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Environmental systems, whether they beweather patterns or predator–prey relationships,

are dependent on a number different variables, each directly or indirectly affecting the

system at large. Since not all of these factors are known, these systems take on non-linear

dynamics, making it difficult to accurately predict meaningful behavioral trends far into

the future. However, such dynamics do not warrant complete ignorance of different

efforts to understand and model close approximations of these systems. Toward this

end, we have applied a logical modeling approach to model and analyze the behavioral

trends and systematic trajectories that these systems exhibit without delving into their

quantification. This approach, formalized by René Thomas for discrete logical modeling

of Biological Regulatory Networks (BRNs) and further extended in our previous studies as

parametric biological linear hybrid automata (Bio-LHA), has been previously employed for

the analyses of different molecular regulatory interactions occurring across various cells

and microbial species. As relationships between different interacting components of a

system can be simplified as positive or negative influences, we can employ the Bio-LHA

framework to represent different components of the environmental system as positive

or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete

and continuous combined) modeling which lead to refinements among the fore-casted

behaviors in order to find out which ones are actually possible. We have taken two

case studies: an interaction of three microbial species in a freshwater pond, and a more

complex atmospheric system, to show the applications of the Bio-LHA methodology for

the timed hybrid modeling of environmental systems. Results show that the approach

using the Bio-LHA is a viable method for behavioral modeling of complex environmental

systems by finding timing constraints while keeping the complexity of the model at a

minimum.

Keywords: hybrid modeling, environmental systems, linear hybrid automata, René Thomas formalism, network

analysis, SMBioNet, GenoTech, HyTech
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1. Introduction

1.1. Environmental Systems
Environmental systems are a broad category of systems which
interact or have an impact on the environment. These systems
can range from different chemical processes found in nature
to large scale interactions between different biotic and abiotic
factors, as represented in the modeling studies of Lake Balaton
(Somlydy, 1982; Ttrai et al., 2000). In contrast to more traditional
systems, as studied in other physical sciences, environmental
systems are tightly integrated with each other, forming different
sub-domains within each system (Hanrahan, 2010). As such, they
are difficult to study in isolation since their behavior changes with
respect to other environmental factors working in conjunction
with each other (Hanrahan, 2010).

1.2. Modeling of Environmental Systems
Because of their broad spectrum, different approaches have
been employed in the modeling and analysis of environmental
systems over the years. The approaches can be grouped into
stochastic and probabilistic (Refsgaard et al., 2007; Gottschalk
et al., 2010; Sun et al., 2014), statistical (Refsgaard et al.,
2007; Uusitalo, 2007; Berie, 2014), differential (Casulli and
Zanolli, 2002; Coulthard et al., 2005; Hanrahan, 2010), or a
combinations of these methodologies. In recent years, different
artificial intelligence (AI) approaches have also been applied,
such as machine learning (Wiley et al., 2003; Kanevski et al.,
2004) and agent based modeling (Sengupta and Bennett, 2003;
Crooks et al., 2008). However, certain aspects of the system elude
these approaches, such as the larger view of the behaviors of the
system–statistical methods do not represent the dynamics of the
system, probabilistic approaches lack deterministic predictability,
and differential and AI models suffer from high levels of
complexity when modeling realistic parameters.

1.3. Our Contribution
In this paper, we present a hybrid modeling approach using
linear hybrid automata for the behavioral modeling of the
system. We have already applied this approach in the domain
of systems biology, particularly in the modeling of biological
regulatory networks (Ahmad et al., 2012; Aslam et al., 2014).
The advantage of this approach is that it allows the modeling
of large regulatory systems, assisting in the inference of the
dynamics of the system, without having to deal with the exact
rates or parameters governing the said system. To demonstrate
our approach, we have applied our framework on two case
studies, a microbial system in a freshwater pond, and a slightly
more complex atmospheric system (adapted from Seppelt, 2007),
explained below. For the sake of readability, the given examples
only deal with a small number of components, but the presented
methods are applicable on larger systems as well.

1.4. Case Study 1: Microbial Population
Consider the microbial populations of three particular microbes
in a freshwater pond. The first of these microbes, labeled M1,
generates a certain product which acts as a nutrient for the second
microbe, labeledM2. However, the microbeM2 produces a toxin

which is harmful to the first microbe, M1. Apart from the toxin,
the microbe M2 also produces a nutrient for the third microbe,
M3. The third microbe acts as a dominant predator instead, and
generates a toxin which is harmful to both the first microbe,M1,
and the second microbe M2. However, in order to sustain itself,
the third microbe can also produce its own nutrients, but only
when it is present in sufficient numbers to form colonies.

1.5. Case Study 2: Atmospheric System
Consider a slightly simplified version of the atmosphere,
particularly pertaining to the interconnectedness of the
temperature of the planet and the water cycle. Whenever the
sun shines, it increases the temperature, and makes evaporation
possible (provided that there is a source of water available). As
the temperature increases and the water evaporates, clouds begin
to form which can produce two effects: (i) the sun gets blocked,
lowering the temperature; and (ii) precipitation is produced
which resupplies the water sources for future evaporation.
However, persistent high temperatures can increase the air
temperature, blocking condensation, and cloud formation.
Likewise, persistent evaporation without precipitation can drain
the available water source(s).

