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Foot-and-mouth disease (FMD) is a highly contagious and economically important viral

disease of cloven-hoofed animals. Australia’s freedom from FMD underpins a valuable

trade in live animals and animal products. An outbreak of FMD would result in the loss of

export markets and cause severe disruption to domestic markets. The prevention of, and

contingency planning for, FMD are of key importance to government, industry, producers

and the community. The spread and control of FMD is complex and dynamic due to a

highly contagious multi-host pathogen operating in a heterogeneous environment across

multiple jurisdictions. Epidemiological modeling is increasingly being recognized as a

valuable tool for investigating the spread of disease under different conditions and the

effectiveness of control strategies. Models of infectious disease can be broadly classified

as: population-based models that are formulated from the top-down and employ

population-level relationships to describe individual-level behavior; individual-based

models that are formulated from the bottom-up and aggregate individual-level behavior

to reveal population-level relationships; and hybrid models which combine the two

approaches into a single model. The Australian Animal Disease Spread (AADIS) hybrid

model employs a deterministic equation-based model (EBM) to model within-herd

spread of FMD, and a stochastic, spatially-explicit agent-based model (ABM) to model

between-herd spread and control. The EBM provides concise and computationally

efficient predictions of herd prevalence and clinical signs over time. The ABM captures

the complex, stochastic and heterogeneous environment in which an FMD epidemic

operates. The AADIS event-driven hybrid EBM/ABM architecture is a flexible, efficient

and extensible framework for modeling the spread and control of disease in livestock on

a national scale. We present an overview of the AADIS hybrid approach, a description

of the model’s epidemiological capabilities, and a sample case study comparing two

strategies for the control of FMD that illustrates some of AADIS’s functionality.
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Introduction

An outbreak of foot-and-mouth disease (FMD) in Australia would have a major economic and
social impact. This includes disruption of the domestic market for livestock and products, loss
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of access to international markets, severe production and income
losses in livestock and related industries, and the financial, polit-
ical and social pressures of eradicating the disease (Carpenter
et al., 2011; Matthews, 2011; Rushton et al., 2012). The present
value of total direct economic losses from an outbreak of FMD
in Australia are estimated at $5.6 to $52.2 billion AUD over 10
years, depending on the size of the outbreak and the effectiveness
of control (Buetre et al., 2013).

Disease managers are faced with a number of challenges
when responding to incursions of serious disease such as FMD.
These include: what control measures to adopt; trade and eco-
nomic implications of different control measures; how to man-
age resources such as personnel, equipment and vaccine; access
to appropriate technology such as diagnostic tools; animal wel-
fare issues; consumer concerns, and possible public health ram-
ifications (Garner et al., 2007). The choice of control measures
can be a compromise between the requirement for large-scale
implementation and what is logistically and economically feasi-
ble (Tildesley et al., 2006). Disease models are increasingly being
employed as decision support tools for outbreak planning and
response (Garner and Hamilton, 2011). Models are especially
useful when a country has not recently experienced the disease
of concern (Bates et al., 2003b), for example, the last outbreak of
FMD in Australia occurred in 1872 (Bunn et al., 1998).

Models of disease spread range from simple deterministic
mathematical models (Haydon et al., 1997), through to com-
plex spatially-explicit stochastic microsimulations (Garner and
Beckett, 2005; Harvey et al., 2007; Stevenson et al., 2013).
Models can be distinguished on the basis of how they handle
time (discrete/continuous), space (spatially-explicit/non-spatial),
and chance and uncertainty (deterministic/stochastic) (Taylor,
2003). Another way of classifying models is whether they are
population-based, individual-based or a combination of both. A
population-based model is formulated from the top-down and
employs population-level relationships to describe individual-
level behavior. An example is a traditional equation-based model
(EBM) which uses a system of ordinary differential equations
(ODEs) to prescribe ratios of infection states in a population over

Abbreviations: AADIS, Australian Animal Disease Spread model; ABARES, Aus-

tralian Bureau of Agricultural and Resource Economics and Sciences; ABM,

Agent-based model; ABS, Australian Bureau of Statistics; AUD, Australian dollar;

AUSVETPLAN, Australian Veterinary Emergency Plan (Animal Health Australia,
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levels of movement restrictions than those applied in RAs; CSV, Comma-Separated

Values; DADS, Davis Animal Disease Simulation model (Bates et al., 2003a); DCP,
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mal products, equipment or other material.; DTU-DADS, Technical University of

Denmark—Davis Animal Disease Simulation model (Boklund et al., 2013); EBM,

Equation-based model; FMD, Foot-and-mouth disease; GIS, Geographic Infor-

mation System; GSAM, Global-Scale Agent Model (Parker and Epstein, 2011);

HPAI, Highly Pathogenic Avian Influenza; HPC, High-Performance Computing;

ISP, InterSpread Plus (Stevenson et al., 2013); IP, Infected Premises—a premises

where infection has been confirmed.; NAADSM, North American Animal Disease

Spread Model (Harvey et al., 2007).; NLIS, National Livestock Identification Sys-
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surrounding an IP and subject to the highest level of movement restrictions; SEIR,

Susceptible Exposed Infectious Recovered; SO, Stamping Out; SORV, Stamping

Out plus suppressive Ring Vaccination; SQL, Structured Query Language.

time (Keeling and Rohani, 2008). The model concisely and effi-
ciently describes how a population ‘flows’ between Susceptible,
Exposed, Infectious and Recovered (SEIR) compartments. Com-
partmental EBMs carry a general assumption of homogeneous
contact rates and susceptibility, i.e., individuals mix uniformly
and randomly, and have an equal likelihood of contracting a
disease.

While simple mathematical models can provide useful
insights into disease dynamics and epidemic behavior they tend
to ignore the spatial, environmental, and social dimensions
of epidemiology (Perez and Dragicevic, 2009). Assumptions of
homogeneous mixing of the population and model parameters
not varying over the solution interval understate the complexity
of an epidemic. From a disease manager’s perspective, outbreaks
occur in a physical, economic, technological, management, and
socio-political context (Garner and Hamilton, 2011). An epi-
demic environment is irregular and subject to probabilistic events
that dynamically reshape the spread of disease (Bansal et al., 2007;
Garner and Hamilton, 2011). Spatial effects, population hetero-
geneity, contact structures and social behavior all influence the
course of an outbreak (Caraco et al., 2001; Hagenaars et al., 2004;
Galvani and May, 2005; Lloyd-Smith et al., 2005; Bansal et al.,
2007; James et al., 2007).

An individual-based model is formulated from the bottom-up
and aggregates individual-level behavior to reveal population-
level dynamics. Relationships between individuals emerge over
time, as opposed to a population-basedmodel where the relation-
ships are prescribed as inputs. An example is a spatially-explicit
agent-based model (ABM) where autonomous individuals with
independent infection states interact within an environment. In
this case, the emergent behavior of the model is the spatio-
temporal spread of disease across a population. Individual-based
models are well-suited to complex environmental systems due
to their affinity for capturing heterogeneity, stochasticity, spa-
tiality, social systems, and policy (Hare and Deadman, 2004),
and subtle interactions between individuals that are especially
important during the initial and final stages of an outbreak (Ger-
mann et al., 2006; Bansal et al., 2007). A data-driven, individual-
based, modeling approach has proven popular in the field of ani-
mal health policy development with stochastic, spatially-explicit,
state-transition microsimulations such as AusSpread (Garner
and Beckett, 2005), InterSpread Plus (ISP) (Stevenson et al.,
2013), and the North American Animal Disease Spread Model
(NAADSM) (Harvey et al., 2007).

