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NADPH is an essential reductive coenzyme in biosynthetic processes such as cell growth,
proliferation, and detoxification in eukaryotic cells. It is required by antioxidative systems
such as the ascorbate-glutathione cycle and is also necessary for the generation of
superoxide radicals by plant NADPH oxidases and for the generation of nitric oxide (NO) by
L-arginine-dependent nitric oxide synthase. This coenzyme is principally re-generated by a
group of NADP-dehydrogenases enzymes including glucose-6-phosphate dehydrogenase
(G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), both belonging to the
pentose phosphate pathway, the NADP-malic enzyme (NADP-ME), and NADP-isocitrate
dehydrogenase (NADP-ICDH). In this study, current perspectives on these enzymes in
higher plants under different stress situations are reviewed and it is also pointed out
that this group of NADPH-generating dehydrogenases is a key element in supporting the
mechanism of response to nitro-oxidative stress situations.

Keywords: G6PDH, 6PGDH, ICDH, NAPDH, NADP-ME, nitric oxide, nitrosative stress, oxidative stress

INTRODUCTION
The supply of reducing equivalents in the form of NADPH (the
reduced form of the nicotinamide adenine dinucleotide phos-
phate) is essential in all living organisms (Pandolfi et al., 1995;
Barroso et al., 1998; Ying, 2008). Thus, NADPH is required
for cell growth and proliferation which are necessary in several
metabolic pathways including fatty acid biosynthesis, biosynthesis
of sugars in the Calvin cycle, biosynthesis of carotenoids, con-
version of ribonucleotide (RNA) to deoxy-ribonucleotide (DNA)
and regulation of chloroplast protein import via the metabolic
redox status of the chloroplast, specifically in the Tic62, (a com-
ponent of the translocon at the inner envelope of chloroplasts,
Tic complex) (Stengel et al., 2008; Kovács-Bogdán et al., 2010).
NADPH is also required by NADPH-cytochrome P450 reduc-
tases (Ro et al., 2002), the generation of superoxide radicals by
the NADPH oxidase (NOX) (Sagi and Fluhr, 2006) and is a
necessary cofactor for the generation of nitric oxide (NO) by L-
arginine-dependent nitric oxide synthase (NOS) activity (Corpas
et al., 2009). NADPH is also essential by different antioxidative
systems including the activity of glutathione reductase (GR), a
key enzyme in the ascorbate-glutathione cycle to protect against
oxidative damage (Noctor et al., 2006; Gill et al., 2013), and by

Abbreviations: FNR, ferrodoxin-NADP reductase (FNR ferrodoxin-NADP reduc-
tase); G6PDH, glucose-6-phosphate dehydrogenase; GR, glutathione reductase;
NADKs, NAD kinases; NADP-ICDH, NADP-isocitrate dehydrogenase; NADP-ME,
NADP-malic enzyme; NO, nitric oxide; NOS, nitric oxide synthase; NOX, NADPH
oxidase; NTRs, NADPH-dependent thioredoxin reductases; ONOO−, peroxyni-
trite; 6PGDH, 6-phosphogluconate dehydrogenase; ROS, reactive oxygen species;
RNS, reactive nitrogen species; Tic, The Inner envelope of Chloroplasts.

NADPH-dependent thioredoxin reductases (NTRs) in the reg-
ulation of metabolic pathways through thiol group reduction
(Spinola et al., 2008; Cha et al., 2014). Curiously, in this last
case it has been reported that the chloroplastic G6PDH activ-
ity can undergo a redox regulation by thioredoxin (Née et al.,
2014) which suggests a complex interaction between the source
of NADPH and the NTR system. In consequence, the ultimate
antioxidant capacity of the cell must be determined by the avail-
ability of reducing equivalents. Figure 1 summarizes the main
pathways in plant cells where NADPH is required.

