:' frontiers

in Environmental Science

REVIEW
published: 17 June 2015
doi: 10.3389/fenvs.2015.00045

OPEN ACCESS

Edited by:

Marco Casazza,

“Parthenope” University of Naples,
Italy

Reviewed by:

Guennady Ougolnitsky,

Southern Federal University, Russia
ZhiQiang Chen,

University of Missouri-Kansas City,
USA

*Correspondence:

Peng Liu,

Institute of Remote Sensing and
Digital Earth, Chinese Academy of
Sciences, No. 9, Dengzhuang South
Road, Beijing 100094, China
liupeng@radi.ac.cn

Specialty section:

This article was submitted to
Environmental Informatics,

a section of the journal

Frontiers in Environmental Science

Received: 26 March 2015
Accepted: 02 June 2015
Published: 17 June 2015

Citation:

Liu P (2015) A survey of
remote-sensing big data.

Front. Environ. Sci. 3:45.

doi: 10.3389/fenvs.2015.00045

A survey of remote-sensing big data

Peng Liu*

Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China

We have entered an era of big data. It is popular to refer to the three Vs when
characterizing big data: remarkable growths in the volume, velocity and variety of data.
However, this statement is too general. Remote-sensing big data has several concrete
and special characteristics: multi-source, multi-scale, high-dimensional, dynamic-state,
isomer, and non-linear characteristics. This survey explains these characteristics in
detail. Furthermore, according to whether the characteristics are closely related to the
instruments or methods of data acquisition, we points out that the dynamic-state,
multi-scale and non-linear characteristics are intrinsic characteristics of remote-sensing
big data while the multi-source, high-dimensional and isomer characteristics are extrinsic
characteristics of remote- sensing big data. In addition, we briefly review promising
techniques and applications of remote-sensing big data.

Keywords: remote sensing, big data, multi-source, multi-scale, high-dimension, dynamic-state, isomer,
non-linearity

1. Introduction

Remote sensing has become one of the most important methods used to quickly and directly
acquire information on the Earths surface. In recent years, with development of environmental
information science, remote sensing data have played an important role in many research fields,
such as atmospheric science, ecology, soil contamination, water pollution, environmental geology,
environmental soil science, volcanic phenomena and evolution of the Earths crust.

The requirements of research have accelerated the development of Earth observation
technologies. Many countries have rushed to launch their own satellites. Figure 1 summarizes the
number of remote sensing satellites launched by major countries in the period 1962-2014. It is
seen that the USA, India and Russia are the three counties that have launched most remote sensing
satellites. For most countries and regions, almost all remote sensing satellites have been launched
in the period 2001-2014.

The requirements of different investigations have increased the specialization and diversity
of techniques of acquiring remote sensing data. Remote sensing data often differ features in
terms of their resolution, revisit cycle, spectrum, and mode of imaging. Nowadays, we can
choose different remote sensing systems and datasets for different applications. A satellite can be
classified as providing low-resolution imaging (e.g., MODIS'and Envisat?), mid-resolution imaging
(e.g., Landsat®, EO-1%, Terra®, and RADARSAT®), or high-resolution imaging (e.g., QuickBird’,

INASA. [Online]. Available: http://modis.gsfc.nasa.gov/about/

2ESA. [Online]. Available: https://earth.esa.int/web/guest/missions/esa- operational-eo- missions/envisat
3USGS. [Online]. Available: https://landsat.usgs.gov