In this paper, we describe the Australian Animal Disease
Spread (AADIS) model. AADIS is a national-scale hybrid model
of livestock disease spread and control designed to support emer-
gency animal disease planning in Australia. For this context, we
narrow the definition of a hybrid model to one that employs both
population-based and individual-based modeling techniques.
AADISmodels within-herd spread with a deterministic EBM and
between-herd spread with a spatially-explicit stochastic ABM.
The model architecture and software architecture were specif-
ically developed for efficient handling of the national livestock
population. Computational efficiency is especially important for
large-scale stochastic models. It is often desirable to re-run a
particular scenario hundreds, possibly thousands, of times to
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see if patterns emerge from the underlying stochastic processes.
Although the AADIS architecture supports any pathogen, FMD
is the development test-case.

Modeling Context

Foot-and-Mouth Disease
FMD is an acute, highly contagious viral disease of domestic and
wild cloven-hoofed animals. The disease is clinically character-
ized by the formation of vesicles and erosions in the mouth and
nostrils, on the teats, and on the skin between and above the hoofs
(Meyer and Knudsen, 2001; Animal Health Australia, 2014a).
The FMD virus spreads between hosts through direct contact
(e.g., movement of live animals between farms, and between
farms and markets), indirect contact (e.g., livestock products,
byproducts, and fomites), and aerosol (Meyer and Knudsen,
2001). Australia is a significant livestock producer and a major
exporter of livestock, livestock products, and livestock genetic
material. An outbreak of FMD would have severe economic con-
sequences for the economy, in particular the loss of export mar-
kets (Buetre et al., 2013). Because of the serious consequences
of an FMD outbreak, Australia invests considerable resources in
prevention and planning.

Australia’s approach to managing an incursion of FMD
is described in the Australian Veterinary Emergency Plan—
AUSVETPLAN (Animal Health Australia, 2014a). In brief, the
policy is to eradicate the disease as quickly as possible using
stamping out, which involves culling and disposal of infected and
exposed animals. Standard zoo-sanitarymeasures andmovement
restrictions are also applied, with a minimum 3-day national live-
stock stand-still and the establishment of control zones around
infected premises (IPs) and dangerous contact premises (DCPs).
Vaccination is identified as an option under some circumstances
in AUSVETPLAN.

Livestock Production Systems
Livestock production in Australia is largely based on exten-
sive grazing and is dominated by wool, sheepmeat, beef, and
dairy. Australia also has smaller intensive pig and poultry indus-
tries (Animal Health Australia, 2014b). The livestock industry is
diverse and extends from the beef cattle areas of tropical north
Queensland to the sheep areas of temperate southern Tasma-
nia, and from the dairying areas of coastal New South Wales
to the merino wool producing areas of Western Australia (Gar-
ner et al., 2002). The main industries that would be directly
affected by FMD are beef, dairy, wool, sheepmeat, and pigs.
Australia has approximately 74 million sheep, 28 million cattle
and 2 million pigs on approximately 78,000 commercial farms
(Australian Bureau of Statistics, 2012), with a further estimated
104,000 smallholder/lifestyle farms. From a disease transmission
perspective, the key unit of interest is a herd, defined as a group
of animals of the same species that is managed as a single group.
Commercial farms in Australia can be large and may consist
of more than one herd of the same or different species, e.g.,
sheep-beef farms.

Australia is a federation made up of six states and two main-
land territories. The Australian Government is responsible for

quarantine, disease reporting, export certification, and trade gov-
ernment. State and territory governments are responsible for
animal health services within their respective jurisdictions. This
means that while there are national policies for managing dis-
eases like FMD, the actual control measures are administered by
the jurisdictions under their own legislation. For disease control
purposes, it is the farming enterprise rather than the herd that is
the key unit.

AADIS Hybrid Approach

To study FMD in Australia on a national scale, a model needs
to handle approximately 240,000 herds across a variety of species
and production systems, as well as incorporating regional het-
erogeneity in disease transmission and jurisdictional variations
in control measures and resourcing. To address this complex-
ity, AADIS employs a hybrid model architecture that combines
population-based modeling with individual-based modeling.
This approach provides computationally efficient within-herd
spread and captures the rich heterogeneous environment in
which between-herd spread operates. For modeling purposes, the
Australian livestock population has been categorized into 11 herd
types and 10 farm types (Table 1). A herd has static attributes
such as type, size, location, jurisdiction, and local government
area, and dynamic attributes such as infection status. A farm is
made up of one or more herds. Spatially, a farm and its con-
stituent herds are defined as a point identified by latitude and
longitude. The herd population is synthesized from agricultural
census data (Australian Bureau of Statistics, 2012) and industry
reports and data.

Equation-Based Modeling of Within-Herd
Disease Spread
AADIS considers a herd to be well-mixed from a disease trans-
mission point of view, i.e., all members of the herd are equally
likely to contract a disease. This is a reasonable simplifica-
tion for modeling the spread of disease at a national-scale, and
one that lends itself to a population-based approach (Bradhurst
et al., 2013). AADIS employs a non-spatial, deterministic SEIR
compartmental EBM to represent within-herd spread of FMD
(Figure 1). The approach is similar to that described by Keeling
and Rohani (2008).

Each herd has its own ODE system customized for the herd
type and the pathogen under study (Figure 2). AADIS simplifies
a herd’s size by considering it to be constant in the absence of
culling. When a susceptible herd becomes infected the ODE sys-
tem is solved numerically via a fourth-order Runge Kutta method
(Cash and Karp, 1990), to yield the SEIR compartmental ratios
over time. The EBM generates curves describing the prevalence
and clinical signs of the infected herd. The EBM approach is com-
putationally efficient as the solution remains in place up until an
external asynchronous event acts upon the herd. If a herd is vacci-
nated and immunity levels increase, the EBM reacts by resolving
the ODE system to yield updated SEIR compartment ratios from
that point in time onwards (Figure 3). The EBM thus adapts and
provides a dynamic representation of the within-herd infection
state and presence of clinical signs.
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TABLE 1 | Herd and farm types used in AADIS.

Farm type Number of farms Mean farm population size (min–max) Herd type Number of herds

Extensive beef 1331 1909 (1200−46,575) Extensive beef 3993

Intensive beef 51,383 280 (30− 7436) Intensive beef 51,383

Feedlot 508 1825 (100−39,963) Feedlot 508

Mixed beef/sheep 21,556 242 (30− 5700) Mixed beef 21,556

Mixed sheep 21,556

Dairy 8675 298 (40− 2742) Dairy 8675

Small pigs 1873 244 (40− 4850) Small pigs 1873

Large pigs 333 4922 (1000−17,896) Large pigs 333

Sheep 22,150 1649 (20−44,000) Sheep 22,150

Small holder 103,641 5 (1− 14) Small holder 103,641

Total 202,775 235,668

FIGURE 1 | ODE system used by AADIS to model within-herd spread of FMD.

Agent-Based Modeling of Between-Herd Disease
Spread and Control
Whilst a herd is viewed as a population for within-herd
disease spread, it is somewhat paradoxically also viewed as
an individual for between-herd spread (Figure 2). Aggregated
herd-level infectious, latent (exposed), and clinical prevalence
generated by the EBM, are inputs for modeling disease spread
between herds. This is a sensible simplification for a model of
national-scale, especially for a highly contagious disease such as
FMD that when introduced into a susceptible herd will typi-
cally progress unchecked (Meyer and Knudsen, 2001; Carpen-
ter et al., 2003). A herd is thus viewed as an atomic agent
participating in an ABM for the purposes of between-herd
spread.

While within-herd disease spread is deterministic and
non-spatial, between-herd disease spread is highly stochastic
and spatially-explicit. This is achieved through a rich ABM

environment comprising disease spread pathways and control
measures. The spread of disease is modeled with the following
pathways:

• Direct contact – movement of live animals between premises,
• Market/saleyard spread – movement of live animals in and out

of markets/saleyards,
• Indirect contact – movement of animal products, byproducts

or fomites between herds,
• Local spread – proximity-based contact, e.g., over a boundary

fence shared by adjoining premises,
• Airborne transmission – virus excreted by animals in aerosol

form that remains viable in the air.