There are several enzymatic components involved in the
maintenance of the pool of NADP and NADPH. NAD kinases
(NADKs) catalyze the direct phosphorylation of NAD to NADP
and therefore contribute to the generation of the cellular NADP
pool (Pollak et al., 2007; Agledal et al., 2010). On the other
hand, ferrodoxin-NADP reductase (FNR) in photosynthetic cells
during the light phase is recognized as a principal source of
NADPH. However, in non-photosynthetic cells during the dark
phase of photosynthesis, the main enzymes capable of generat-
ing power reduction in the form of NADPH are the following:
glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) and
6-phosphogluconate dehydrogenase (6PGDH, EC 1.1.1.44) (both
belonging to the pentose phosphate pathway), NADP-isocitrate
dehydrogenase (NADP-ICDH, EC 1.1.1.42) and NADP-malic
enzyme (NADP-ME, EC 1.1.1.40), also known as NADP-malate
dehydrogenase. This mini-review will focus on these groups
of NADPH recycling dehydrogenases, principally in relation to
their role as second lines of defense against nitro-oxidative
stress.
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FIGURE 1 | NADP-dehydrogenases as enzymatic sources of NAPDH in

plant cells and its implications in cellular detoxification, cell growth

and development.

SUBCELLULAR NADP-DEHYDROGENASE
COMPARTMENTALIZATION AS A NADPH SUPPLY
REGULATION MECHANISM
The NADPH pool is required in many processes while the con-
tribution of each NADP-dehydrogenase in specific situations is
difficult to determine. However, cell compartmentalization is
required as an additional control mechanism in order to keep
the NADPH supply close to the system when required, partic-
ularly given that NADPH is part of a network containing other
energy-rich molecules such as NADH and ATP (Scheibe and
Dietz, 2012). In addition, given that NADPH is not easily trans-
ported across membranes but, rather, operates through indirect
shuttle systems, all these NADP-dehydrogenases usually have dif-
ferent isozymes which are localized in the different subcellular
compartments. Although the localization of some of these NADP-
dehydrogenases in the different organelles has been described in
different plant species (Gálvez and Gadal, 1995; Corpas et al.,
1998, 1999; Debnam and Emes, 1999; Hodges et al., 2003; Kruger
and von Schaewen, 2003; Leterrier et al., 2007), the availabil-
ity of genomes in higher plants such as Arabidopsis thaliana and
Oryza sativa has facilitated a more systematic analysis of differ-
ent NADP-dehydrogenases (Chi et al., 2004; Wakao and Benning,
2005; Wheeler et al., 2005).

FUNCTION OF NADP-DEHYDROGENASES UNDER
ENVIRONMENTAL STRESS CONDITIONS
Under diverse biotic and abiotic stress conditions, plants have
developed a whole battery of response mechanisms in order to
overcome any potential cellular damage. In many cases, these
processes could be accompanied by an uncontrolled increase in
reactive oxygen and nitrogen species (ROS and RNS) which might

generate nitro-oxidative stress (Corpas et al., 2007; Corpas and
Barroso, 2013). As all these processes usually involve a redox
response, an additional NADPH supply may be required for all
the pathways using it.

To support this hypothesis, there is a body of evidence to
show that, under specific stress conditions, one or more NADP-
dehydrogenases are regulated at the level of activity and pro-
tein/gene expression (Valderrama et al., 2006; Liu et al., 2007,
2013; Marino et al., 2007; Mhamdi et al., 2010; Airaki et al.,
2012). Moreover, the importance of some of these NADP-
dehydrogenases has been confirmed by reverse genetic studies
(Scharte et al., 2009; Dal Santo et al., 2012; Voll et al., 2012;
Siddappaji et al., 2013).