“NASA. [Online]. Available: https://eol.gsfc.nasa.gov

SNASA. [Online]. Available: https://terra.nasa.gov/

CSA. [Online]. Available: http://www.asc- csa.gc.ca/eng/satellites/radarsat2/

7Quickbird. [Online]. Available: http://www.satimagingcorp.com/gallery/quickbird/
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FIGURE 1 | Summary of remote sensing satellites by nation or region.
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IKONOS®, and WorldView?). A satellite can be classified
by its mode of imaging as an optical satellite (e.g., SPOT,
LandSat, and IKONOS), microwave satellite (e.g., TerraSAR-
X!, RADARSAT, and Envisat), or multi-mode satellite (e.g.,
MODIS). A satellite can be classified by its area of application
as a terrestrial satellite (e.g., LandSatl-7), ocean satellite
(e.g, ERS-1!2), or meteorological satellite (e.g, MODIS).
Finally, a satellite can be classified by its ability to revisit an
observation area. For example, satellites of the Geostationary
Operational Environmental Satellite (GOES) system can
provide continuous, timely and high-quality environmental
and atmospheric observations over the surface of the Earth,
whereas there are also satellites with a short revisit period
of 1 day (e.g, MODIS, WorldView and RapidEye!?®) and
satellites with a long revisit period of 16 days (e.g., EO-1 and
Landsat-7). Table1 gives a selection of satellites whose data
are often used in environmental information science research.
Overall, it is seen that there is a tremendous variety of remote
sensing data.

8satimagingcorp. [Online]. Available: http://www.satimagingcorp.com/gallery/
ikonos/

%digitalglobe.  [Online].  Available: https://www.digitalglobe.com/about-us/
content- collection
Oairbusds. [Online]. Available: http://www.geo-airbusds.com/en/143-spot-

satellite-imagery

airbusds. [Online]. Available: http://www.geo-airbusds.com/terrasar-x/

12ESA.  [Online].  Available:  https:/earth.esa.int/web/guest/missions/esa-
operational-eo-missions/ers

13ESA. [Online]. Available: https://earth.esa.int/web/guest/missions/3rd-party-
missions/current- missions/rapideye

Another characteristic of remote sensing data is its large
volume. The volume of remote sensing data for a single scene
is usually on the gigabyte level, the volume of data received
by a large ground station [such as China Remote Sensing
Satellite Ground Station (RSGS) in China] is usually on the
terabyte level, the volume of the archive of historical data
in some countries (e.g., China) is of the petabyte level, and
the volume of the global archive could be of the exabyte
level. Additionally, because there are so many satellites orbiting
the Earth, the rate of data acquisition is very high. In the
case of the RSGS, the volume of data received in 1 day
exceeds 1 TB. Therefore, remote sensing data are clearly
big data.

2. Features of Remote-sensing Big Data

Big data refers to a collection of data sets so large and
complex that it is difficult to employ traditional data processing
algorithms and models. Challenges include the acquisition,
storage, searching, sharing, transfer, analysis, and visualization of
the data. Scientists regularly encounter limitations due to large
datasets in many areas, such as geoscience and remote sensing,
complex physics simulations, and biological and environmental
research. When we talk about the features of big data, it is
popular to refer to the three Vs (Laney, 2001): significant growth
in the volume, velocity and variety of data. However, the term
the three Vs is too general. The big data of remote sensing
has several concrete and special characteristics; i.e., the data
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TABLE 1 | Summary of the characteristics of satellites often used in environmental information research.

Satellite Sensor Swath (km) Spatial resolution (m) Revisit capability

Airborne Variable Variable >0.1 Mobilized to order
CASI Variable 1-2
Hymap 100-225 2-10

Worldview Panchromatic 16.4 0.46 1.1 days
Multispectral 16.4 1.85

Quickbird Panchromatic 16.5 0.6 1.56-3 days
Multispectral 16.5 2.4

IKONOS Panchromatic 11 1 1.56-3 days
Multispectral 11 4

RapidEye” Multispectral 77 x 1500 6.5 1day

EO-1 ALl 60 30 16 days
Hyperion 7.5 30

Terra ASTER 60 15,30,90 4-16 days

Terra/Aqua MODIS 2300 250,500,1000 At least twice daily

GOES Variable 1,48 Real time

ALOS PRISM 35 4 Several times per year

SPOT-4 Panchromatic 60-80 10 11 times every 26 days
Multispectral 60-80 20

SPOT-5 Panchromatic 60-80 5 11 times every 26 days
Multispectral 60-80 10

Kompsat Panchromatic 15 1 2-3 days
Multispectral 15 15

Landsat-5 TM Multispectral 185 30 Every 16 days
TM Thermal 185 120

Landsat-7 ETM+panchromatic 185 15 Every 16 days
ETM+ Multispectral 185 30
ETM+ Thermal 185 60