Each spread pathway has an algorithm that determines on any
given simulation day whether disease transfers from an infec-
tious herd to susceptible herd(s). AADIS introduces stochastic-
ity through Monte Carlo sampling of probability distribution
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functions (Vose, 2008). The spread of disease between heteroge-
neous herds is well-suited to an individual-based model such as
an ABM.

The control of disease is also part of the ABM environment.
This includes movement restrictions, surveillance and tracing,
IP operations, resource management and vaccination. The emer-
gent behavior of the ABM is the spatiotemporal spread of disease
across the population and the subsequent activities to control and
eradicate the disease. The disease spread pathways and control
measures can be thought of as components of the ABM environ-
ment. A component has autonomous logic, its own thread of exe-
cution and a blocking queue for receiving asynchronous events.
Each component of the AADIS ABM environment operates
independently and concurrently.

AADIS Functional Description

Transmission Pathways
AADIS models five independent means by which FMD can be
transmitted between herds:

Direct Contact Spread
Direct contact spread is driven by the movements of live ani-
mals between herds. The expected number, size and destination
of daily movements into and out of herds, stratified by month, is
derived from various reports and industry sources (AusVet Ani-
mal Health Services, 2005, 2006; Hassall and Associates, 2006;
Kokic andMues, 2006; East and Foreman, 2011; East et al., 2014).
AADIS only models movements from infected herds since it

FIGURE 2 | Each herd instance has a customized SEIR ODE-based EBM. The ABM stochastically establishes infection connection paths between herds

(Bradhurst et al., 2013).

FIGURE 3 | The prevalence curves on the left depict the

EBM solution for a non-vaccinated beef herd. Infection starts

on day 35, peaks at 53% prevalence on day 48, and ends on

day 69. The prevalence curves on the right show the same

herd, but with vaccination occurring on day 37. Susceptible

animals in the herd achieve immunity on day 43 resulting in a

greatly diminished peak prevalence of 14% and an earlier end to

infection on day 57.
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would be computationally prohibitive to consider all movements
from all herds. For each infected herd, the daily likelihood of a
movement, the type of herd the movement is directed to, and
the movement distance and direction is determined stochasti-
cally. This is based on configuration data that includes movement
frequencies, distance distributions and contact matrices.

Transmission depends on the prevalence of infection in the
source herd and the consignment size. The probability that a con-
signment contains at least one exposed or infectious animal is
given by:

pi = 1−
[

1− p(t)
]n

(1)

where, pi = probability of infection, p(t) = prevalence of infec-
tion in the source herd at time t, where prevalence is defined as
the proportion of infectious and exposed animals in the herd (per
the EBM), n= consignment size.

When a susceptible herd becomes infected an EBM is cre-
ated and solved with initial conditions based on the proportion
of infectious and exposed animals in the consignment, and the
size of the destination herd.

Saleyard/Market Spread
Markets and saleyards have the potential to greatly amplify
an outbreak prior to the disease being recognized and con-
trols implemented (Gibbens et al., 2001; Mansley et al., 2003).
This is because disease transmission is greatly facilitated by the
large number of susceptible animals, and the degree of mix-
ing and partitioning of animals into consignments. Outgoing
consignments may then be moved to multiple, widely dispersed
locations.

AADIS provides two options for simulating saleyard spread,
depending on the availability of data. A simplified module takes
into account the frequency and destination of consignments from
different herd types. On any given day the likelihood that an
infected herd sends animals to a saleyard is determined stochasti-
cally. Each infected consignment to a saleyard generates multiple
infected outgoing consignments based on beta pert distributions.
A more explicit representation of saleyard spread is available
which takes into account the type, frequency and timing of live-
stock sales. This approach is driven by specific buying and sell-
ing patterns at individual livestock sales (Hassall and Associates,
2007). AADIS models plausible sale events during a simulation.
If a sale happens to involve an infected herd, then a series of
stochastic decisions are made to determine the number of out-
going infected consignments, the consignment destination types
(herd, feedlot or abattoir), and destination locations. Infection is
transmitted to the destination herds with a force relative to the
viral load in the consignment.

Indirect Contact Spread
Indirect contact transmission arises from the movement between
herds of contaminated animal products, byproducts, and fomites
such as equipment, people and vehicles. Potential sources include
veterinarians, shearing contractors, artificial insemination tech-
nicians, milk tankers, and feed delivery vehicles. Indirect contacts
can be categorized as high, medium or low according to their
potential for transmitting infection (Nielen et al., 1996; Bates

et al., 2001; Sanson, 2005; Noremark et al., 2013). In the interests
of computational efficiency, AADIS only uses a single category of
indirect contacts with a specified average (baseline) probability
of transmission. The user can parameterize this to represent dif-
ferent risk profiles. Compared to direct contacts, there is limited
data on indirect contacts. The type and location of exposed herds
is determined stochastically using a contact matrix and distance
distributions by herd type.

If a herd is exposed through indirect contact, the probabil-
ity of transmission depends on the viral load of the source herd,
the relative infectiousness of the source herd (based on species
and herd size), environmental conditions that influence virus
survival, biosecurity practices, and relative susceptibility of the
exposed herd (based on species and herd size).

pi = Pb p(t) wi ws wb wx (2)

where, pi = probability that an indirect contact results in an infec-
tion, Pb = baseline probability that any indirect contact results in
infection, p(t)= normalized prevalence of the source herd at time
t, wi = infectivity weight of the source herd, ws = susceptibility
weight of the destination herd, wb = biosecurity weight of the
destination herd, wx = seasonal weight.

Local Spread
Local spread covers the transmission of disease from an infected
herd to susceptible herds in close proximity (default within 3 km).
The actual means of transmission is poorly understood and could
involve local aerosol spread across fences, straying of stock, vehi-
cles, people, run off, sharing of equipment between neighbors,
etc. (Gibbens et al., 2001). AADIS uses a spatial kernel approach
to represent local spread, with all susceptible herds inside the
local spread radius at risk. The probability of transmission for
at-risk herds is decided stochastically taking into account infec-
tious prevalence in the source herd, infectivity of the source herd
(based on species and size), susceptibility of the destination herd,
biosecurity measures in place at the destination premises, and
distance between the source and destination herds. The influence
of distance between the source herd and target herds is described
by a linear decay function—the closer a herd is to the source,
the greater the probability of transmission. Local spread can also
occur between herds that are co-resident on the same farm, with
the probability of transmission increased to reflect the higher
potential for local contact between herds managed on the same
farm.

pi = Pb p(t) wi ws wb wx wd wn (3)

where pi = probability that a local contact results in an infec-
tion, Pb = baseline probability that a local contact between farms
results in infection, p(t) = normalized prevalence of the source
herd at time t, wi = infectivity weight of the source herd, ws =

susceptibility weight of the destination herd, wb = biosecurity
weight of the destination herd, wx = seasonal weight, wd =

distance weight, wn = detection weight.

Airborne Spread
Airborne spread is the infection of susceptible animals by virus
conveyed on the wind. Pigs pose the greatest threat for airborne
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spread because of their potential to excrete large quantities of
virus relative to other species. Airborne spread requires a con-
centrated source of virus, appropriate weather conditions and
susceptible animals downwind (Donaldson and Alexandersen,
2002). AADIS assumes that only pig herds are capable of trans-
mitting FMD by airborne spread beyond a distance of 3 km.
Aerosol transmissions within 3 km are captured by the local
spread pathway. For each simulation day, the weather station
closest to each infected pig herd is queried for conditions con-
ducive to airborne spread (Garner et al., 2006). If suitable, a
sector is constructed at the infected herd’s location in the prevail-
ing wind direction, subtended by a configurable angle (Figure 4).
The sector radius represents the extent of the viral plume on that
day and is determined by the number of infectious pigs in the
source herd (Donaldson et al., 2001). Susceptible herds within the
sector are identified, excluding those within 3 km. The probability
of transmission takes into account the susceptible herd species,
the size of the herd, and the distance of the susceptible herd from
the infected herd.

pi =
[

1−
(

1− Psp
)n]

wd (4)

where, pi = probability that a susceptible herd will become
infected, Psp = probability that a single animal of the suscepti-
ble species will become infected, n= size of the susceptible herd,
wd = distance weight.

