULATION AND DETOXIFICATION OF REACTIVE OXYGEN
SPECIES
Plants which are exposed to stress cannot properly use ATP and
reduction equivalents for biosynthetic processes and accumu-
late ROS. ROS are very reactive compounds with an obvious
destructive potential, but they must be also regarded as signal-
ing molecules (Suzuki and Mittler, 2006; Miller et al., 2007).
ROS like superoxide anion radical, hydroxyl radical, and hydro-
gen peroxide are recognized to act as initiators and signals in
programmed cell death (Mittler et al., 1999; Apel and Hirt, 2004;
Locato et al., 2008; Van Breusegem et al., 2008). The promotion

of ROS production (Lee et al., 2012) and the loss of antioxidant
defenses (Munne-Bosch et al., 2001) may induce or accelerate
senescence in plants subjected to abiotic stress.

The accumulation and detoxification of ROS become more
important during drought (Miller et al., 2010) and during growth
stages characterized with elevated ambient temperature (Wahid
et al., 2007). A rapid removal of ROS is necessary to avoid
deleterious effects such as lipid peroxidation and their negative
influence over plant metabolism (Oberschall et al., 2000; Locato
et al., 2009). The production/detoxification of ROS is important
for several subcellular compartments and it is not restricted to
chloroplasts (Noctor et al., 2002; Pastore et al., 2007). Antioxidant
enzyme activities such as catalases, peroxidases and superox-
ide dismutases play important role in the detoxification of ROS
(Selote et al., 2004; Pastore et al., 2007; Bian and Jiang, 2009).
A study on cotton varieties differing in thermotolerance suggests
that there is a potential to incorporate the knowledge regarding
the role of antioxidant enzymes in stress response for breeding
of tolerant varieties (Snider et al., 2010) by the enhancement
of in vivo levels of antioxidant enzymes. The relevance of high
constitutive activities of ROS-detoxifying enzymes and of their
on-going increase during abiotic stress was reported by Turkan
et al. (2005) for bean plants.
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FIGURE 6 | Intactness of photosystem II in different leaves of

drought-stressed and control plants of Lolium perenne. The water
potential in nutrient medium was artificially decreased by addition of
polyethyleneglycol 6000. Leaves were numbered from 1 (oldest) to 9
(youngest). Fv/Fm in healthy and fully expanded leaves is close to 0.8. In
young and not yet expanded leaves, the mean value may be lower and
increase during further expansion, while a decrease in old leaves indicates
irreversible damages (e.g., senescence). Means + SD of 5 replicates are
shown. A value of 0.0 was entered for missing leaves (relevant only for the
youngest leaves).

In addition to enzymatic ROS detoxification, hydrophilic and
lipophilic antioxidant compounds contribute to the antioxidant
response and may serve as radical scavengers (Fryer, 1992; Loreto
et al., 2001; Larkindale and Huang, 2004; Pose et al., 2009).
Increased levels of such compounds assist for a rapid detoxifi-
cation of ROS and aid the protection of subcellular structures.
Enzymes involved in the biosynthesis of antioxidant compounds,
their expression before and during abiotic stress, their subcellular
compartmentalization, as well as the regulation of their activity
must be considered in the context of ROS detoxification.