NOAA AVHRR 2399 1100 Several times per day

Envisat MERIS 575 300 2-3 days

Radarsat-2 Ultra-fine 20 3 Every few days
Quad-polfine 25 8
Quad-pol standard 25 25

Radarsat-1 Wide 150 30
Extended low 170 35

ERS-2 100 30 35 day repeat cycle

Envisat ASAR standard 100 30 36 day repeat cycle
ASAR ScanSAR 405 1000

TerraSAR-X Spotlight 10 1 11-day repeat cycle
Stripmap 30 3 2.5-day revisit capability
ScanSAR 100 18
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have multi-source, multi-scale, high-dimensional, dynamic-state,
isomer, and non-linearity characteristics.

The multi-source characteristic of remote-sensing big data
is obvious. The fundamental reason for the multi-source
characteristic is that we often use different instruments to acquire
the data. Furthermore, the physical meanings of the multi-source
data may be totally different. From the perspective of the imaging
mechanism, the main data types are optical data, microwave
data, and point cloud data. Other types of remote sensing data
include stereographic pairs created from multiple photographs
(often used to create three-dimensional or topographic maps)
and gravity data that show the gravity situation and the amount
of water available in one region. The multi-source data allows
us to use and understand information from multiple viewpoints.
However, they sometimes cause confusion in that we need to
decide which type is the most appropriate and effective for a
particular application.

Reference is often made to the multiple scales of the big data
of remote sensing. The observation scale, which is also called the
measurement scale, refers to the resolution, time interval, spectral
range, solid angle or polarization direction (Wu and Li, 2009).
Spatial scale refers to the spatial resolution and can be thought
of as the size of the smallest objects that can be distinguished by
sensors. A good observation often depends on the appropriate
spatial scale. As a result, we have large numbers of satellites and
sensors with different spatial resolutions. From the perspective of
spatial resolution, there are the high-resolution satellites such as
QuickBird (resolution of 0.61 m), mid-resolution satellites such
as Landsat satellites (30 m), and low-resolution satellites such as
MODIS (250 m). The multi-scale characteristics of the remote-
sensing big data mean that it is important to select an appropriate
scale and to consider scale effects in data analysis and data
processing.

The high-dimensional characteristic of remote-sensing big
data is mainly reflected in the spectral and temporal dimensions
of the data. As examples, the AVIRIS system provides 224 spectral
bands in the 0.4-2.5 pum region and MODIS with a 1-day
revisit cycle provides long-time-series data. Analysis of high-
dimensional image data presents both new possibilities and new
challenges. High-dimensional data provide us more information
about the surface of the Earth but also raise many difficulties.
The first difficulty is the curse of dimensionality (Bellman,
1957). The complexity of many existing data mining algorithms
is exponential with respect to the number of dimensions.
With increasing dimensionality, these algorithms soon become
computationally intractable and therefore inapplicable in many
real applications. The second difficulty is heterogeneity. Having
too few points in high-dimensional data makes efficient learning
difficult in what is called the empty space phenomenon. In
fact, the empty space phenomenon is a special case of the
heterogeneity of big data. Apparently, high-dimensional data are
far more difficult to analyze than low-dimensional data in most
cases.

The big data of remote sensing always reflect a dynamic
state because the Earth surface changes and the satellites move.
The dynamic state of the remote-sensing big data includes both
stationary parts and non-stationary parts. The changes caused

by the Earth orbiting the Sun and rotating about its own
axis (e.g., the alternation of seasons and climate changes) are
stationary from the point of view of a stochastic process. Changes
caused by human activities and natural disasters, such as the
evolution of a city and volcanic eruptions and earthquakes, are
non-stationary stochastic processes. The stationary features of
the remote sensing big data show us the explicit law that is easily
represented by statistical method. However, the non-stationary
feature increases the difficulty of analysis of the big data. Methods
that are more advanced are required to find the implicit law
hidden within the remote-sensing big data.