In olive plants (Olea europaea) under salinity-induced nitro-
oxidative stress, a general increase in the activity of the
main antioxidative systems (catalase, superoxide dismutase and
enzymes of the ascorbate-glutathione cycle) was accompanied
by a significant increase in the activity and protein expression
of G6PDH, NADP-ME, and NADP-ICDH (Valderrama et al.,
2006, 2007). Similar behavior has been reported in leaves from
pepper plants (Capsicum annum) exposed to cadmium stress
which generates oxidative stress and a concomitant increase in the
activity of all NADP-dehydrogenases (G6PDH, 6PGDH, NADP-
ME, and NADP-ICDH) (León et al., 2002). In pepper plant
leaves exposed to low temperatures (8◦C) for different periods
of time (1–3 d) after 24 h treatments, we observed alterations
in the metabolism of ROS and RNS (an increase in lipid oxi-
dation and protein nitration) and a general rise in the activity
of the main NADPH-generating enzymes (G6PDH, 6PGDH,
NADP-ME, and NADP-ICDH) which appeared to contribute
to cold acclimation (Airaki et al., 2012). Arabidopsis seedlings
grown under salinity conditions (100 mM NaCl) also displayed
nitro-oxidative stress. Among the NADPH-generating dehydro-
genases (G6PDH, 6PGDH, NADP-ME, and NADP-ICDH) ana-
lyzed under these conditions, NADP-ICDH showed maximum
activity levels, mainly attributable to the root NADP-ICDH
(Leterrier et al., 2012c). Another study of NADP-ICDH activ-
ity in Arabidopsis has demonstrated that this enzyme’s kinetic
parameters vary depending on the organ involved, being the spe-
cific activity much higher in roots than in leaves. In vitro analysis
of NADP-ICDH activity in the presence of different ROS and
RNS showed that H2O2 does not affect this activity in either
organ; however, reduced glutathione (GSH) inhibited activity in
leaves but not in roots. On the other hand, S-nitrosoglutathione,
a cellular S-nitrosothiol used as a NO donor, and peroxynitrite
(ONOO−) depressed NADP-ICDH activity in leaves and roots
(Leterrier et al., 2012b). Modulation of NADP-ICDH activity by
RNS was also observed in pea roots (Pisum sativum) during nat-
ural senescence which is associated with nitro-oxidative stress
since there are increases in the ONOO− levels and in the num-
ber of nitrated proteins. Thus, cytosolic NADP-ICDH activity was
shown to be inhibited by nitration at Tyr392 during senescence in
a process mediated by peroxynitrite (Begara-Morales et al., 2013).

Depending on the plant species involved, the organs ana-
lyzed and the intensity of stress, the response of the NAPD-
dehydrogenases could also be vary. Thus, in tomato roots
(Solanum lycopersicum) under salinity conditions (120 mM
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NaCl) accompanied by oxidative stress, an overall decrease
in NADPH content and the enzymatic activities of the main
NADPH-generating dehydrogenases has been reported, especially
NADP-ICDH activity which recorded a drastic reduction of 94%
(Manai et al., 2014). This could be explained by the sensi-
tivity of this enzyme to post-translational modification medi-
ated by ONOO− as observed in pea roots during senescence
(Begara-Morales et al., 2013). However, in Arabidopsis thaliana
seedlings exposed to arsenic (1 mM KH2AsO4) which also gen-
erates nitro-oxidative stress based in the concomitant increase of
tyrosine-nitration and lipid peroxidation, the activity of NADP-
dehydrogenases (G6PDH, 6PGDH, and NADP-ICDH) did not
vary significantly, suggesting that the supply of NAPDH was suffi-
cient to withstand this stress (Leterrier et al., 2012a). Alternatively,
the involvement of Arabidopsis cytosolic NADP-ICDH in leaves
has been demonstrated to contribute to the maintenance of
redox homeostasis under biotic stress caused by Pseudomonas
syringe (Mhamdi et al., 2010). In the leaves of tobacco plants
(Nicotiana tabacum), NADP-ME activity increased significantly
in response to drought (Doubnerová-Hısková et al., 2014). On
the other hand, in Lotus japonicus exposed to water stress, differ-
ential and spatially distributed nitro-oxidative stress was reported
in roots and leaves. Analysis of NADP-dehydrogenase activities in
roots revealed that, whereas G6PDH and NADP-ICDH activity
decreased 6.5- and 1.5-fold, respectively, 6PGDH and NADP-
ME increased 1.5- and 1.3-fold, respectively. However, no leaf
NADP-dehydrogenase appeared to be affected, except for G6PDH
which decreased by around 50% under water stress conditions
(Signorelli et al., 2013). Table 1 summarizes some examples of
the response of NADP-dehydrogenases to nitro-oxidative stresses
generated by different abiotic stresses.

As mentioned above, certain post-translation modifications
could negatively affect activity under stress conditions although
up-regulation has also been reported. For example, in Arabidopsis