1.6. Plan of the Paper
We begin with the Methodology Section where we describe the
work flow of our approach, the formalisms and frameworks used,
and its step by step application on Case Study 1. Following it is
the Results Section in which we apply the given methodology
on Case Study 2, ending with the Discussion Section where we
discuss the applicability of our approach, its advantages, and its
disadvantages. A list of glossary items containing technical terms
and their short descriptions are also provided at the end of this
article (Table A1).

2. Methodology

Our methodology focuses on building an initial discrete model of
the system in question, using the Kinetic Modeling formalism set
forth by Kauffman in the late 1960s (Kauffman, 1969) and then
by Thomas in the late 1970s (Thomas, 1978, 1979, 1998; Thomas
et al., 1995) for biological regulatory networks. The basic idea of
the approach was that natural phenomena are often observable
when there is a switch from a relatively stable mode to another
different mode.

This approach appeals for discrete modeling with states and
transitions where time elapses in the states and transitions
between these states are instantaneous. The important data being
the time spent in one state whatever the evolution in this
state actually is, abstraction can then be done in order to take
into account lengthening actions besides almost infinitely fast
switches. This stands for the hybrid feature. Thus, a discrete
model allows us to observe the dynamics of the system, in the
form of a state graph, using arbitrary discrete values to represent
different levels of activities each entity or object can exhibit. Once
the discrete dynamics of the system are obtained, Parametric
Biological Linear Hybrid Automata (Bio-LHA, Ahmad et al.,
2006; Ahmad, 2009) can be constructed on targeted trajectories to
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isolate conjuncted parametric delay constraints governing these
trajectories (Ahmad et al., 2007, 2008; Ahmad and Roux, 2010).
These delays assist us in inferring different temporal constraints a
systemmust follow to generate the specified trajectory, and which
constraints can be targeted to destabilize the said trajectory. The
whole process is represented in Figure 1 and can be broken into
the following steps:

• The pathways pertaining to the system are extracted from the
literature and abstracted to the form of a discrete regulatory
network. These pathways can comprise of simple linear
processes to complex and dense interactions such as feedbacks,
feed forward loops, branching processes etc.

• The regulatory network then undergoes model checking to
generate sets of logical parameters which satisfy particular
system specific observations extracted from the literature.

• The parameters are loaded into the regulatory network to
generate discrete dynamics of the system (also called discrete
state space), represented as a directed state graph.

• Network analysis, in particular the shortest path betweenness
centrality calculation, is conducted for each state of the
state graph to isolate specific trajectories comprising of states
satisfying particular centrality constraints.

• The isolated trajectories are then converted to respective Bio-
LHAs which are then used to find the delay constraints in the
form of path constraints (for acyclic trajectories), invariance
kernels (for cyclic trajectories), or convergence domains (for
asymptotic trajectories).

• These constraints are then refined to form pairwise relations
between the respective parameters governing the activation or
inhibition delay of the involved entities.

In order to properly understand the requirements and
application of the approach, we detail the mathematical

definitions and their application on Case Study 1 (Microbial
population) in the following subsections.

2.1. Discrete Modeling
The formal definitions of the René Thomas kinetic logic
formalism, adapted from Thomas (1979), Thomas and d’Ari
(1990), Ahmad et al. (2012), and Paracha et al. (2014), are
provided below:

Definition 1. [Regulatory Network]. A directed graph G =

(V,E) is a regulatory network (RN) when,

• V, with a typical element v, is the set of vertexes,
• E, with a typical element e = (vm, vn), is the set of edges directed

from a source vertex vm to the target vertex vn,
• G+(v) represents the set of the targets of the vertex v, while

G−(v) represents the set of its sources,
• each edge is labeled by the pair (jvm,vn , ηvm,vn ) such that jvm,vn is

the positive integer representing the concentration level required
for the interaction, and ηvm,vn ∈ {+,−} shows the type of
interaction with ‘+’ being activation and ‘−’ being inhibition,

• ∀vn ∈ G+(vm), each jvm,vn ∈ {1, 2, . . . ,maxvm} where maxvm
is less than or equal to the number of vertexes in G+(vm),

• each v ∈ V has a set Zv = {0, 1, . . . ,maxv} representing its
discrete abstracted concentration levels.

Figure 2 shows the regulatory network of Case Study 1.
Here the set V = {M1,M2,M3} is the set of vertexes,
representing the three entities (discretized populations of
microbes), and E = {(M1,M2), (M2,M1), (M2,M3), (M3,
M2), (M3,M1), (M3,M3)} is the set of edges, each labeled with
a positive integer and sign. For example, the edge e = (M2,M3)
has jM2,M3 = 1 and ηM2,M3 =“+.” The integer represents the
level of the source entity required to perform the action, whereas

FIGURE 1 | The work-flow of the methodology applied in this study.
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the sign shows the type of action: “+” for activation and “−”
for inhibition. Thus, the source entity for “+” is the activator,
and for “−” the inhibitor. Furthermore, continuing the example,
the vertex M3 has maxM3 ≤ 3 as G+(M3) = {M1,M2,M3}.
Likewise, G−(M3) = {M2,M3}.

Components of a RN are autonomous processes, with each
having different values (discrete abstracted concentration levels)
and variables depending upon the interactions with the other
components in the dynamic system. At each moment, the whole
system is in a given state represented by the tuple formed by the
values of each component. In order to understand the dynamics
of the discrete model, the states of the regulatory network and the

FIGURE 2 | Regulatory network of Case Study 1: Microbial population.

resources and logical parameters of each entity in the respective
state are formally defined as,

Definition 2. [State]. A state of an RN is an ordered tuple of the
discrete levels of each entity represented as (sxv )∀v∈V ∈ S where,

• S = 5v∈VZv is the set of all states, and
• xv ∈ Zv represents the discrete level of the entity v ∈ V.