PHOTORESPIRATION
As mentioned above, photosynthesis decreases under drought
or heat, but the leaves are often exposed to a high photon flux
density and a low CO2 partial pressure in the leaf apoplast.
Oxygenase activity (the starting point of the photorespiratory
metabolism) is an inherent property of Rubisco and depends
on CO2 and O2 partial pressure (Osmond and Grace, 1995).
Modifications in the large subunit of Rubisco can alter the relative
oxygenase/carboxylase activities (Whitney et al., 1999). Therefore,
the large subunit of Rubisco which is encoded in the chloro-
plast DNA is considered for breeding strategies in the future in
order to improve the assimilatory capacity of crops (Parry et al.,
2011). Stomatal closure during drought periods may decrease
the CO2 partial pressure in the leaves and alter the relative
oxygenase/carboxylase activities of Rubisco in favor of oxyge-
nase. Protective effects of photorespiration in drought-exposed
C3 plants under high irradiance were studied by various research
teams (Wingler et al., 1999; Haupt-Herting et al., 2001; Noctor
et al., 2002; Guan et al., 2004; Bai et al., 2008). Increased tran-
script levels of enzymes involved in the photorespiratory carbon
cycle were detected in tobacco under drought (Rivero et al., 2009).
Detailed studies with Phaseolus vulgaris brought to a conclusion
that photorespiration, although stimulated under water deficit,
does not play a major role in photoprotection of leaf cells under
drought (Brestic et al., 1995). In contrast to C3 plants, the rate
of photorespiration remains low in C4 plants exposed to drought
(Carmo-Silva et al., 2008). Photorespiration and monoterpene
production were considered as mechanisms involved in the ther-
motolerance of oak (Penuelas and Llusia, 2002). To summarize:
heat and drought increase the rate of photorespiration in leaves
of C3 plants, but the question to which extent photorespiration
plays a protective role in different crop species remains still open.

NITROGEN METABOLISM
Several stages of nitrogen metabolism could be affected by abi-
otic stress. One important step is the assimilation of nitrate into
organic compounds. The activity of the first enzyme involved
(nitrate reductase) is negatively influenced by abiotic stresses
(Ferrario-Mery et al., 1998; Xu and Zhou, 2006). The adverse
drought effect may be decreased by the improved availability
of inorganic nitrogen (Krcek et al., 2008; Zhang et al., 2012).
Nitrogen fixation in legume nodules is also severely reduced dur-
ing drought periods (Larrainzar et al., 2009; Aranjuelo et al.,
2011; Gil-Quintana et al., 2013). A negative effect of accumulated
free amino acids on nitrogen fixation (N-feedback inhibition)
and increased oxygen resistance in the nodules were among the
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proposed mechanisms for this below-ground drought impact
(Aranjuelo et al., 2011; Gil-Quintana et al., 2013).

The balance between free and protein-bound amino acids is
also affected by abiotic stresses. Under drought, the quantity of
proteins usually declines, while free amino acids tend to accu-
mulate being partially converted into compatible solutes (e.g.,
proline) as reported by several groups during the past decades
(Yoshiba et al., 1997; Su and Wu, 2004; Gruszka Vendruscolo
et al., 2007; Parida et al., 2008; Bowne et al., 2012). Proline
accumulation under abiotic stresses was reviewed in detail by
Verbruggen and Hermans (2008). The reversible accumulation of
proline in drought-stressed clover is illustrated in Figure 7. A 10-
to 100-fold increase in proline content can be observed during a
stress phase. During a subsequent recovery proline levels in leaves
decrease again and reach values similar to those of unstressed
control plants.

LEAF SURVIVAL AND ALTERED TIMING OF SENESCENCE
Senescence is a complex process (Hörtensteiner and Feller, 2002).
The number and the area of active leaves per plant is important
for the overall performance of a plant (Munne-Bosch and Alegre,
2004). The formation and expansion of young leaves and senes-
cence of old leaves are equally important in this context (Lefi et al.,
2004; Simova-Stoilova et al., 2010; Mahdid et al., 2011; Gilgen and
Feller, 2014). The catabolism of proteins in older leaves allows a
redistribution of nitrogen from senescing tissues to other plant
parts (Feller and Fischer, 1994), while the small percentage of
nitrogen present in chlorophyll remains in modified form in the
vacuoles of senescing or senesced cells (Hörtensteiner, 2006).
Chlorophyll in intact chloroplasts is present in photosystems I and
II together with chlorophyll-binding proteins in well-organized
structures. During senescence the photosystems are degraded.
Chlorophyll outside these structures would have detrimental
physiological consequences (Hörtensteiner, 2006). Chlorophyll

FIGURE 7 | Contents of free proline and relative water content (RWC)

in leaves of soil-grwon Trifolium repens during drought stress and

recovery.

catabolism prevents such negative effects on one hand and allows
the remobilization of chlorophyll-binding proteins on the other
(Hörtensteiner and Feller, 2002).