The distance weight models the diffusion of the plume over
distance from the source herds, and hence the diminishing risk
of transmission. Distance weight is configurable as either a linear
or exponential decay function.

Disease Control
Australia’s FMD policy is to eradicate the disease in the shortest
possible time using a combination of strategies, while minimizing
economic impact, (Animal Health Australia, 2014a). Mandatory
control strategies include:

FIGURE 4 | Downwind extent of airborne spread for an infected pig

herd.

• quarantine and movement controls of animals, animal prod-
ucts and fomites in declared areas in order to minimize the
spread of infection

• tracing and surveillance to determine the source and extent of
infection

• valuation and destruction of animals on infected premises and
potentially on dangerous contact premises

• disposal of destroyed animals and infected ani-
mal products, and decontamination of depopulated
premises.

Optional control strategies include:

• vaccination to reduce susceptibility of animals to infection and
clinical disease, and potentially reduce virus excretion

• pre-emptive destruction of susceptible animals in order to
minimize the spread of infection

• zoning and/or compartmentalization (to support trade)
• risk-based movement controls.

The farm is the population unit of interest for disease control.
An AADIS farm has static attributes such as type and constituent
herds, and dynamic attributes such as premises classification
and declared area. The main simulated control strategies are
movement restrictions, surveillance, tracing, IP operations and
vaccination. The control and eradication phase of an outbreak
commences after the declaration of the first infected premises.
The day of first detection is either determined stochastically
(using pre-configured probabilities of reporting by herd type,
and clinical prevalence), or occurs on a fixed day at a specific or
randomly selected farm.

Movement Restrictions
A national livestock standstill (minimum of 3 days), is imple-
mented immediately following detection of the first IP. AADIS
models livestock standstill by restricting the direct and saleyard
spread pathways. The level of restriction depends on standstill
status, type of control area, and the spread pathway being throt-
tled. A compliance percentage for each pathway is defined in
the AADIS configuration data to allow for the possibility of ille-
gal movements during the standstill. The AADIS configuration
data defines the length of the national standstill by jurisdiction.
This reflects how individual jurisdictions may extend a standstill
beyond the initial 3-day national period.

Controlled areas are established around each infected
premises in order to restrict the movement of livestock, products
and other material. The controlled areas are defined and enforced
per-jurisdiction, and may be designated areas (local government,
state/territory), or radius-based per IP. There are two levels of
control: Restricted Areas (RAs) that immediately enclose IPs, and
Control Areas (CAs) that enclose RAs. RAs have the highest level
of control while CAs have a lower level of control (Animal Health
Australia, 2014a). AADIS models the imposition of controlled
areas in a staged manner. Larger controlled areas are enforced
at the start of an outbreak. As the control program progresses,
the dimensions of the controlled areas are reduced according to
per-jurisdictional preferences. A radius-based controlled area is
clipped to fall within the jurisdictional boundaries of the subject

Frontiers in Environmental Science | www.frontiersin.org 7 March 2015 | Volume 3 | Article 17

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Bradhurst et al. AADIS - hybrid model of FMD

IP. When IPs are clustered a meta-RA and meta-CA are formed
from the union of the constituent RAs and CAs.

Surveillance and Tracing
Surveillance is the process by which new infections are identified
and declared. During an FMD outbreak, surveillance is used to
detect new outbreaks, define the extent of infection, and demon-
strate freedom in uninfected areas (Animal Health Australia,
2014a).

AADIS allows for reporting of suspect cases on an ad hoc
basis by owners/inspectors or others. This represents one of the
most important mechanisms for finding new IPs (McLaws et al.,
2007). AADIS commences suspect case reporting the day after
the first IP has been declared, and allows for both true positive
and false positive reports. False positive reports identify herds
that are exhibiting symptoms but are not actually infected with
FMD. True positive reports are generated stochastically based on
an infected herd’s clinical prevalence, the probability of report-
ing and the expected time to report. The latter two parameters
are defined per herd-type in the AADIS configuration data. The
number of false positive reports generated is proportional to
an n-day (default 3), moving average number of true positive
reports. The default ratio of false to true reports is 2.34 based
on McLaws et al. (2007). The modeling of both true and false
reports facilitates more realistic modeling of surveillance, i.e.,
team resources are consumed regardless of whether a surveillance
visit yields a positive assessment or not. AADIS also models the
active inspection of premises within RAs. All farms within a des-
ignated distance of IPs are subject to a configurable inspection
schedule (number and frequency of inspections).

Tracing is the identification of movements onto and off IPs
in order to ascertain where infection may have come from, or
gone to. AUSVETPLAN provides minimum periods over which
tracing should be carried out (Animal Health Australia, 2014a).
Tracing includes animals, products, equipment, vehicles and peo-
ple. Traced premises may be true cases (and thus infected), or
false (not infected). AADIS can readily identify true traces by fol-
lowing infection chains during a simulation, allowing for variable
tracing effectiveness by herd type and pathway (direct contact
vs. indirect contact), and tracing duration. False forward traces
are obtained by applying the direct and indirect spread path-
ways to a premises of interest within the forward tracing win-
dow. False backward traces are obtained by reversing the direct
and indirect spread pathways over the backwards tracing window
(i.e., modeling movements onto the premises of interest). This
approach results in a set of plausible false traces, i.e., premises of
a suitable type and location that could well have been sources or
destinations of movements of concern.

Premises that require visits by surveillance teams are identi-
fied through tracing, active inspection of premises within RAs,
and reporting of suspect premises. Laboratory samples are taken
when needed. Surveillance visits are prioritized according to risk
(Animal Health Australia, 2014a). AADIS maintains a resource-
constrained dynamic queue of premises awaiting a surveillance
visit. Visits are prioritized according to a configurable scheme
that takes into account premises classification, declared area and
herd type. If multiple premises have the same priority, then

arbitration is based on how long a premises has been waiting
for a visit. The visit duration (based on herd type), visit fre-
quency (based on priority), and overall surveillance period are
configurable.

IP Operations
IP Operations is comprised of the valuation, destruction and
disposal of animals (stamping out), and decontamination of
premises. Stamping out is Australia’s default initial policy for con-
trolling an outbreak of FMD (Animal Health Australia, 2014a). It
is considered the fastest way to reduce viral excretions on IPs and
thus dampen spread. Stamping out is implemented on all IPs, and
potentially on DCPs, subject to risk assessment.

Premises undergoing IP Operations transition through the
following states: cull pending, cull in progress, disposal pending,
disposal in progress, decontamination pending, decontamination
in progress, and resolved. Each jurisdiction has separate pools of
teams for culling, disposal and decontamination. When a pool is
exhausted (i.e., all of the teams are on assignment), pending jobs
are held in a queue. Visits to premises are prioritized based on
premises classification, herd/species priority, herd size, time in
queue, and proximity to an IP. The times required for a premises
to undergo culling, disposal and decontamination are defined by
herd type in the AADIS configuration data.

Vaccination
Vaccination is one of the available options to support stamping
out of an FMD outbreak. The decision to vaccinate and the spe-
cific role of vaccination in an FMD response varies according to
the specific outbreak scenario (Animal Health Australia, 2014a).
Vaccination strategies include:

• Suppressive – vaccination is carried out inside known infected
areas (RAs) in order to suppress virus production in at-risk
and exposed herds to reduce further spread.

• Protective – vaccination is carried out outside known infected
areas in order to protect susceptible animals from infection.

• Mass – vaccination is carried out across a broad area to large
numbers of animals. This strategy could be applied if an
outbreak is not under control and there is a risk of spread
escalating.