Thus, a state labeled “102,” representing the state (1, 0, 2) for
Case Study 1 RN (Figure 2), would represent the discrete levels
asM1 = 1,M2 = 0,M3 = 2, in that order.

The resources of one component stand for the set of the
components (possibly including itself) that are positively acting
on it at the moment. This is again dynamic since it depends on
the current value of each of the components, as well as their
interactions with the given component. Formally,

Definition 3. [Resources]. For a given state of an RN, the resource
set Qxvn for an entity vn ∈ V at concentration level xvn is defined
as Qxvn = {vm ∈ G−(vn)|(xvm ≥ jvm,vn ∧ ηvm,vn =‘+’) ⊗ (xvm <

jvm,vn ∧ ηvm,vn =‘−’)}.

For the state (1, 0, 2), the resource set Q1M1 is {M2} as M2
cannot inhibit it below its respective discrete level “1” while M3
is inhibiting it above its respective level “2,”Q0M2 is {M1} asM1 is
activating it at level “1,” andQ2M3 is {M3} asM3 is a self-activator
at level “2.”

Definition 4. [Logical Parameters]. The set of logical parameters
of an RN “G” is defined as K(G) = {Kvm (Qxvm ) ∈ Zvm ∀ vm ∈ V}.

The meaning of the logical parameters is that it defines the
discrete level that the entity will evolve toward, given the set of
resources for the entity available. So, for example, if the parameter

FIGURE 3 | Discrete approximation of the continuous evolution pertaining to concentration of an entity.
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KM2{M1} is set to “0” (meaning that in the presence of both M1
andM3, the microbeM2 will still decline in population) then the
level M2 will evolve toward “0” through a step function, similar
to the those shown in Figure 3.

The parameter Kvm governs the evolution of the entity vm via
the evolution operator “�” (Bernot et al., 2004) against the rule:

xvm � Kvm (Qxvm ) =







xvm + 1 if xvm < Kvm (Qxvm );
xvm if xvm = Kvm (Qxvm );
xvm − 1 if xvm > Kvm (Qxvm ).

Table 1 shows all the logical parameters of Case Study 1. As a
general rule, when only the activators of an entity v are present
then the respective entity approaches its maxv, whereas when
only the inhibitors are present then it approaches “0.” Both
of these cases are termed as trivial parameters. Once selected,
the logical parameters are then plugged into the respective RN,
generating a new directed graph reflecting the discrete dynamics
of the system, formally defined as:

Definition 5. [State Graph].The state graph of an RN is a directed
graph SG = (S,T) where,

• S is the set of states as defined in Definition 2, and
• T ⊆ S × S is the set of unlabeled edges representing transitions

between states such that for each ordered transition s → s′,
∃ vm ∈ V such that sxvm 6= s′xvm , s

′
xvm

= sxvm � Kvm (Qxvm ),

and ∀ vn ∈ V \ {vm}, sxvn = s′xvn .

In summary, each state of the state graph will differ from the
other states in at least one entity level. The transitions between the
states, on the other hand, will be defined by the logical parameters

TABLE 1 | Case Study 1: Parameter table.

Parameters Resources Values

Allowed Generated Selected

KM1

{} 0 0 0

{M2} 0,1 0 0

{M3} 0,1 0,1 0

{M2,M3} 1 1 1

KM2

{} 0 0 0

{M1} 0,1 0,1 0

{M3} 0,1 0,1 0

{M1,M3} 1 1 1

KM3

{} 0 0 0

{M2} 0,1,2 2 2

{M3} 2 2 2

{M2,M3} 2 2 2

The logical parameters are listed under “Parameters,” with the respective resource sets

under “Resources,” and parameter values under “Values.” Allowed Values are the ones

that are possible according to logical rules (e.g., the more resources you have, the greater

parameter you get). Generated values are the ones that have been generated by the

SMBioNet software (see Section 2.2.1) according to some expected properties of the

dynamics. Selected Values are the ones we have chosen for our example of Case study 1.

and available resources of the entities, and will have a target state
differing from the source state in exactly one entity level. Figure 4
shows the state graph of Case Study 1 using the logical parameter
set given in the “Selected” column in Table 1. As an example,
the state transition (1, 0, 0) → (1, 1, 0) differs in the level of
M2 only, and is only possible because of the logical parameter
KM2{M1,M3} = 1. Using the state graph individual behaviors
of the system can be studied in the form of trajectories, formally
defined as:

Definition 6. [Trajectory]. A trajectory is defined as a successive
series of transitions in a state graph.

Cyclic trajectories, representing oscillatory behavior, always
end up in the starting state si ∈ S, whereas acyclic trajectories
end at any state other than the starting (sn 6= si). A divergent
trajectory shares transitions up to a certain extent with another
trajectory, and then takes different transitions to different
states. The length of the trajectory equals the total number of
transitions in the said trajectory. The state graph can also be
used to explain deadlocked states as states which do not have
any transitions to other states. In practice, such states usually
represent configurations of the system which are not favorable in
terms of behavior. In Figure 4, the state (0, 0, 2) is the deadlock
and represents the domination of the microbeM3 over the other
two species.