Besides phytohormones and ROS source/sink interactions and
C/N ratios must be also considered as endogenous senescence-
regulating factors (Feller and Fischer, 1994; Thoenen et al.,
2007; Luquet et al., 2008). Sink capacities may be strongly
reduced under drought and heat. This may lead to an abnormal
type of senescence accompanied by accumulation of free amino
acids which could be partially converted into osmoprotectants
in source leaves (Bowne et al., 2012). This process is initially
reversible, but when prolonged it may turn into senescence finally
leading to organ death.

An interesting observation concerning interactions between
leaf senescence and drought tolerance was reported by Rivero
et al. (2007). In their studies they compared wild-type plants
and transgenic plants with a delayed drought-induced senescence.
The latter were characterized with an excellent drought tolerance
and maintained a high physiological potential. Considerable dif-
ferences in the drought response in relation to senescence were
reported also for various genotypes of maize (Messmer et al.,
2011), millet (Dai et al., 2011), wheat (Hafsi et al., 2000; Verma
et al., 2004), and alfalfa (Erice et al., 2011). The relevance of the
recovery phase after an extended drought period was emphasized
by several groups (Merewitz et al., 2010; Vassileva et al., 2011; Yao
et al., 2012).

ACCUMULATION OF STRESS-RELATED PROTEINS
Drought and high temperatures, together with other environ-
mental factors like chemical pollutants, cold and high salt con-
centrations have similar effects on plants. They damage plant cell
and lead to osmotic and oxidative stress (Reddy et al., 2004; Foyer
and Noctor, 2009). Changes in expression and post-translational
modification of proteins are an important part of perception
and response to abiotic stress (Hashiguchi et al., 2010). Drought
and high temperature involve, as a common feature, increased
numbers of inactive proteins—denatured, aggregated or oxida-
tively damaged. Protein homeostasis under stress is maintained
via different biochemical mechanisms that regulates their biosyn-
thesis, folding, trafficking and degradation (Gottesman et al.,
1997; Chen et al., 2011). Plants respond to dehydration stress
by synthesis of protective proteins such as dehydrins and chap-
erones and by degradation of irreversibly damaged proteins by
proteases (reviewed in Vaseva et al., 2011). Protein breakdown
has been recognized as one of the important mechanisms for
the adaptation of plants to environmental conditions (Vierstra,
1996). Proteolysis is performed by an impressive number of
proteases—approximately 2% of the genes code for proteolytic
enzymes (Rawlings et al., 2004). Proteases vary significantly in
size and molecular structure and could be composed of sin-
gle molecules with small size of approximately 20 kDa as well
as they could be represented by big proteolytic complexes with
molecular mass around 6 MDa. Some proteases are able to act
as chaperones under specific conditions. They are called chaper-
onines and comprise complex elements of regulated proteolysis
participating in the fine-tuning of gene expression (Sakamoto,
2006).
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Chaperones have essential function in protein homeostasis
under normal condition and are highly responsive to various
stresses (Wang et al., 2004). Their main physiological role is to
maintain proteins in a functional conformation and to prevent
aggregation of non-native proteins. Chaperones also participate
in refolding of denatured proteins to their native conforma-
tion and in removal of non-functional and potentially harmful
polypeptides. Heat-shock proteins (HSPs) belong to the group of
stress-related proteins with chaperone function. Plant HSPs com-
prise five classes according to their approximate molecular weight:
Hsp100, Hsp90, Hsp70, Hsp60, and small heat-shock proteins
(sHsps) (Kotak et al., 2007). Transcription of heat-shock protein
genes is controlled by regulatory proteins called heat stress tran-
scription factors (Hsfs). Arabidopsis genome contains 21 genes
encoding Hsfs (Scharf et al., 2012).