AADIS provides two triggers for commencing a vaccination pro-
gram: on a configurable day into the control program, or once
a configurable number of IPs has been declared. AADIS models
all vaccination policies with an annulus of configurable inner and
outer radii. The inner radius is set to zero for suppressive and
mass vaccination. A vaccination annulus is established around
each target IP, and eligible premises inside the annulus are sched-
uled for vaccination. The user can select to only vaccinate around
IPs found on or after the day the vaccination program begins,
or around all new and previously identified IPs. The vaccination
candidates inside each annulus are prioritized according to herd
type, herd size, and proximity to the nearest IP. It is also possi-
ble to omit certain herd types from vaccination. The direction of
vaccination (from the outside in, or from the inside out), is set in
the AADIS configuration data.
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The effect of vaccination is to increase herd immunity (i.e.,
reduce a herd’s susceptibility to infection) over time. When a par-
tially immune herd is exposed to infection, the virus production
profile generated by the EBM reflects that some of the animals
have protective immunity.

As with surveillance and IP operations, the ability to imple-
ment a vaccination program depends on the availability of
resources. Each jurisdiction has a separate pool of vaccination
teams. When a pool is exhausted (i.e., all of the teams are on
assignment), pending jobs are held in a queue. Visits to premises
are prioritized according to herd type, herd size, time in queue,
and proximity to an IP. The time required for a premises to
undergo vaccination is defined by herd type in the AADIS con-
figuration data.

Resourcing
The resources required to manage an emergency animal disease
outbreak include personnel (e.g., veterinarians, animal health
officers, control center staff), equipment (e.g., vehicles), facilities
(e.g., laboratories) and consumables (e.g., vaccine, disinfectant).
Some aspects of disease control and eradication are resource-
intensive and the lack of resources can severely hamper the
response to an outbreak (Matthews, 2011; Roche et al., 2014).
AADIS models the personnel resources required for key opera-
tional activities: surveillance, culling, disposal, decontamination,
and vaccination. As state and territory governments are responsi-
ble for emergency animal disease management within their own
boundaries (Animal Health Australia, 2014a), the teams are orga-
nized into pools by jurisdiction, i.e., each jurisdiction has five
pools. It is anticipated that resource levels ramp up over time, so

initially the pools are small and increase in a linear manner up to
the maximum size. The starting point, duration of the ramp-up
and maximum pool size are defined in the AADIS configuration
data by resource type and by jurisdiction. AADIS tracks the avail-
ability and allocation of resources to provide immediate feedback
as to whether/where the control program is resource constrained
(Figure 5).

Model Implementation

AADIS is implemented in Java (Oracle, 2014) and employs open-
source products such as PostgreSQL (PostgreSQL, 2014) and
OpenMap (BBN, 2014). AADIS runs under either Linux™ or
Windows™ and has an asynchronous software architecture with
concurrency achieved through Java threads. This takes good
advantage of the inexpensive parallelism available on the quad-
core x64 target machine. Although C and C++ are perhaps
more typical language choices for computationally intense appli-
cations, Java offers the advantage of platform-independence and
a rich collection of utility libraries. Parker and Epstein (2011)
describe how the Java-based GSAM pandemic model scales up to
6.5 billion agents distributed across a 32-node high-performance
computing (HPC) cluster.

AADIS is able to run complex disease spread and con-
trol scenarios across the entire Australian population of FMD-
susceptible herds efficiently on a single desktop platform. For
example, a 100-day national outbreak with all disease spread
pathways enabled, all control measures deployed, dynamic
resourcing, report writing, and real-time visualization takes
around 10 s to complete on a quad-core laptop with 16 GB RAM.

FIGURE 5 | Dynamic visualization of outbreak dynamics.
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This is achieved through several strategies including the hybrid
model architecture, asynchronous software architecture, a grid-
based spatial indexing system (in lieu of geospatial Structured
Query Language (SQL) exchanges with the database server),
and lightweight agents. Implementation and performance details
of interest will feature in a future paper. Figure 6 provides a
summary of the AADIS subsystems and the main relationships
between them.

Simulation Flow
AADIS operates in discrete time steps of a day. At the start of a
simulation day, the disease spread components and the control
components access the herd/farm initial conditions for the day.
All components then independently and concurrently proceed
with their daily processing, making various stochastic decisions
on the spread and control of disease. As each component finishes
its daily processing, a set of herd/farm update requests are sent

FIGURE 6 | AADIS subsystems.
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asynchronously to the ABM component scheduler where they
are queued. When all updates have been received, they are col-
lated and submitted to the cohort of herd/farm agents. The new
herd/farm reality is then available for all components at the start
of the next simulation day. This concurrent approach is compu-
tationally efficient and reflects the reality that spread and control
proceed independently and in parallel during an outbreak. The
scheduler arbitrates whenever one or more components attempt
to act upon the same herd/farm on the same day. The arbitra-
tion may be random or rule-based. For example, if the direct and
indirect spread pathways both attempt to infect the same herd on
the same day, then the scheduler randomly selects one pathway
to succeed. On the other hand, if for example, the IP Operations
component and the Vaccination component both attempt to con-
trol the same farm on the same day, then the scheduler always
gives priority to IP Operations.

Configuration Data
AADIS has three levels of configuration:

• Project data for the study at hand includes the herd popula-
tion, weather data, movement patterns and pathogen specific
parameters. This data typically does not change often and may
be large with cross-dependencies. The project data is stored
in a relational database (PostgreSQL, 2014), and any changes
require a database rebuild (which ensures referential integrity).

• Scenario-specific data is stored in a Java properties file that is
persistent across multiple invocations of the model. The data
is stored outside the database and so changes do not trigger a
database rebuild.

• The graphical user interface can be used to make short-term
adjustments of selected configuration data. The changes only
last for the current invocation of the model.

Outputs
As AADIS is a stochastic model, it generates a range of possi-
ble outcomes when run with the same starting parameters. When
modeling a specific scenario, multiple model runs (iterations)
are used to generate a probability distribution of potential out-
comes. Results of individual runs and summaries of groups of
runs are produced. AADIS provides both tabular and graphical
outputs.

Tabular
The formal outputs of an AADIS scenario run are comma-
separated values (CSV) files. These contain a range of metrics at
the herd, farm and scenario level, and are used for subsequent
epidemiological analysis.

Graphical
AADIS provides three modes for visualizing an outbreak in
progress:

• Within-herd spread (EBM) – infected herds are represented as
heat-colored dots reflecting the viral load.

• Between-herd spread (ABM) – infected herds are represented
as color-coded dots reflecting the particular pathway that trig-
gered the infection. There is an option of displaying each path-
way connection as a vector – thus depicting the entire infection
network.

• Control (ABM) – farms are represented as color-coded dots
reflecting the current premises classification.

AADIS provides a range of graphical utilities for the dynamic
display of herd prevalence curves, epidemic curves, convex hull
of infection, controlled areas, traces, resource usage, resource
backlog, and peak resource levels (Figure 5).

Sample Case Study

The following simple epidemiological case study is provided to
illustrate how AADIS can be used to address policy issues.

Outbreak Scenario
The south-east of Australia is an agriculturally intensive area
that has previously been identified as vulnerable to an FMD out-
break (East et al., 2013). The Goulburn Valley is a 14,287 km2

sub-region of Victoria with significant cattle and horticultural
sectors (Regional Development Victoria, 2010). The dairy indus-
try in this region comprises around 3000 farms and accounts for
approximately 13% of Australia’s milk production (Department
of Environment and Primary Industries, 2015). Other livestock-
based sectors in the region include beef, wool, sheepmeat, and
pigs.

We assume FMD is introduced into the Goulburn Valley with
the primary case occurring on a pig farm with a population of
3209 pigs. The farm has 20 neighboring farms within a 3 km
radius. The outbreak occurs in May when the usual cool weather
favors the survival of FMD virus outside a host. Detection of the
index case occurs 21 days after the primary infection. Table 2 lists
some of the key EBM parameter values.

