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Rail transportation has evolved over a
century to be relatively more efficient
than ever (if not the most) around
the world. Evidenced qualitatively and
quantitatively, social and environmental
benefits (combining reduced carbon emis-
sion, reduced congestion, reduced traffic
mortality, improved urbanization and
land uses, increased choices of lifestyle
and job, new business capabilities and
avenues, etc.) are significant positive out-
comes from rail lines (Glaeser, 2009).
Although railway transportation oper-
ation is one of the least contributors
among other modes of transportation
(i.e., aviation, cable, land, pipeline, water-
way, or even space), the carbon emission
from constructing and maintaining rail-
way infrastructure systems is greater than
those from other transport infrastruc-
ture systems. This is due to the fact that
the railway infrastructure system is very
complex by nature. It spans over large dis-
tance and contains comparatively many
more supporting components and larger
structural layers to cater safe, resilient
and reliable services for either passen-
gers or freights (Kaewunruen et al., 2014;

Krezo et al., 2014a, in press; Remennikov
and Kaewunruen, 2014). In particular, the
routine maintenance and renewal of aging
components within the infrastructure are
often required in order to assure safety
and reliability of passengers and cargoes
over the rail networks (Remennikov and
Kaewunruen, 2008; Krezo et al., 2014b, in
press).

Infrastructure renewal, construction,
and maintenance activities are potentially
responsible for over 20% of carbon diox-
ide (CO2) emissions by overall railway
functions as a whole, depending on the
type of rail infrastructure system, rolling
stock, electrification system, traffic opera-
tion, and surroundings such as geography
and climate (Hill et al., 2011). In recent
years, this result has prompted the indus-
try need to systemically estimate and
manage greenhouse gas emissions from
railway construction and maintenance
activities over life cycle. In general, there
are two broad types of railway track infras-
tructure: ballasted and ballastless tracks.
Ballasted track uses ballast (crushed aggre-
gates) to support sleepers and rails whilst
transferring the train loads to the sub-
structure (Burrow et al., 2007; Indraratna
et al., 2011). Ballastless track typically
uses a concrete slab system to support the
steel rails, which transfer the loads from
passing trains to the concrete slab and
foundation (Kiani et al., 2008). Within a
rail infrastructure system, typical main-
line components in plain tracks would
experience considerably less wear and tear

or damage when compared with special
trackwork’s components such as turnouts,
diamonds, or crossovers. However, main-
line railway track components deteriorate
faster in tight curves, heavy axle loads,
adverse weather conditions, and in a
poor maintenance condition (Milford and
Allwood, 2010). Simultaneously, support-
ing structures and facilities such as bridges,
viaducts, stations, railway equipment,
drainage system, electrification systems
and so on also deteriorate overtime. As
a result, the routine maintenance of rail-
way infrastructure systems, which is an
ongoing asset operation activity, is vital in
ensuring reliability and longevity of infras-
tructure (Ueda et al., 2003; von Rozycki
et al., 2003; Lee et al., 2008; Network Rail,
2009; Schwarz, 2009; Chang and Kendall,
2011; Krezo et al., in press).

Recent studies suggest that the carbon
footprint due to ballasted track mainte-
nance be comparable to that of concrete
slab tracks over a 100 year life cycle.
The data also exhibits that the emis-
sions of embodied carbon of the mate-
rials used in ballasted and concrete slab
track re-constructions contribute more
than nine times the CO2 emissions from
the diesel machineries used to maintain
and re-construct the track beds (Krezo
et al., in press). The track bed selec-
tion and the share of bridges and tun-
nels have the largest impact on the
overall CO2 emissions. Thus, prolonging
the re-construction frequency by optimal
routine maintenance activities such as
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rail head grinding, defect removal, and
resurfacing, is the key to reducing life-
cycle CO2 emissions from overall main-
tenance over the whole lives of rail
assets. Evidenced by a number of turnout

renewal projects, it is also considered to
be more financially- and carbon-efficient
to carry out a bulk renewal (for mul-
tiple turnouts) in a single maintenance
project than to work separately for each

individual turnout (Schwarz, 2009; Chang
and Kendall, 2011; Krezo et al., 2014b).

According to a recent review, a strategic
framework for enabling carbon-efficient
railway construction and maintenance

FIGURE 1 | (A) Strategic framework for carbon-efficient railway construction and maintenance. (B) Strategic cladogram for carbon-efficient railway
infrastructure systems.
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can be illustrated in Figure 1A (Dekker
et al., 2012; Kaewunruen et al., 2013).
There are three main strategic criteria,
which influence the carbon efficiency,
including decision making process, phys-
ical drivers, and the impact. The impact
from metrics, implications, methodologies
and priority revolve around the decision-
making processes and physical drivers.
These multi criteria are also intercon-
nected to socio-technical complexity,
which drives the social expectation and
value chains through to the shift from
and the interaction with other transport
modes.

It is likely that climate change and
air pollution will become a major crite-
rion in decision making in the next few
decades (McKinnon, 2010). The manage-
ment of railway construction and main-
tenance has moved from a simple event
to a holistic systems-based approach. The
carbon drivers in transports behave as a
complex adaptive system and it evolves
through the inter-connectivity and inter-
action. Using the evolutionary theory
so-called phylogenetic analysis (Neil and
Corrigan, 2013), a strategic decision tree,
which provides a unique and power-
ful way of classifying carbon contrib-
utors, can be derived as demonstrated
in Figure 1B. The technique can high-
light a significant influence on the prac-
tical guideline for carbon efficiency. This
can aid the effectiveness and efficiencies
in strategically managing railway infras-
tructure construction and maintenance
and practically allocating carbon-efficient
resources, design concepts, or construc-
tion methodologies.

It is apparent in Figure 1B that when
the appropriate contribution weight of
greenhouse gas emission is adopted, prac-
titioners can make strategic decisions to
establish carbon-efficient railway infras-
tructure systems through the construction
and maintenance activities. For instance,
if the carbon emission by steel and con-
crete material manufacturing is relatively
high in the urban region, the choice of
materials, traffic operation and mainte-
nance regime should be designed to pro-
long the service lives of infrastructure.
In addition, with the help of phyloge-
netic analysis, the emerging carbon con-
tributor can be identified. Accordingly,
construction and maintenance managers

can allocate appropriate resources and
time to manage critical construction
phases and materials to achieve finan-
cial, social and environmental gains. This
would be a great attempt to help reduc-
ing carbon emission, which is the main
contributor toward climate change that
would later aggravate the performance
and reliability of railway systems in a
long run.
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