ENZYMES INVOLVED IN THE DETOXIFICATION OF REACTIVE OXYGEN
SPECIES (ROS)
Plants have developed efficient non-enzymatic and enzymatic
detoxification mechanisms to scavenge ROS. Superoxide dismu-
tase (EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate per-
oxidase (APX; EC 1.11.1.11), and glutathione peroxidase (EC
1.11.1.7) are the major enzymes involved in oxidative stress
response in plants (Mittler, 2002; Apel and Hirt, 2004). The reg-
ulation of ROS levels and fine-tuning of ROS homeostasis is
performed at several biochemical steps. The three types of plant
superoxide dismutases have different functional metals and sub-
cellular localization (Bowler et al., 1994; Alscher et al., 2002).
Cu/Zn-superoxide dismutases localized mainly in the cytosol, but
have also been detected in peroxisomes and chloroplasts. Fe-
superoxide dismutase is a chloroplast enzyme, while Mn- super-
oxide dismutases has been found in the mitochondrial matrix and
peroxisomes (Bowler et al., 1994). Initially superoxide dismutase
converts superoxide to H2O2 which can be further metabolized by
catalase or ascorbate peroxidase to oxygen and water—processes
mainly localized in peroxisomes. Most probably the better toler-
ance toward oxidative stress, often assigned to higher superoxide
dismutase, ascorbate peroxidase or catalase levels, is a result of a
complex interplay between these antioxidant enzymes (Xu et al.,
2013).

D-1-PYRROLINE-5-CARBOXYLATE SYNTHETASE (P5CS)
Proline acts as an osmoprotectant in response to osmotic stress
and its accumulation has been recognized as a marker for tol-
erance toward drought and high salt concentrations (Hmida-
Sayari et al., 2005; Kishor et al., 2005; Deng et al., 2013). It
has been proved to be a very effective singlet oxygen quencher
(Alia et al., 2001). The first two steps of proline biosynthesis in
plants are catalyzed by the bifunctional enzyme D-1-pyrroline-5-
carboxylate synthetase (P5CS, EC not assigned) that encompasses
both γ-glutamyl kinase and glutamic-γ-semialdehyde dehydroge-
nase activities (Pérez-Arellano et al., 2010). P5CS plays a key role
in plant intracellular accumulation of proline and is subjected to
feedback inhibition by proline, controlling the level of the free
imino acid under both normal and stress conditions (Hong et al.,
2000). It has been confirmed that D-1-pyrroline-5-carboxylate
synthetase is encoded by two differentially regulated genes in

different plant species (Turchetto-Zolet et al., 2009). Usually one
of the P5CS isoforms is osmo-regulated and the other is associ-
ated with developmentally governed processes (Hur et al., 2004;
Székely et al., 2008; Pérez-Arellano et al., 2010).

DEHYDRINS
Dehydrins belong to the group of Late Embryogenesis-Abundant
(LEA) proteins which are expressed in late stages of seed matura-
tion and/or upon water stress conditions in plants (Rorat, 2006).
They constitute a highly divergent group of thermostable intrinsi-
cally disordered proteins that can be classified into different types
according to the presence of distinct, short sequence motifs. All
dehydrins have at least one conserved, lysine-rich 15-amino acid
domain, EKKGIMDKIKEKLPG, named the K-segment (Close,
1997). In addition dehydrin molecule could contain a track
of serine residues (the S-segment) and/or a consensus motif,
T/VDEYGNP (the Y-segment) which is usually located near the
N-terminus. The less conserved regions of dehydrins are char-
acterized by a high polar amino acid content and usually are
referred to as �-segments. The number and order of the Y-, S-,
and K-segments define the different dehydrin sub-classes: YnSKn,
YnKn, SKn, Kn, and KnS, which may possess a specific function
and tissue distribution (Close, 1997). As intrinsically disordered
proteins dehydrins are characterized by high flexibility, structural
adaptability, and extended conformational states (Tompa, 2009)
which most probably contributes to conferring plant desiccation
stress tolerance via various possible biochemical mechanisms—
sequestering ions, stabilizing membranes, or acting as chaperones
(Danyluk et al., 1998; Rorat, 2006; Tompa, 2009). Arabidopsis
dehydrins ERD10 and ERD14 fulfill protective functions acting
as potent chaperones of broad substrate specificity and they also
have membrane-binding capacity (Kovacs et al., 2008). It was also
reported that both ERD10 and ERD14 can be phosphorylated at
various sites, which promotes the binding of divalent metal ions,
and this might be related to their ion-sequestering activity (Rorat,
2006).