Two strategies for controlling the outbreak were assessed:

(1) Stamping out of infected premises (SO),
(2) Stamping out of infected premises plus suppressive ring

vaccination (SORV).

TABLE 2 | Selected EBM ODE parameters.

Herd type Effective contact Latent period Infectious period

rate (days) (days)

Extensive beef 0.7 2 4

Intensive beef 2 2 4

Feedlot 8 2 4

Mixed beef 2 2 4

Mixed sheep 0.8 2 7

Dairy 6 2 4

Small pigs 6 1 4

Large pigs 8 1 4

Sheep 0.8 2 7

Small holder 2 2 5
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Selected parameter settings for the control strategies are provided
in Table 3. Note that this is a simplification of the model setup as
only a subset of key parameters are described.

Method
The simulation was run 500 times for each control strategy and
the following outputs compared:

• duration of the outbreak (defined as the number of days from
when the index case was declared to when the last infected
premises was resolved)

• cumulative number of infected premises
• cumulative number of culled premises
• cumulative number of culled animals
• cumulative number of vaccinated premises
• cumulative number of vaccinated animals

TABLE 3 | Selected control program parameter settings.

Control parameter Value

National livestock standstill 3 days

Restricted area (RA) Circle of 3 km radius enclosing each IP

Controlled area (CA) Circle of 10 km radius enclosing each IP

Num days to report suspect premises

after clinical signs

0–19 days (herd type-dependent)

Probability of reporting suspect

premises

70–100% (herd type-dependent)

Ratio of false suspect premises

reports to true reports

2.34:1

Forward tracing window 14 days

Backward tracing window 14 days

Time needed for a direct trace 0–4 days (species-dependent)

Time needed for an indirect trace 1–5 days (species-dependent)

Effectiveness of direct tracing 70–100% (species-dependent)

Effectiveness of indirect tracing 70–90% (species-dependent)

Non-compliance with direct

movement controls inside RA

2%

Non-compliance with direct

movement controls inside CA

2%

Reduction of indirect movements

inside RA

15%

Reduction of indirect movements

inside CA

50%

Surveillance visit duration 0.5 day (herd type-dependent)

Max number of surveillance teams 20 Per jurisdiction

Max number of culling teams 20 Per jurisdiction

Max number of disposal teams 20 Per jurisdiction

Max number of decontamination

teams

20 Per jurisdiction

Max number of vaccination teams 200 Per jurisdiction

Days to cull a herd 0.5–14 (herd type-dependent)

Days to dispose a herd 0.5–18 (herd type-dependent)

Days to decontaminate a premises 1–28 (herd type-dependent)

Start of vaccination program Seventh day of the control program

Days to vaccinate a herd 0.5–7 (herd type-dependent)

Vaccination annulus radii (km) 1, 3

Vaccination direction Outside-in

In addition, a simple sensitivity analysis was carried out on
selected parameters under strategy SO.

• time to first detection (7, 14, 21, 28 days)
• duration of the national standstill (0, 3, 7, 10 days)

The test hardware platform was a quad-core laptop with 16 GB
RAM running 64-bit Kubuntu Linux™.

The Stata/IC statistical package (Stata, 2014) was used to anal-
yse the distributions of the key model outputs. Data sets were
imported into Stata and checked for normality. Non-parametric
statistical methods were used throughout this analysis as some
data sets were non-normal and could not be transformed to nor-
mality by standard transformation techniques. The number of
infected premises, outbreak duration, number of culled animals,
number of vaccinated premises and number of vaccinated ani-
mals were analyzed using the Kruskal-Wallis test for compari-
son of multiple independent groups of data. Post hoc analysis
to identify differences between strategies was conducted using
the Kruskal-Wallis test with the significance level adjusted per
the Bonferroni correction for multiple pairwise comparisons.
Model outcomes were expressed as medians with 90% confidence
intervals.

Results
Figures 7–9 provide visualization snapshots at day 21 of run
number 1 (of 500) of the baseline stamping out scenario. Figure 7
shows how within-herd spread is represented as heat-colors
reflecting prevalence levels generated by the EBMof each infected
herd. Figure 7 also illustrates the optional display of the con-
vex hull area of infection, in this case 33 km2. Figure 8 shows
the infection network generated by the ABM, with color-coded
vectors reflecting the particular spread pathway that triggered.
At this stage in the outbreak there is only local (green) and air-
borne (cyan) spread emanating from the primary case pig herd.
Figure 9 shows the outbreak from a disease management point
of view. Despite there being 13 infected herds on day 21, there
is only one known infected premises (red). Figure 9 also shows
two optional popup windows: the prevalence curves for a herd
(in this case the index case), and the epidemic curve depicting
declared infected premises vs. actual infected premises. These
outputs demonstrate the potential of AADIS as a training tool
that provides various visualizations of disease transmission, and
also contrasts a disease manager’s incomplete view of an outbreak
(what is known), with the physical reality (infected herds in the
population).

In this study we investigated the effect of incorporating sup-
pressive ring vaccination into the control program for an FMD
outbreak. Strategy SORV was effective in reducing both the size
and duration of an outbreak when compared to the baseline SO
strategy. There were significantly less IPs, significantly shorter
outbreaks, and significantly less culled animals than stamping out
alone (p < 0.05) (Figure 10 and Table 4). SORV was particularly
effective in reducing the likelihood of a very large outbreak, which
could be an important consideration for a disease manager.

The sensitivity analyses showed that findings are significantly
influenced by the time to first detection. Varying the time to
detection for strategy SO produced strongly correlated changes
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FIGURE 7 | Visualization of within-herd prevalence as heat-colors.

to the number of IPs, outbreak duration, and number of culled
animals (p < 0.05) (Table 4). The findings were less sensitive to
the duration of the national livestock standstill with only a 0-day
standstill and a 10-day standstill producing significantly differ-
ent outcomes (p < 0.05). This suggests that for the outbreak
scenario, there is perhaps not a significant advantage in extending
the default 3-day standstill.

Discussion

An incursion of FMD into Australia would have severe economic
consequences and Australia thus invests heavily in prevention
and contingency planning. The control and eradication of FMD
is challenging due to the complexities of a highly contagious
and multi-host pathogen operating in a heterogeneous environ-
ment across multiple jurisdictions. Models of disease spread and
control are increasingly recognized as valuable tools for inform-
ing policy. Population-based approaches and individual-based
approaches have both been used to model the spread and con-
trol of FMD and inform policy makers and disease managers.
The hybrid approach of AADIS combines the advantages of
population-based and individual-based approaches in order to

efficiently model the spread and control of FMD on a national
scale.

Advantages and Disadvantages of
Population-Based Modeling
Livestock epidemics can occur in highly heterogeneous environ-
ments. Take for example, an outbreak of FMD within an exten-
sive beef production system in a northern Australian jurisdiction,
compared to one in an intensive dairy production system in a
southern Australian jurisdiction. Despite the same pathogen and
the same host species, there are significant differences in live-
stock density, farming practices, market systems and climate.
The probability of disease detection and reporting varies with
the level of contact between owners/inspectors and livestock.
State/territory jurisdictions are responsible for their own dis-
ease control policies and resourcing. This results in distinct dis-
ease spread dynamics and control environments between the two
regions.

Population-based models carry a general assumption of
homogeneous contact rates and susceptibility. In the case of a
compartmental SEIR EBM, individuals within any given com-
partment are indiscernible. The subtle contributions of specific
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FIGURE 8 | Visualization of between-herd spread as an infection network.

individuals to the dynamics of an outbreak are thus lost in
a population-based model. This is a limitation if the popula-
tion and environment being modeled is heterogeneous. Com-
plex environmental systems are typically multi-scale, non-linear
and heterogeneous—characteristics that are ill-suited to an aggre-
gated population-based modeling approach (Bansal et al., 2007;
D’Souza et al., 2009; Parker and Epstein, 2011; Vincenot et al.,
2011a). Although computationally efficient, an EBM can become
complex and less tractable as more variables are factored into
the mathematical abstraction (Miller, 1976; Parunak et al., 1998;
Bobashev et al., 2007).