2.2. Optimization of Discrete Modeling
2.2.1. Model Checking
As mentioned earlier in this section, the Hybrid Modeling targets
specific trajectories of the RN, present in its state graph. However,
the state graph contains many trajectories, and is dependent
on a specific set of logical parameters. Table 1 shows different
values that are allowed for each of the logical parameter, with
each possible set generating different state graphs and behaviors.
Bernot et al. (2004) pioneered an application of automated model
checking, specifically Computation Tree Logic (CTL), to select
particular sets of logical parameters for discrete modeling. Model
checking is an exhaustive automated computational technique
which is used to verify different properties in a given system
(Clarke et al., 1999). In the SMBioNet software (Bernot et al.,
2004; Khalis et al., 2009), the system is provided in the form of an
RN, and the observations or known behaviors of the system are
encoded in CTL. The software then checks all logical parameters
to find and select the ones which can generate the encoded
observations.

For Case Study 1, two observations were selected for the
screening of logical parameters: from an arbitrary starting state
(1, 0, 0), (i) there should exist at least one trajectory which will
return to this state to form a cycle, and (ii) there should be at
least one trajectory which will end up in the deadlock. Using the
general rule of logical parameters described in Section 2.1 after
Definition 4 (“Allowed” column in Table 1), coupled with the
above observations in CTL, SMBioNet generated eight possible
logical parameter sets, shown under the “Generated” column
in Table 1. A single set is then selected from these generated
values, given under the “Selected” column, which is then plugged
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FIGURE 4 | Centrality applied state graph of Case Study 1: Microbial population. The cycle selected for hybrid modeling is shown via blue state transitions.

into the RN. The source file used for the generation of these
sets is provided in the Supplementary Materials file. Details of
SMBioNet and CTL can be studied in-depth in the excellent
review article by Khalis et al. (2009).

2.2.2. Network Analysis
A state graph of a particular system may contain any number
of trajectories, depending on the number of entities and the
state transitions, which makes the behavior of the system
non-deterministic between the said trajectories. As such,
selecting specific trajectories for hybrid modeling becomes
difficult, especially in the absence of available observations.
To assist in the selection of trajectories, we employ a
network analysis technique, shortest path betweenness
centrality analysis, to isolate trajectories. Adapted from
Juncker and Schreiber (2008),

Definition 7. [Shortest Path Betweenness Centrality]. The
shortest path betweenness centrality (Cspb), also defined as
betweenness centrality, measures the occurrence of the a particular
vertex v ∈ V in all the shortest paths between other vertexes.

Mathematically, it is computed as Cspb =
∑

p 6= q 6= r ∈ S
σpr(q)

σpr

where,

• σpr is the total number of shortest trajectories from the state p to
r, and

• σpr(q) is the total number of shortest trajectories from p to r
which pass through q.

In short, Cspb measures the frequency of the occurrences of each
state in the trajectories between other states, and as a fraction,
only ranges from “0” to “1.” This allows for a relative measure
of the states amongst themselves, with states having Cspb of at
or near “1” occurring more frequently in the dynamics and

trajectories of the system, than states which have their Cspb at
or near “0.” The significance of this measure also increases with
the fact that Cspb of deadlock states automatically becomes zero
because all trajectories get stuck in the deadlock state and do
not pass through it to reach any other state. This reflects the
tendency of oscillating systems to avoid deadlocked states. In
comparison to other centrality analyses available in the field of
network analysis,Cspb is the onlymeasure which is able to cater to
both of these properties simultaneously. For example, closeness
centrality measure (Juncker and Schreiber, 2008) caters to lower
numerical values for deadlocked states, but does not cater to the
relevance of the states themselves in terms of cyclic trajectories,
thus not solving non-determinism. Likewise, the eccentricity
centrality will represent the overall reachability of a particular
state from other states, but will not contribute toward the solution
of non-determinism in terms of selecting preferred trajectories in
the system.

The table containing the Cspb of each state of the state graph
for Case Study 1 is provided in the Supplementary Materials file,
and Figure 4 is color coded to reflect higher measures of Cspb

with green, and lower levels with red. For this case study, a cyclic
trajectory comprising of the states with the highest centralities
was selected for hybrid modeling, as this would theoretically
reflect the most favorable and most probable behavior of the
system based on the frequent occurrences of the constituent
states. We begin with the state with the highest Cspb, in this case
state (1, 1, 0), and select the state with the highest centrality from
its target states, in this case (1, 1, 1). We then select the state with
the highest centrality from the targets of (1, 1, 1), which is (0,
1, 1). Continuing onwards, the trajectory builds toward the state
(0, 0, 1), (0, 0, 0), (1, 0, 0), and finally back to the starting state
(1, 1, 0), completing a cycle with the highest cumulative Cspb.
This cycle, (1, 1, 0) → (1, 1, 1) → (0, 1, 1) → (0, 0, 1) →
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(0, 0, 0) → (1, 0, 0) → (1, 1, 0), is represented in Figure 4 via
blue transitions between the states.

2.3. Hybrid Modeling
As mentioned earlier in this section, the hybrid model is
constructed on particular trajectories of the state graph. In
the approach we use the Parametric Biological Linear Hybrid
Automata (Bio-LHA) to convert the selected trajectory into a
hybrid model by merging the constructed discrete system with
time constraints. The formal definition of Bio-LHA, adapted
from Ahmad et al. (2007); Ahmad and Roux (2010) is given
below.

