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Predicting and studying the dynamics and properties of environmental systems

necessitates the construction and simulation of mathematical models entailing different

levels of complexities. Such type of computational experiments often require the

combination of discrete and continuous variables as well as processes operating at

different time scales. Furthermore, the iterative steps of constructing and analyzing

environmental models might involve researchers with different background. Hybrid Petri

nets may contribute in overcoming such challenges as they facilitate the implementation

of systems integrating discrete and continuous dynamics. Additionally, the visual

depiction of model components will inevitably help to bridge the gap between scientists

with distinct expertise working on the same problem. Thus, modeling environmental

systems with hybrid Petri nets enables the construction of complex processes while

keeping the models comprehensible for researchers working on the same project with

significantly divergent educational background. In this paper we propose the utilization of

a special class of hybrid Petri nets, Generalized Hybrid Petri Nets (GHPN ), to model and

simulate environmental systems exposing processes interacting at different time-scales.

GHPN integrate stochastic and deterministic semantics as well as some other types of

special basic events. To this end, we present a case study illustrating the use of GHPN

in constructing and simulating multi-timescale environmental scenarios.

Keywords: modeling and simulation, Hybrid Petri Nets, multi-scale environmental systems, Chagas disease,

Triatoma infestans

Introduction

The process of constructing and analyzing environmental systems is increasingly becoming a
complex procedure (Seppelt et al., 2009; Uusitalo et al., 2015). On the one hand, it can require
the amalgamation of different simulation techniques to accurately and efficiently find a solution to
the problem under consideration (see e.g., Gillet, 2008; Gregorio et al., 1999). On the other hand,
complex environmental systems require the collection and analysis of various data and information
that cannot be tackled by researchers coming from just one area of expertise (Seppelt et al., 2009).

While the ordinary differential equations (ODEs) approach is widely used to construct and
simulate many problems in the environmental domain, certain classes of such problems cannot
be adequately addressed using this approach alone. For instance in Khoury et al. (2013) construct
a simple, but elegant ODEs model to study food and population dynamics in honey bee
colonies. However, such a continuous approach cannot capture the effect of seasonal variations
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on many parameters. Contrary, in Schmickl and Crailsheim
(2007) and Russell et al. (2013) a discrete simulation of
recurrence and difference equations has been deployed to
emulate the discrete changes in bee population taking into
account seasonal variations. Nevertheless, certain scenarios
necessitate the interplay of different simulation strategies to
efficiently and accurately simulate a given problem. For example,
the ODE approach can be used to efficiently execute model
components with fast dynamics where elucidated discrete
simulation does not affect the result, while stochastic simulation
has to be used to discretely model components whose individual
and random occurrence plays a key role for the overall result.
Such type of models possess more than one time scale. Therefore,
it requires hybrid simulation to successfully reproduce their
dynamics. This results in two or more simulation regimes which
have to work simultaneously to solve a given problem. However,
these regimes are not isolated, instead, they closely interact and
influence the dynamics of each other (Herajy and Heiner, 2012).

Furthermore, with the increasing demand for
interdisciplinary science, modeling complex environmental
systems may involve researchers with different scientific
and educational background. For instance, researchers
from ecosystems, mathematics, and computer science may
collaborate in constructing and analyzing a computational
experiment. Nonetheless, maintaining the communication
in such interdisciplinary teams is one of the key issues in
constructing environmental models (Seppelt et al., 2009). Thus, a
visual language may be of help to accelerate the communication
between teammembers with diverse professional background. As
an example, consider the problem of water resource management.
Numerical modeling and simulation play a remarkable role in
predicting future water demand as well as managing water
quality (Qi and Chang, 2011; Liu et al., 2015). However, the
procedure of constructing a realistic and accurate model for this
purpose mandates that a team of experts coming from different
fields (e.g., environmental science, mathematics, geography,
hydrological modeling, and computer science) collaborate
closely together.