Advantages and Disadvantages of
Individual-Based Modeling
Individual-based models are better suited to complex environ-
mental systems due to their natural affinity for capturing het-
erogeneity, stochasticity, spatial relationships, social systems and
policy (Hare and Deadman, 2004). The ability to distinguish
between individuals in a population is especially important dur-
ing the initial and final stages of an outbreak (Germann et al.,
2006; Bansal et al., 2007). A data-driven, individual-based mod-
eling approach has proven popular in the field of veterinary

epidemiology with stochastic, spatially-explicit, state-transition
models such as AusSpread, ISP and NAADSM. Individual-based
models tend to be complex with a large number of parameters for
which data may not always be available. Individual-based models
may not scale well for large populations. Consider individual-
based models of human pandemics in populations of millions
or even billions. Such models have considerable computational
requirements and typically require highly parallel platforms such
as HPC clusters (Carley et al., 2006; Germann et al., 2006) or gen-
eral purpose computing on graphics processing units (D’Souza
et al., 2009) and custom software implementations (Parker and
Epstein, 2011).

Advantages of Hybrid Models
Hybrid epidemiological models incorporate a population-based
approach and an individual-based approach into a single model.
Epidemics across a meta-population are multi-scale in the sense
that the mechanisms and rates of within-site spread are distinct
from those of between-site spread. In the case of a livestock
epidemic, once infection is introduced into a farm the rate of
within-farm propagation is dependent on the specifics of the
pathogen and the farm. Factors include the host species, livestock
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FIGURE 9 | Visualization of controlled premises.

FIGURE 10 | Effect of control strategy on outbreak duration, outbreak size, and number of culled animals.
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TABLE 4 | Case study results.

Control Detection Standstill Outbreak Number Number of Number of Number of Scenario

strategy day duration duration of IPs4,5 culled animals4,5 vaccinated farms4 vaccinated animals4 runtime (s)4

(days) (days)3,4,5

SO1 21 3 89 (60–220)a 49 (18–231)a 38,875 (9838–185,996)a 0 0 5.5 (3.3–16.1)

SORV2 21 3 77 (55–129)b 32 (13–95)b 26,388 (7688–118,036)b,c 192 (70–561) 51,102 (15,442–153,972) 4.8 (3.1–9.6)

SENSITIVITY ANALYSIS OF THE TIME TO DETECTION

SO 7 3 73 (51–107)b 20 (9–48)b 13,385 (7201–61,081)b 0 0 3.0 (2.0–4.8)

SO 14 3 78 (57–146)b 32 (14–98)b 19,323 (7448–92,393)b 0 0 4.3 (2.9–8.6)

SO1 21 3 89 (60–220)a 49 (18–231)a 38,875 (9838–185,996)a 0 0 5.5 (3.3–16.1)

SO 28 3 103 (63–380)c 78 (23–732)c 72,275 (13,314–738,018)d 0 0 7.5 (4.0–46.6)

SENSITIVITY ANALYSIS OF THE DURATION OF THE NATIONAL LIVESTOCK STANDSTILL

SO 21 0 90 (61–215)a 53 (19–241)a 45,683 (10,163–208,485)a 0 0 5.6 (3.3–17.0)

SO1 21 3 89 (60–220)a 49 (18–231)a 38,875 (9838–185,996)a 0 0 5.5 (3.3–16.1)

SO 21 7 86 (59–184)a 48 (17–184)a 37,111 (9919–165,532)a 0 0 6.1 (3.9–15.1)

SO 21 10 85 (60–189)a 46 (19–176)a 39,130 (10,754–148,028)a 0 0 5.2 (3.4–13.7)

1 Baseline stamping out policy.
2Baseline vaccination policy (stamping out plus suppressive ring vaccination).
3Time from detection of index case to resolution of final IP.
4Median (90% confidence interval).
5Within each column, values with a different superscript are significantly different.

density, livestock numbers, production system, and biosecurity
measures. The spread of disease between farms is influenced by
more irregular factors such as contact networks between farms
(direct and indirect), market practices, distance between farms
and environmental conditions (including weather).

Bobashev et al. (2007) describe a stage-based hybrid model of
global human influenza that dynamically switches between an
ABM and an EBM based on the number of cases. Within-city
spread is initially simulated by an ABM in order to capture sub-
tle interactions between individuals early in an epidemic. When
a cases threshold is reached, the ABM is halted and a snapshot of
agent states is used as initial conditions for an EBM. Although the
granularity of modeling decreases to population-level, it occurs at
a point in the outbreak when the number of cases is sufficient to
support a population-averaged approach. Moreover, the overall
performance of the model is maintained due to the computation-
ally efficient EBM.When the number of cases in a city falls below
a threshold value, the model switches back to an ABM in order to
capture subtle interactions between individuals as the epidemic
wanes.

Network-based hybrid models employ a multi-scale approach
to modeling the spread of disease across a meta-population. A
population-based model handles the spread of disease within
each meta-population site while an individual-based model han-
dles the spread of disease between sites. An example is provided
by Vincenot andMoriya (2011b) where a system dynamics-based
EBM is used for within-site spread and a contact network is
used for between-site spread. A compartment-based EBM is a
good match for a closed homogeneous site while a data-driven
spatially-explicit individual-based model captures heterogeneity
in the epidemic environment. The edges of a contact network
topology are formed from the potential conduits of disease across
the meta-population. Network-based hybrid models have proven

tractable in the study of human pandemics—driven by local and
international mobility patterns derived from such sources as cen-
sus data, surveys and the International Air Transport Associ-
ation (IATA) database (Bansal et al., 2007; Balcan et al., 2009;
Yu et al., 2010; Parker and Epstein, 2011; Van den Broeck et al.,
2011; Yoneyama et al., 2012). Hybrid models used in the field of
veterinary epidemiology include:

• The Davis Animal Disease Simulation Model (DADS) (Bates
et al., 2003a) and DTU-DADS (Boklund et al., 2013) where
within-herd spread of FMD is modeled with a Reed-Frost
EBM (Fine, 1977), and between-herd spread modeled with a
stochastic spatially-explicit contact network.

• The Netherlands FMD model (Backer et al., 2012) where
within-herd spread is handled by an SEIR-based EBM and
between-herd spread is modeled with a spatial kernel driven
by probabilities derived from the 2001 outbreak in the Nether-
lands.

• Nickbakhsh et al. (2013) where within-flock spread of highly
pathogenic avian influenza (HPAI) is modeled with a SEIR-
based EBM and between-flock spread with a stochastic contact
network.

• LaBute et al. (2014) where within-herd spread of FMD and
HPAI are modeled with a compartmental SIR EBM and
between-herd spread with a spatially-explicit contact network.

How AADIS Differs from other Hybrid Models
AADIS extends the network-based hybrid approach by employ-
ing an event-driven ABM in lieu of a contact network. The
meta-population under study is heterogeneous, reflecting the
multiple species of domestic cloven-hoofed animals that are sus-
ceptible to FMD. The network by which meta-population sites
(i.e., herds) can ‘connect’ is multi-layer, reflecting how FMD
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spreads via direct contact (animal movements between herds and
between herds andmarkets), indirect contact (livestock products,
by-products and fomites) and aerosols.

The AADIS ABM also models the control and eradication of
FMD. Each disease spread pathway and control measure operates
as an autonomous concurrent ‘component’ of the ABM environ-
ment. The decoupled component approach is robust, flexible and
extensible. Components can be added/removed/modified with
minimal impact on other components.