Let C=(X, P), C≤(X, P), and C≥(X, P) be the set of constraints
using only =, ≤, and ≥, respectively. Here, X and P are the sets
of real valued variables and parameters, respectively.

Definition 8. [Parametric Bio Linear Hybrid Automaton (Bio-
LHA)]. A parametric bio linear hybrid automaton B is a tuple
(L, l0,X, P,E, Inv,Dif ) where,

• L is a finite set of locations,
• l0 ∈ L is the initial location,
• P is a finite set of parameters (delays),
• X is a finite set of real-valued variable (clocks),
• E ⊆ L× C=(X, P)× 2X × L is a finite set of edges with typical

element e = (l, g,R, l′) ∈ E representing an edge from l to l′

with guard g and the reset set R ⊆ X. The guard is the timing
condition required for the edge to be used for transition, with the
clocks used in g ∈ R,

• Inv : L → C≤(X, P) ∪ C≥(X, P) assigns an invariant to any
location,

• Dif : L× X → {−1, 0, 1} maps each pair (l, h) to an evolution
rate.

The selected cyclic trajectory (cycle) was converted into the Bio-
LHA shown in Figure 5. The locations represent the states of
the system, with state (0, 0, 0) being the arbitrary initial point,
prominent via the diagonal arrow. Every entity v of the system
has two time parameters each, the activation delay d+v , and
the inhibition delay d−v . These delay parameters respectively
represent the time it takes for the entity to activate and inhibit,
as graphically shown in Figure 6. Following the delay parameters
are finite real-valued variables hv ∈ X, which represent individual
clocks unique to each entity of the system and used to measure
the time for each entity. Each location has an invariant, or the
timing restrictions that allow the system to remain within it.
The Bio-LHA has to transition to another location before the
invariant of the current location is falsified, else the constructed
Bio-LHA is erroneous. Likewise, each location transition also has
timing restrictions, known as guards, which allow the firing of the
transition only when they are true. Lastly, each clock variable has
a specific rate in each location: ḣv = 0 for when the respective
entity of the clock is not evolving, ḣv = 1 when the respective
entity is being activated, and ḣv = −1 when the respective
entity is being inhibited. The rates throughout the state graph
can be fixed based on the difference of discrete levels of each
entity of the state either with its successors, or the successors
of its successors. The later method is termed “anticipation”
and accurately reflects the interactions between biological
entities, but can be forgone for non-biological environmental
systems. Thus, for Case Study 1, the rates were based on
anticipation.

FIGURE 5 | Bio-LHA of Case Study 1: Microbial Population.
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FIGURE 6 | Piecewise affine linear approximation of the continuous evolution of the entity, forming the basis of the hybrid model.

Collectively, the semantics of the of the Bio-LHA are
represented as a transition system, adapted from Ahmad et al.
(2007) and defined below:

Definition 9. [Semantics of Bio-LHA]. Let γ be a valuation for
the parameters P and ν represents the values of clocks in a location.
The (T, γ )-semantics of a parametric Bio-LHA B is defined as
a timed transition system B = (S, s0, T,→) where: (i) S =

{(ℓ, ν) | ℓ ∈ L and ν |H Inv(ℓ)}, (ii) s0 is the initial state, and
(iii) the relation→⊆ S × T × S is defined for t ∈ T as:

• discrete transitions: (ℓ, ν)
0
−→ (ℓ′, ν′) iff ∃(ℓ, g,R, ℓ′) ∈ E such

that g(ν) = true, ν′(h) = 0 if h ∈ R and ν′(h) = ν(h) if h /∈ R.

• continuous transitions: For t ∈ T
∗, (ℓ, ν)

t
−→ (ℓ′, ν′) iff

ℓ′ = ℓ, ν′(h) = ν(h) + Dif (ℓ, h) × t, and for every t′ ∈

[0, t], (ν(h) + Dif (ℓ, h) × t′) |H Inv(ℓ), where |H represents
satisfaction operator.

In short, the discrete transitions show the transitioning between
locations, and is instantaneous. On the other hand, continuous
transitions take place within the same location and allows the
time to elapse. In Figure 5, the Bio-LHA will remain in the initial
location l0 = (0, 0, 0) as long as the clock variable hM1 remains
less than or equal to d+M1, the activation delay ofM1. The rate for

that clock is ḣM1 = 1, given below the invariant. Once the clock
variable equals d+M1, the continuous transitions can no longer
occur. At the same time the guard on the transition hM1 == d+M1
becomes true and allows a discrete transition from (0, 0, 0) to
(1, 0, 0), resetting the clock hM1 to “0” in the process, provided
that the invariant of the next location (1, 0, 0) is not falsified.

The construction of the Bio-LHA further allows the
temporal (time based) analysis of the modeled trajectory. The
locations themselves represent independent temporal zones,
and collectively represent the temporal state space containing

discrete transitions between the temporal zones. In this paper,
we analyze the invariance kernel of the hybrid models, based on
the temporal state space. The invariance kernel represents the
entity activation and inhibition timing constraints governing the
modeled cyclic oscillating trajectory. Thus, viability is the core of
this representation, and can be defined as (adapted from Aubin,
1991; Ahmad et al., 2007; Ahmad, 2009).

Definition 10. [Viability]. Suppose that all trajectories emanating
from a particular initial state remain bounded within some
constraints, making the trajectories always staying in one sub-
domain: namely the viability domain. Such trajectories are called
viable trajectories.