thaliana under salinity (150 mM NaCl) stress conditions, the
cytosolic G6PDH isozyme (G6PD6) is targeted by phosphory-
lation at Thr-467 whose activity increased. The important role
played by this dehydrogenase was corroborated using Arabidopsis
thaliana knockout mutants of cytosolic G6PDH (G6PD6) where
the cellular redox state was altered and plants were more sensitive
to salt stress (Dal Santo et al., 2012). The importance of cytoso-
lic G6PDH in the leaves of tobacco plants (Nicotiana tabacum)
at an early stage of defense against the Phytophthora nicotianae
pathogen which is accompanied by oxidative burst has also been
reported. This was demonstrated using a genetic approach involv-
ing over-expression of this G6PDH isozyme which improved
NADPH provision for pathogen-activated NOXs at the plasma
membrane during early oxidative burst (Scharte et al., 2009).
In addition, these tobacco plants showed heightened resistance
to drought stress. In the same way, transgenic tobacco plants
over-expressing the cytosolic G6PDH from Populus suaveolens
have enhanced cold (4◦C) tolerance. Beside of the increased
G6PDH activity, these transgenic plants showed lower level of
lipid oxidation and higher activity of antioxidant enzymes such
as superoxide dismutase and peroxidase. Moreover, these plants
have activated the expression of stress-related genes. Therefore,
these data clearly show the regulatory function of G6PDH during
low temperature stress (Lin et al., 2013).

There are other examples of certain specific NADP-
dehydrogenases being regulated at the level of activity and
gene expression under diverse stress conditions. For instance,
G6PDH mRNA expression in wheat seedlings under salt stress
conditions of 150 mM NaCl reached a maximum level at 12 h
of the treatment (Nemoto and Sasakuma, 2000). A similar
response was observed in the expression of the 6PGDH gene
which was up-regulated in rice shoots under salt stress (150 mM
NaCl) (Huang et al., 2003). By using the Arabidopsis cytosolic
NADP-ICDH knockout mutant, it has been reported that the

Table 1 | Examples of the response of NADP-dehydrogenases to nitro-oxidative stresses generated by different abiotic stresses.

Stress Plant specie Organs Response of NADP-dehydrogenases References

Salinity

NaCl (100 mM) Arabidopsis thaliana Roots Increase activity of NADP-ICDH Leterrier et al., 2012c
NaCl (120 mM) Tomato (Solanum lycopersicum) Roots Decrease activity of NADP-ICDH Manai et al., 2014
NaCl (200 mM) Olive (Olea europaea) Leaves Increase activity and protein expression of

G6PDH, NADP-ME and NADP-ICDH
Valderrama et al.,
2006

Drought

Drought Tobacco (Nicotiana tabacum) Leaves Increase activity of NADP-ME Doubnerová-Hısková
et al., 2014

Drought Lotus japonicus Roots Decrease activity of G6PDH and NADP-ICDH
but increase activity of 6PGDH and NADP-ME

Signorelli et al., 2013

Heavy metal and metalloids

CdCl2 (0.5 mM) Pepper (Capsicum annum cv Abdera) Leaves Increase activity of G6PDH, 6PGDH,
NADP-ME and NADP-ICDH

León et al., 2002

Arsenic (1 mM) Arabidopsis thaliana Seedlings G6PDH, 6PGDH and NADP-ICDH activities do
not change

Leterrier et al., 2012a

Atmospheric factors

Low temperature
(8◦C)

Pepper (Capsicum annum) Leaves Increase activity of G6PDH, 6PGDH,
NADP-ME and NADP-ICDH

Airaki et al., 2012

Ozone Hybrid poplar Leaves Increase activity of G6PDH and NADP-ME Dghim et al., 2013b
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loss of this isozyme function does not markedly affect the
response of Arabidopsis to ozone. However, other cytosolic
NADPH-producing enzymes (G6PDH and NADP-ME) showed
a significant increase which contributed to maintaining the status
of NADPH redox (Dghim et al., 2013a). A similar increase in
G6PDH and NADP-ME has also been reported in hybrid poplar
leaves in response to ozone (Dghim et al., 2013b).

CONCLUSIONS
Together with NADH, NADPH participates in the equilibrium of
cellular redox homeostasis and also maintains certain antioxidant
systems such as the ascorbate-glutathione cycle and NTRs. Thus,
NADP-dehydrogenase systems should be regarded as a second
line of defense in order to maintain the effective functioning of the
main antioxidative systems. Biochemical and genetic approaches
provide a strong data basis to confirm the essential involve-
ment of NADP-dehydrogenases in the mechanism of response to
nitro-oxidative stress situations. Organ distribution and subcel-
lular compartmentalization are regarded as additional regulatory
mechanisms of these systems to ensure that the NADPH supply is
at the required location. Future research will be essential to iden-
tify the specific involvement of each NADP-dehydrogenase in the
different organs and cellular compartments supporting a particu-
lar pathway as all these enzymes are also involved in nitrogen and
carbohydrate metabolisms.
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