Drought tolerance is assessed as the ability of plants to
maintain a certain level of production under water shortage,
which is relevant for most economically important crops (Volaire
and Lelievre, 2001). Accumulation of dehdrins in leaves under
drought is a quite general phenomenon, but the dehydrin patterns
may differ considerably between species subjected to the same
drought treatment which makes them suitable as diagnostic tools
(Close, 1997; Vaseva et al., 2014). Immunodetection of strong
dehydrin accumulation in four plant species (Trifolium repens,
Helianthus uniflorus, Dactylis glomerata, and Lolium perenne)
subjected to uniform dehydration is represented on Figure 8.
Immunosignals are revealed with antibodies against both the K-
and the Y-dehydrin segments. The analyzed plants are important
forage crops, often used in pasture seed mixes. The consid-
erable differences among immunosignal spectra of the tested
species (Figure 8) indicate that these drought-stress markers are
highly specific for the different plants and a universal assessment
approach is not applicable for dehydrins.

A recent study on Trifolium repens dehydrins revealed com-
plex structure of dehydrin-coding sequences, which could be a
prerequisite for high variability among the transcripts originating
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FIGURE 8 | Dehydrin patterns in drought-stressed and control leaves of

Trifolium repens (T. r.), Helianthus uniflorus (H. u.), Dactylis glomerata

(D. g.), and Lolium perenne (L. p.). The various plant species were grown
in the same containers to ensure identical conditions. Controls (C) were
incubated on standard nutrient medium, while polyethyleneglycol 6000 was
added to this medium for incubations under artificial drought (D). Crude
extract was analyzed by SDS-PAGE electrophoresis followed by staining
with Coomassie Brilliant Blue (loading control). The supernatant of
heat-treated and then centrifuged crude extract was used for immunoblots
with specific antibodies against the well conserved dehydrin K- (Deh K) and
Y-segments (Deh Y).

from a single gene (Vaseva et al., 2014). For some dehydrins, nat-
ural antisense transcripts have been identified (Vaseva and Feller,
2013). It has been suggested that natural antisense RNAs hold
potential to regulate the expression of their sense partner(s) at
either transcriptional or post-transcriptional level (Sunkar et al.,
2007), which remains to be experimentally verified for dehydrins.

AQUAPORINS
Aquaporins represent a group of membrane proteins facilitating
the transport of water across a membrane (Lovisolo et al., 2007;
Prado and Maurel, 2013; Li et al., 2014). Although aquaporins

were initially identified as membrane intrinsic proteins facilitat-
ing water transport, it is well accepted now that they play also an
important role in CO2 transport across plant menbranes (Uehlein
et al., 2003; Katsuhara and Hanba, 2008; Secchi and Zwieniecki,
2013; Kaldenhoff et al., 2014). Both functions are highly rele-
vant under abiotic stresses, especially for the regulation of leaf
hydraulics under drought stress (Prado and Maurel, 2013). The
expression of aquaporins under various environmental condi-
tions is well regulated (Chaumont and Tyerman, 2014). Previous
studies have reported that environmental stresses, among which
these with dehydration element, regulate the expression of aqua-
porins (Maurel et al., 2002; Suga et al., 2002; Vera-Estrella et al.,
2004; Ayadi et al., 2011; Mirzaei et al., 2012).