The invariance kernel itself is formally defined as (Adapting
from Ahmad et al., 2007; Ahmad and Roux, 2010),

Definition 11. [Invariance Kernel]. Let φ(t) ∈ S∀t ≥ 0 be a
viable trajectory in the temporal state space S. The largest subset
K(S) is the invariance kernel if a trajectory starting at point p is
viable in K, ∀p ∈ K.

The algorithm given in our previous study (Ahmad et al.,
2007), was utilized to find the invariance kernel for this Bio-LHA.
However, the invariance kernel did not converge, indicating that
the modeled trajectory may be asymptotic. For such trajectories,
the convergence domain analysis (Ahmad and Roux, 2010)
provides an over approximation of the delay constraints, within
which the trajectory will converge asymptotically. Formally,

Definition 12. [Convergence Domain]. The subset K(S) is called
the convergence domain if ∀p ∈ K, the trajectory starting at point
p converges in an asymptotic manner.
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TABLE 2 | The relation matrix of Case Study 1.

Relation Matrix

d+
M1

|d−
M1

| d+
M2

|d−
M2

| d+
M3

|d−
M3

|

d+
M1 =

|d−
M1| ≥,≤ =

d+
M2 ≥,≤ ≥,≤ =

|d−
M2| ≥,≤ ≥,≤ ≥,≤ =

d+
M3 ≥,≤ ≤ ≥,≤ ≥,≤ =

|d−
M3| ≤ ≥,≤ ≥,≤ ≥,≤ ≥,≤ =

Refined pairwise relations between the parameters of the modeled cycle in the form of a

matrix. The matrix is read row first, column second.

The convergence domain analysis for Case Study 1 showed
12 conjuncted delay constraints, provided as a table in the
Supplementary Materials file. Further analysis of the delay
constraints, using a linear constraint solver, allowed us to
generate pairwise delay constraint relations between the delay
parameters which are given as a matrix in Table 2. The matrix
is read row first, column second, from which we can see that
the delay relations |d−M3| ≤ d+M1 and d+M3 ≤ |d−M1| are the only
significant relations because they represent the constraints which
force the system to remain asymptotically within the given cycle.
Closer inspection shows that if the constraint |d−M3| ≤ d+M1 is
violated, then the microbe M3 will not be inhibited before the
activation of microbe M1, understandable as M3 inhibits M1,
but it will also nudge the system toward the dominance of M3
over M1 and M2. In terms of ecological balance, this represents
how a species can become invasive, displacing other species from
the habitat and disrupting other processes dependent on the
displaced species. Likewise, if the second constraint d+M3 ≤ |d−M1|

is violated, thenM2 will be able to inhibitM1 and will in-turn be
inhibited before M3 becomes active, diverging into a completely
different cycle from the one modeled as the Bio-LHA which
can represent the replacement of a particular type of ecological
balance with another.

2.4. Software
The software SMBioNet (Bernot et al., 2004; Khalis et al.,
2009) was used to isolate the logical parameters for both case
studies. These parameters, together with the respective regulatory
networks, were then constructed in the tool GenoTech (Ahmad
et al., 2012), to generate the state graph of the trajectories.
Cytoscape (Shannon et al., 2003) was used to conduct centrality
analysis of the state graph to isolate particular trajectories.
Finally, HyTech (Henzinger et al., 1997) was used to construct
the Bio-LHA and analyze the delay constraints of the isolated
trajectories.

3. Results

In this section we apply the procedure detailed in the previous
section on the slightly larger and more complex Case Study 2,
described in Section 1.5.

FIGURE 7 | Regulatory network of Case Study 2: Atmospheric system.

3.1. Regulatory Network and Logical Parameters
The regulatory network was constructed for Case Study 2,
with particular focus on satisfying the given specifications. Its
regulatory network, shown in Figure 7, was constructed in the
same manner, and shows the positive effects of Sun Shine on the
Temperature and Evaporation, the positive effects of the Earth
Temperature on Evaporation, the positive effect of Evaporation
on Cloud production, the positive effect of Clouds on Water
via precipitations, the contribution of the Water source toward
Evaporation, as well as the negative effects of Clouds on Sun Shine
and themselves (because of precipitation), that of Temperature
on Clouds, and of Evaporation on the Water source. For ease
in analysis, the names of the entities were shortened to “Temp,”
“Sun,” “Evap,” and “Water” for “Temperature,” “Sun Shine,”
“Evaporation,” and “Water Source,” respectively. Thus, the formal
description of Case Study 2 yields the sets:

• V = {Temp, Sun,Evap,Clouds,Water}, and
• E = {(Sun,Temp), (Sun,Evap), (Temp,Evap), (Temp,Clouds),

(Evap,Clouds), (Evap,Water), (Clouds,Clouds), (Clouds,
Sun), (Clouds,Water), (Water,Evap)}

After the construction of the regulatory network, the logical
parameters were generated using SMBioNet. The observations
encoded in CTL checked that from an arbitrary starting state of
Sun and Water being available (Temp = 0, Sun = 1, Evap =

0, Clouds = 0, Water = 1), to contain: (i) at least one
trajectory where Water is persistently available, and (ii) one
cyclic or acyclic trajectory where Water is no longer available
after some transitions. Apart from restricting the trivial logical
parameters, those parameters for Evap which did not have Water
as a resource, and those parameters for Clouds which did not have
Evap as resource, were restricted to “0” value in order to reflect
the dependence of the entities on their respective resources. A
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TABLE 3 | Case Study 1: Parameter table.