How AADIS Differs from Other Major Models of
FMD Spread and Control
The AADIS EBM predicts a herd’s prevalence and clinical signs
over time based on the pathogen, herd type and herd size. These
values dynamically feed into ABM decisions on the spread of dis-
ease between herds, the probability of detection, and the control
of disease. In its role as an agent in the ABM, a herd reacts to envi-
ronmental events such as culling and vaccination by resolving
the EBM ODE system which in turn yields updated predictions
for prevalence and clinical signs (Figure 3). The decoupling of
within-herd spread and between-herd spread reflects the multi-
scale nature of livestock epidemics (Carpenter et al., 2003; Keel-
ing, 2005). Stochastic state-transition microsimulations such as
AusSpread, ISP and NAADSM simplify intra-farm transmission
as transitions through atomic infection states according to dura-
tions sampled from probability distributions. A state-transition
approach to within-herd spread doesn’t naturally capture the
dynamics of intra-herd transmission. A simple herd state of
‘infectious’ doesn’t distinguish between the infectiousness of a
herd with 1% of the animals infected and that of a herd with
100% of the animals infected. This leads to a loss of prevalence
information that is relevant to between-herd spread, and a loss
of information on clinical signs that influences the detection and
control of disease (Carpenter et al., 2003). It is possible to aug-
ment infection states with transmission probabilities that vary
over time (Stevenson et al., 2013). However, this is less intuitive
than the AADIS organic EBM approach. An architectural advan-
tage of decoupling within-herd spread and between-herd spread
is that alternative EBMs can be readily employed as required for
the specific pathogen under study. This is awkward to accomplish
when intra-herd spread and inter-herd spread are tightly cou-
pled in a pure individual-based model such as a state-transition
microsimulation.

Other distinguishing functional features of AADIS include:

• The configuration and deployment of control measures are
decentralized to the separate state/territory jurisdictions. This
permits realistic modeling of an epidemic that may spread
across borders and require control at the jurisdictional level.

• The resources available for disease control and eradication
are configurable by jurisdiction. This improves model real-
ism as resource levels and priorities may vary considerably
between jurisdictions. The AADIS ABM also allows resource
requirements to emerge from a scenario as opposed to a
top-down modeling approach that prescribes resourcing lev-
els ahead of time. The inclusion of false positive suspect
premises reports and traces provides more realistic modeling

of surveillance as it reflects how resources are consumed
regardless of the result of a surveillance visit.

• AADIS provides detailed graphical visualization modes that
allow a user to dynamically view an outbreak unfolding in ‘real’
time. The graphical user interface allows a user to interact with
an epidemic, for example to pause a scenario and view details
of any herd/farm in the population. It is also possible to manu-
ally adjust the declared state of any farm. AADIS has potential
as not only a predictive tool that informs policy, but also as a
vivid training tool for disease managers.

• The multi-threaded asynchronous AADIS architecture offers
significant performance improvements over a single-threaded
state-transition approach. As all AADIS spread and control
tasks proceed concurrently the length of a simulation day is
only limited by the longest individual task. Computational effi-
ciency is an important consideration for a stochastic model of
national-scale as complex scenarios are re-run hundreds if not
thousands of times to allow trends to emerge.

• Most of the current microsimulation models use a farm as the
epidemiological unit of interest. AADIS’s use of the herd cap-
tures heterogeneity in the spread of disease involving farms
with co-located but separately managed herds, for example
mixed beef/sheep farms.

• The national set of herds can be viewed abstractly as nodes in a
network (Dube et al., 2011; Noremark et al., 2011). A network
topology forms over time when spread pathways trigger and
create edges (Figures 2, 8). The topology takes the form of a
directed acyclic graph, until such time as recovered herds lose
their immunity. Network paths can subsequently be traversed
forward to determine the downstream impact of an infected
herd, and backward to trace the historical infection route. The
network topology thus captures the spatiotemporal history of
the simulated epidemic. The infection network can be math-
ematically analyzed to identify topological features of interest
such as sinks and spreaders.

It should be noted that specific functional advantages of
one model over another can be short-lived. Models such as
AusSpread, ISP, NAADSM, DADS, DTU-DADS, and the Nether-
lands model (Backer et al., 2012) are active and continue to
evolve. The principle innovation of AADIS is perhaps archi-
tectural, i.e., the movement away from the state-transition
microsimulation approach of AusSpread, ISP and NAADSM
to a hybrid EBM/ABM model. Network-based hybrid mod-
els tend to have single species meta-population and single
layer contact network. AADIS expands this genre of models
to a multi-species meta-population and a multi-layer contact
network.

Limitations
The realism of data-driven models of disease spread hinges
on the quality of the underlying data. This includes popula-
tion data, contact structures, environmental data and pathogen
data. Inadequate data can be replaced with assumptions/expert
opinion but this has the potential to introduce bias into a
model. In countries such as Australia where agriculture is of
great importance to the economy, there is increasing availability
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of spatially-based data on livestock and livestock products. An
example is the National Livestock Identification System (NLIS)
which tracks livestock from property of birth to place of slaugh-
ter/export (Meat and Livestock Australia, 2011). The NLIS
database is a rich source of livestock movement data and takes
into account species, production system and region. For AADIS
to be used in a jurisdiction with a paucity of data, the spread and
control components would need to be simplified. For example, a
complex spread pathway based on animal movement data could
be replaced with a simple distance kernel-based spread module.

AADIS has extensive configuration data spread across 40
tables in a relational database and three ASCII configuration files.
This allows for detailed configuration of a heterogeneous envi-
ronment and population, and pathogen under study. A result
of this complexity is that the parameterization of the model
requires a good understanding of the epidemiological system
being modeled.

An artifact of the concurrent architecture adopted by AADIS
is that thread scheduling arbitrarily influences the order that
components request random numbers. This means that it is not
possible to replay scenarios by specifying the pseudo-random
number generator seed (and thus control the stream of random
numbers used to sample from probability distributions). The
ability to control the random number stream makes a stochastic
model temporarily deterministic, and allows specific aspects of a
scenario to be isolated. For example, a specific control measure
such as vaccination can be varied and the impact on the scenario
outcome directly observed (in the absence of variability intro-
duced through stochasticity). The implication of this for AADIS
is that a greater number of scenario runs may be required before
results converge.

Concluding Remarks
Disease managers have to take into account technical, socio-
political, economic and logistical issues when developing policies
for disease control. Often there are conflicting objectives to bal-
ance, for example, to eradicate the disease as soon as possible and
regain export markets, while minimizing the costs of control and
compensation, and reducing impacts on other industries. Epi-
demiological modeling is emerging as an important contributor
to the complex task of policy development.

Population-based models represent the spread of disease in
a closed homogeneous population in a concise and computa-
tionally efficient manner. Individual-based models have a natural
affinity for incorporating stochasticity, population heterogeneity,
spatial effects, social factors and jurisdictional differences. This
flexibility and realism has led to a strong interest in microsim-
ulations for the purposes of informing official policy on dis-
ease control. Hybrid models have the modeling advantages of an
individual-based approach but are also computationally efficient,
which is particularly important when dealing with large livestock
populations. The AADIS assumption that a herd is homogeneous
is reasonable given that livestock are typically managed as sin-
gle species cohorts that share a single contact network whilst on
a farm. The AADIS SEIR-based EBM provides computationally
efficient and adaptive predictions of herd prevalence and clinical
signs over time. The AADIS ABM is well-suited to the complex,

stochastic and heterogeneous environment in which an FMD
epidemic operates.

There is an increasing availability of livestock movement and
marketing data (including spatially-referenced data), through
livestock identification, and tracing systems. This allows data-
driven disease models such as AADIS to realistically simulate
production system dynamics and contact structures.

The AADIS asynchronous hybrid EBM/ABM architecture has
thus far shown itself as a flexible, efficient and extensible frame-
work for modeling the spread and control of FMD in livestock on
a national scale.
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