Aquaporins are present in plants under various forms and they
may differ considerably in their properties (Lovisolo et al., 2007).
Aquaporins are not only important in various shoot parts, but
may also play a key role in regulating the hydraulic conductance
in roots (Perrone et al., 2012). However, these authors concluded
that a root-specific aquaporin is more important in the regulation
of water flow from the roots to the shoot in well-watered than in
drought-stressed plants.

LONG-DISTANCE TRANSPORT VIA XYLEM AND PHLOEM
Solute transport via the two long-distance transport systems
xylem and phloem are highly important for the supply of vari-
ous organs with nutrients and assimilates (Bahrun et al., 2002;
Sevanto, 2014). The transport network is strongly affected by
abiotic stresses. This provokes changes in the translocation of
nutrients and assimilates (including phytohormones) via the
xylem from the roots to the shoot under adverse conditions.
Redistribution processes via the phloem within the shoot or from
the shoot to the roots is also strongly affected by stress.

SOLUTE ALLOCATION VIA THE XYLEM
Root development and root metabolism are both influenced by
drought (Mori and Inagaki, 2012; Comas et al., 2013). The trans-
port in the xylem is driven by the water potential difference
between the soil and the atmosphere (transpiration) and strongly
depends on stomatal conductance (Miyashita et al., 2005; Bollig
and Feller, 2014). The relative transpiration rates of various shoot
organs determine the distribution of solutes present in the xylem
sap. Besides the quantity of xylem sap transported from the roots
to the shoot, the composition of the xylem sap may be affected
by drought as a consequence of altered root physiology (Bahrun
et al., 2002; Comas et al., 2013). For example abscisic acid which
is involved in decreasing stomatal conductance is synthesized in
roots and it is a well-known signaling molecule in the xylem
sap of drought-stressed plants (Ismail et al., 1994; Hansen and
Dorffling, 1999; Alvarez et al., 2008). Air embolism caused by
a fall in hydraulic conductivity in the xylem of vascular plants
may become an issue under severe drought (Kolb and Davis,
1994; Cochard, 2002; Kaufmann et al., 2009). A partial repair
of embolism during the recovery was reported for grapevine
(Lovisolo et al., 2008). Abscisic acid may accumulate in the roots
during the drought period, reach after rehydration the leaves via
the xylem, cause stomatal closure and improve as a consequence
the water potential in various shoot parts facilitating the repair
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of embolism (Lovisolo et al., 2008). More recently Secchi and
Zwieniecki (2014) reported a strong up-regulation of aquaporin
gene expression when xylem embolism was formed. Furthermore,
these authors concluded from experiments with transgenic poplar
plants that the expression of aquaporin genes is important for the
recovery from embolism.

REDISTRIBUTION PROCESSES VIA THE PHLOEM
The export of nutrients and assimilates from source leaves to sink
organs is important for the development of vegetative and repro-
ductive organs and for the overall performance of crop plants
(Van Bel, 2003). Possible mechanisms for drought effects on
phloem transport were reviewed recently by Sevanto (2014). The
accumulation of dehydrins in the phloem of Solanaceae plants
under drought stress were reported and discussed in the con-
text of protecting sieve tubes and companion cells under abiotic
stresses (Szabala et al., 2014). Besides the mass flow in the sieve
tubes, the composition of the phloem sap represents another key
issue. Strong influences of soil drought on the source/sink net-
work must be expected (Gilgen and Feller, 2013). The allocation
of solutes, traced by 134Cs label of control and drought-stressed

FIGURE 9 | Allocation of 134Cs from leaf 3 to other parts of control and

drought-stressed wheat. The plants were grown on standard nutrient
medium for 17 d before starting the experiment (day 0). The water potential
in the nutrient medium was decreased by addition of polyethylene glycol
6000 (PEG; 100 g PEG plus 1 liter standard nutrient medium at the
beginning). The label was introduced via a flap into the lamina of leaf 3 at
day 4 according to Schenk and Feller (1990) (collected at day 11) and at day
11 (collected at day 18). The transfer of the label to roots, two oldest (leaves
1/2) and younger leaves (leaf 4 and younger) was detected by gamma
spectrometry. Means + SD of 4 replicates are shown. Significant
differences between roots of drought-stressed and control plants of the
same age at ∗∗P = 0.01 are indicated. No significant differences were
detected in leaves.