Parameters Resources Values

Allowed Generated Selected

KTemp
{} 0 0 0

{Sun} 1 1 1

KSun
{} 0 0 0

{Clouds} 1 1 1

KEvap

{} 0 0 0

{Sun} 0 0 0

{Temp} 0 0 0

{Water} 0 0 0

{Sun, Temp} 0 0 0

{Temp,Water} 0,1 0,1 1

{Sun,Water} 0,1 0,1 1

{Temp,Sun,Water} 1 1 1

KClouds

{} 0 0 0

{Clouds} 0 0 0

{Evap} 0,1 0,1 0

{Temp} 0 0 0

{Clouds,Evap} 0,1 0,1 1

{Evap,Temp} 0,1 0,1 0

{Clouds, Temp} 0 0 0

{Clouds,Evap,Temp} 1 1 1

KWater

{} 0 0 0

{Clouds} 0,1 0,1 1

{Evap} 0,1 0 0

{Clouds,Evap} 1 1 1

The logical parameters are listed under “Parameters,” with the respective resource sets

under “Resources,” and parameter values under “Values.”

total of 32 sets were generated which satisfied the CTL property,
from which a single set given under the “Selected” column of
Table 3 was plugged into the Case Study 2 RN.

3.2. State Graphs and Centrality Analysis
After plugging in the logical parameters, the state graphs
of Case Study 2 was generated, shown in Figure 8. The
state graph contains 566 cyclic trajectories (cycles) and
a single deadlock state (1, 1, 0, 0, 0), for the entity
order 〈Temp, Sun,Evap,Clouds,Water〉. The deadlock state, in
particular, shows a unique configuration where the whole system
has turned arid with persistent high temperatures and sun shine.

Due to the large number of generated cyclic trajectories, a
filtering method was applied in addition to Cspb, by selecting
cycles of length 10 only from the total cycles, leaving behind
152 cycles. The reason for the selected length is that it allows
all five entities of the system to oscillate between their boolean
values, but only once throughout the cycle. To further ease the
cycle selection, all 152 cycles were sorted in descending order
based on their mean Cspb, instead of using cumulative Cspb for
selection as done in Case Study 1 (Section 2.2.2). From the
sorted list, the first cycle which had all five entities oscillating was

FIGURE 8 | Centrality applied state graph of Case Study 2:

Atmospheric system. The cycle selected for hybrid modeling is shown via

blue state transitions.

selected, i.e., (0, 1, 0, 0, 1) → (0, 1, 1, 0, 1) → (1, 1, 1, 0, 1) →

(1, 1, 1, 0, 0) → (1, 1, 1, 1, 0) → (1, 0, 1, 1, 0) →

(1, 0, 1, 1, 1) → (1, 0, 1, 0, 1) → (0, 0, 1, 0, 1) → (0, 0,
0, 0, 1) → (0, 1, 0, 0, 1), having the mean Cspb = 0.145
approximately. The cycle is shown via blue transitions in
Figure 8, and starts in the initial state with the sun shining and
a water source available, collectively inducing evaporation in
the second state. Meanwhile, the temperature also increases as
indicated in the third state, while the water source is drained
due to persistent evaporation in the fourth state. Afterwards,
clouds are formed in the fifth state due to the evaporated water
vapors, blocking out the sun in the sixth state, and rejuvenating
the water source in the seventh state via precipitation. The clouds
disseminate in the eighth state because of the collective effect of
precipitation and high temperatures. However, due to persistent
blockage of the sun in the previous states, the temperature also
goes down in the ninth state, effectively stopping evaporation in
the 10th state. Given that the clouds have been disseminating for
a while now, the sun begins to shine again, bringing the whole
trajectory to its initial state.

3.3. Hybrid Modeling and Delay Constraints
The selected cyclic trajectory was then converted to a Bio-LHA,
as shown in Figure 9. The rates for each entity were set based
on the immediate successors of the state in the state graph,
unlike Case Study 1 where anticipation was used to set the
rates. The primary reason is that in biological systems, a small
concentration of a source entity can start affecting its target
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FIGURE 9 | Bio-LHA of Case Study 2: Atmospheric System. To improve readability, only the clock variables with non-zero rates are shown in each location.

entities, thus initiating their activation or inhibition early (before
achieving the threshold). In larger environmental systems, on

the other hand, a small concentration of the source entity has

negligible effects on its target entities, thus we forgo the concept
of anticipation for Case Study 2. Once set, the algorithm cited

in Section 2.3 was used to find the invariance kernel of the

cycle, converging upon a single set of delay constraints. The
seven non-trivial conjuncted constraints are provided in the

Supplementary Materials file.

The constraints were then fed to the linear constraint solver
to generate the pairwise relation matrix given in Table 4,

revealing nine significant constraint relations. These significant
relations force the trajectory to remain within the cycle, and
violation of these relations will diverge the system toward
other cyclic or acyclic trajectories. Thus, the violation of the
constraint d+Evap ≤ d+Temp will diverge the system toward states

where the activation of Temperature occurs before Evaporation,
possibly restricting or limiting the production of Clouds due
to persistent high temperature. Likewise, the inhibition delay
of the Water entity (|d−Water|) strictly takes more duration than
activation of Temperature, activation of Sun Shine, and activation
of Evaporation. Violation of the first relation will allow the
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TABLE 4 | The relation matrix of Case Study 2.