The isomer characteristic of remote-sensing big data often
refers to different data representation structures for the same
geographic coordinates. The most obvious isomer data are raster
data and vector data. The raster data type consists of rows
and columns of cells. Each cell stores a single value. Raster
data can be images comprising individual pixels. Vector data
express geographical features and geometrical shapes as vectors.
They are often used by the Geographic Information System
(GIS), and many are derived from remote-sensing raster data.
Raster data such as an optical image are usually stored as
matrix data structures on a computer. Vector data, however, are
more complicated and are stored in a variety of data structures,
such as linked lists, trees, and graphs. In some cases, one type
of structured data can partly transform into another type of
structured data. As an example, after we extract road and building
information from raster data, we often represent the extracted
information by vector data. When the isomer characteristic of
the data is considered, it is not easy to explore the relationships
between the different types of data, although isomer data do
provide us more information than one single type of data. For
example, the registration between image data and a vector map
is usually far more difficult than the band registration of multi-
source optical images. Overall, the variety of data challenges the
processing and management of the isomer data.

When we take the Earth and our natural environments as
systems, they always have non-linear characteristics. As result,
Earth observation data acquired employing remote sensing
methods have nonlinear characteristics. For example, time series
of remote sensing data are typically nonlinear and noisy. Such
time series usually cannot be studied satisfactorily by linear time
series analysis. Although traditional linear techniques are useful
for studying characteristic oscillations in detail, these methods
fail to detect any non-linear correlations present and cannot
provide a complete characterization of the underlying dynamics.
Therefore, we need advanced non-linear analysis methods that
are suited to the characterization of the dynamics in a noisy, high-
dimensional and under-determined system. Furthermore, only
the successfully characterization of irregular time series from
mathematical models based on non-linearity will allow us gain
an insight into the nature of remote-sensing big data.

It is important that we consider the multi-source, multi-
scale, high-dimensional, dynamic-state, isomer, and non-linear
characteristics of remote sensing data when using remote
sensing to understand geo-processes, and the characteristics are
fundamental assumptions and priors when we analyze remote-
sensing big data and extract information from the data.
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3. Typical Applications

There are already many applications of remote-sensing big data.
For example, Google Maps'* and Google Earth!® have for years
been two of the most popular Internet mapping applications.
Both Google Earth and Google Maps access the Google Earth
Engine, a platform providing an extremely large repository of
geo-referenced satellite imagery, terrain data, and vector data
(such as borders, roads, population centers, soil information and
climate information). In time-series analysis, a new algorithm
(Zhu et al., 2015) that generates synthetic LandSat images based
on all available LandSat data has been developed. The algorithm
has provided promising results in filling gaps and removing
cloud, shadow and snow. In research on environmental systems,
remote-sensing big data are playing a key role in providing
accurate estimates of surface fluxes of greenhouse gases with
accurate estimates of associated uncertainties at intermediate
spatiotemporal scales (Miller et al., 2014; Zscheischler et al.,
2014). In machine learning, a deep architecture that is capable of
learning feature representations from both labeled and unlabeled
data has attracted the attention of many researchers (Hinton
and Salakhutdinov, 2006). The architecture incorporates both
unsupervised pre-training and supervised fine-tuning strategies
to construct models (Bengio et al., 2007); unsupervised stages
learn data distributions without using label information and
supervised stages perform a local search for fine tuning. Deep
learning is also applied in many remote-sensing data analyses
(Han et al,, 2015; Tang et al., 2015). Employing remote-sensing
big data, a Hessian-based method (Kalmikov and Heimbach,
2014) has been successfully applied to uncertainty quantification
in estimation of the global ocean state. Data assimilation
technologies that are often closely related to remote-sensing big
data are developing rapidly in the research areas of the ocean
(Kalmikov and Heimbach, 2014; Coelho et al., 2015), hydrology
(Panzeri et al., 2015; Yucel et al., 2015), atmosphere (Barcons
etal,, 2015), soil (Liang et al., 2015), and agriculture (Huang et al.,
2015). Many of these applications consider the multi-source,
multi-scale, high-dimensional, dynamic-state, isomer, and non-
linear characteristics of remote-sensing big data.

4. Discussion

As discussed above, remote-sensing big data have multi-
source, multi-scale, high-dimensional, dynamic-state, isomer,

googlemaps. [Online]. Available: https://maps.google.com
3googleearth. [Online]. Available: https://earth.google.com
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