plants from leaf 3 (third-oldest leaf) to roots, older leaves (leaves
1 and 2) and younger leaves of wheat during vegetative growth
is illustrated in Figure 9. Lower solute content, as evident from
the measured label signal, was transported under drought from
leaf 3 to the roots, while the supply of the other plant parts was
not significantly influenced by artificial drought (polyethylene
glycol 6000). Root development and productivity under drought
may differ between wheat genotypes indicating that there might
be some potential for novel breeding strategies in the future
(Mori and Inagaki, 2012). Soil may not suffer water deprivation
uniformly during a drought period. Such conditions were sim-
ulated in an experiment with a split root system of white clover
(Figure 10) where the allocation of 134Cs from a leaf to other
plant parts was monitored. The low water potential in the envi-
ronment of some roots caused a decreased solute supply via the
phloem presumably as a consequence of a reduced sink capacity
in these roots. This demonstrates that root growth and develop-
ment in rapidly drying soil regions are more severely affected.
This could result in highly asymmetrical root systems which on
the other hand may obstruct the recovery after re-watering. The
unequal root distribution in the soil would not allow an opti-
mal use of resources at the beginning of recovery phase. Later,
after re-watering new roots may be formed and this will allow the
exploration of previously inaccessible soil regions.

FIGURE 10 | Allocation of 134Cs from a leaf to other plant parts of

white clover in a split-root system with one part of the root system in

standard medium and the other part in medium containing

polyethylene glycol 6000 (PEG; 100 g PEG plus 1 liter standard nutrient

medium to lower the water potential). The plants were grown with both
parts of the split roots in standard nutrient medium for 52 day before
starting the experiment (day 0), then the nutrient medium was replaced by
new standard medium for one part of the root system and with standard
medium containing PEG for the other part. The label was introduced at day
4 (collected at day 11) and at day 11 (collected at day 18) via a petiole flap
into the largest fully expanded trifoliate. “Leaves” represent all leaves with
petioles except the labeled leaf. Means + SD of 6 replicates are shown.
Significant differences between roots in PEG and control roots at ∗P = 0.05
are indicated.
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CONCLUSIONS
Climate change is a challenge for plant breeders, physiologists,
agronomists and decision makers (Ingram et al., 2008). Various
species differ in their drought and heat tolerance. Furthermore,
a moderate temperature increase may be beneficial for certain
crops (e.g., maize) which are cold-sensitive (Klein et al., 2013).
The identification of key processes on the whole plant level is
important for genotype selection and organizing breeding pro-
grams in the future (Gornall et al., 2010). Organ development,
assimilatory processes, morphological adaptations, long-distance
transport, senescence and seed maturation may contribute to the
overall response. Our knowledge in this field is still quite lim-
ited. Not only species, but also genotypes of the same species
may differ considerably in their tolerance to abiotic stresses
such as drought or heat. The performance during stress and
subsequent recovery phases must be considered in this context
(Walter et al., 2011). A plant with a poor performance during
the stress phase may survive longer and recover more efficiently
than a plant which initially remains productive under unfavor-
able conditions. In monocultures breeding, genotype selection
and agronomic practices represent challenges to cope with cli-
matic changes including more frequent extreme events during the
next decades as predicted from regional climate models.

In mixed cultures (e.g., grasslands) the competition between
species must be taken additionally into account. Stress periods
may affect various plants differently and cause a shift in the
species spectrum (Jentsch et al., 2011) negatively influencing
the competition between the cultivated plants and certain weeds
(Gilgen et al., 2010). Accordingly such interactions not only result
in decrease yield but they require extra measures in weed control
management.
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