Relation Matrix

d+
Temp

|d−
Temp

| d+
Sun

|d−
Sun

| d+
Evap

|d−
Evap

| d+
Clouds

|d−
Clouds

| d+
Water

|d−
Water

|

d+
Temp

=

|d−
Temp

| ≥,≤ =

d+
Sun

≥,≤ ≥,≤ =

|d−
Sun

| ≥,≤ ≥,≤ ≥,≤ =

d+
Evap

≤ ≥,≤ ≥,≤ ≥,≤ =

|d−
Evap

| ≥,≤ ≥,≤ ≥,≤ ≥ ≥,≤ =

d+
Clouds

≥,≤ ≥,≤ ≥,≤ ≥,≤ ≥,≤ ≥,≤ =

|d−
Clouds

| ≥,≤ ≥,≤ ≥,≤ ≥ ≥,≤ ≥,≤ ≥,≤ =

d+
Water

≥,≤ ≥,≤ ≥,≤ ≥ ≥,≤ ≤ ≥,≤ ≤ =

|d−
Water

| > ≥,≤ > ≥,≤ > ≥,≤ ≥,≤ ≥,≤ ≥,≤ =

Refined pairwise relations between the parameters of the modeled cycle in the form of a matrix (read row first, column second). The order of entities in each state of the cycle is

〈Temp,Sun,Evap,Clouds,Water〉 for “Temperature,” “Sun Shine,” “Evaporation,” “Clouds,” and “Water Source.”

Water Source to be drained before the ultimate activation of
Temperature, nudging the trajectory closer to the deadlock state.
Then, in the relation d+Water ≤ |d−

Clouds
|, it is clear that the Water

Source should be replenished before the dissemination of the
Clouds, the violation of which will also diverge the trajectory
toward the deadlock state. Recall that the deadlock state is (1, 1,
0, 0, 0).

4. Discussion

Although the application of Parametric Biological Linear
Hybrid Automata is not new (Ahmad et al., 2009, 2012;
Aslam et al., 2014; Paracha et al., 2014 to name a few),
in this paper we present its application to a new set of
problems, namely the modeling of environmental systems.
We successfully model two case studies representing different
systems from a broad spectrum of mechanisms encompassed
by environmental systems, which shows the versatility of the
modeling framework toward its applicability. In the first case
study, our framework modeled the arbitrary population levels
between different microbes in a freshwater pond, showing
how hybrid modeling can be used to study different behavioral
tendencies of the populations represented by population
balance (cyclic trajectories) and overpopulation (deadlocked
trajectory), while removing the complexity of dealing with
actual population numbers. In the second case study, the
modeling framework was applied on a slightly more complex
atmospheric system, providing us with the constrained dynamics
that the system exhibits in a particular trajectory, while
also pinpointing particular constrained relations between
parameters which are essential to keep a trajectory stable and
non-divergent.

In the analysis of the two case studies, the hybrid framework
and application methodology was able to answer all objections
pertaining to other methodologies raised in Section 1.2, namely
that this methodology (i) presents the complete dynamics
of the system in the form of state graphs, (ii) is able to

deterministically predict different behaviors via delay constraints,
(iii) whilst keeping the complexity of the system manageable.
Another possibility is the conversion of the hybrid to a
continuous model via Timed Hybrid Petri Nets (David and
Alla, 2010) where these delay constraints can be applied using
arbitrary numeric values to timed or continuous transitions.
The advantage of this conversion is that precise perturbations
(disturbances) and what-if scenarios can be constructed to
experiment and analyze the system, resulting in added insights of
the behavioral dynamics of the system when faced with different
stimuli.

That being said, the approach has its limitations, primarily the
number of entities being modeled. Although theoretically any
number of entities can be modeled, practically the complexity
and state space of the system increase exponentially with
the number of entities, leading to state space explosion. This
limitation puts a major emphasis on effective abstraction of
the system in order to preserve the behaviors of the system
whilst representing as few entities as possible. Although
useful, there are times when a large number of entities need
to be represented for different purposes (Hanrahan, 2010),
leaving abstraction a bitter-sweet process. In Conclusion,
the application of Parametric Biological Linear Hybrid
Automata allows the modeling of complex environmental
systems for the analysis of behavioral dynamics of these
system.
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Appendix

TABLE A1 | Glossary of technical terms.

Terms Descriptions

Kinetic model An expansion of the boolean model to incorporate discrete values above “1.”

Regulatory Network (RN) A network of interconnected components which regulate the system.

State A particular configuration of the regulatory network representing an instance of the system.

Resources A set of components of the network which collectively influence another component.

Logical parameters Discretized parameters which govern how the system evolves or progresses.

Bio-LHA Parametric biological linear hybrid automata

State graph A graph showing possible behaviors of the system by connecting different states together.

Trajectory A successive series of connected states of the state graph, representing a particular behavior of the system.

Computation Tree Logic (CTL) A logical language used in model checking and verification of systems.

Selection of Models of Biological Networks (SMBioNet) A software used to apply CTL model checking to the RN.

Shortest path betweenness centrality (Cspb) A relative measure used to sort states of the state graph based on their frequent occurrences in trajectories.

System dynamics Refers to the abstract number and diversity of behaviors that can exhibited by the system.

Automaton Plural: Automata. Refers to a construct which can self operate.

Parametric biological linear hybrid automata (Bio-LHA) A class of automata which simulates hybrid systems using affine linear dynamics.

Hybrid Technology (HyTech) A software used to construct and simulate hybrid automata including Bio-LHA.
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