One of those modeling tools that can contribute in
overcoming these challenges are Petri nets. Petri nets (Murata,
1989) are a visual modeling language highly suitable to model
concurrent, asynchronous and distributed systems. In addition to
their graphical representation, Petri nets enjoy a well established
mathematical theory to analyze the constructed model. However,
the basic place/transition nets are not very helpful in constructing
and executing quantitative models exposing certain level of
complexities. Therefore, many extensions have been proposed
over the years to overcome these limitations. For instance,
continuous Petri nets (Alla and David, 1998) can be used
as an alternative technique which exactly corresponds to the
ODEs approach (Gilbert and Heiner, 2006; Soliman and Heiner,
2010). Similarly, stochastic Petri nets (Ajmone et al., 1995)
provide a graphical tool to permit the stochastic exploration
of a constructed model. Nowadays, a variety of Petri nets with
different extensions have been used to model various technical
and biological systems (e.g., see Reddy et al., 1993; Matsuno et al.,
2003; Fujita et al., 2004; Herajy et al., 2013).

Hybrid Petri Nets (HPN ) (David and Alla, 2010) are another
interesting class of Petri nets. HPN permit the integration of
discrete and continuous variables (places) in addition to discrete
and continuous processes (transitions) into one model. In a
typical scenario, discrete places serve as signals that control
the firing of continuous transitions. HPN allow the efficient
simulation of systems which entail large number of states by
approximating them via continuous simulation, while discrete
events can be pertained using discrete transitions. In Matsuno
et al. (2003), HPN are adapted to provide a very specific
approach dedicated to the simulation of biological systems. In
general, hybrid modeling using HPN is a promising technique
since it permits the simulation of more complex systems (see
e.g., Tian et al., 2013). Furthermore, models with interacting
components working at different scales can be easily executed
via HPN . Nevertheless, so far, little attention has been paid to
the employment of this approach in the context of modeling
environmental systems.

In this paper, we focus on a particular class of hybrid
Petri nets, Generalized Hybrid Petri nets (GHPN ) (Herajy and
Heiner, 2012), as a promising tool for model-based exploration
of environmental systems. GHPN provide various transitions,
arcs, and places, which together have the power to substantially
facilitate themodeling of different processes in the environmental
science. One important aspect of GHPN is their ability to
simulate systems that expose different time scales: fast and slow.
The former time scale is continuously simulated, while the latter
one is stochastically and individually executed. Furthermore,
the interaction between continuous and stochastic dynamics
is appropriately captured. We illustrate the use of GHPN

in modeling environmental systems via a case study, the
Chagas disease infection cycle. All the discussed features in
this paper are implemented in a general platform-independent
Petri net editing tool called Snoopy (Heiner et al., 2012) which
can be downloaded free of charge for academic use from
Snoopy (2015).

The rest of this paper is organized as follows: after this
introduction, the different aspects of GHPN are discussed by
presenting a formal definition as well as the different modeling
elements of GHPN . Afterwards, the main steps involved in
the simulation of GHPN are briefly summarized. In the Result
section, we provide a case study to illustrate the use of GHPN

for modeling environmental systems, namely the simulation
of infection transmission of Chagas disease. This example
explains the motivation behind most of the GHPN modeling
components. Finally, we conclude with a few remarks concerning
the utilization of GHPN to implement the simulation of multi-
scale environmental models.

Methods

In this section we provide an overview of GHPN including the
formal definition as well as their different modeling elements.
We concentrate in this part on the use of GHPN for the
modeling of environmental systems. Thus, the semantics of
places, transitions and arcs are discussed according to this
context.
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Generalized Hybrid Petri Nets
Elements
As a Petri net class, the specification of GHPN involves defining
the three main components, namely: places, transitions, and arcs.
Figure 1 illustrates the different entities that can be found in
a typical GHPN model. In the sequel, we briefly discuss the
semantics and usage of each constituent.

Places

Places correspond to the model variables. They are further
classified into discrete and continuous. On the one hand, discrete
places are drawn as single line circles. They are used to represent
discrete variables (e.g., the number of trees in a forest, the number
of eggs laid by a bee, or a species population). Discrete places can
hold nonnegative integer numbers called tokens. On the other
hand, continuous places are drawn with shaded line circles and
are used to depict continuous variables (e.g., the amount of water
in a lake, the concentration of contaminated water, or the number
of infected individuals in an epidemic model). Therefore, they
can hold nonnegative real values. In certain modeling scenarios,
continuous places serve as an approximation of discrete places
where the numbers of tokens reach large values. The value
assigned to a place is called place marking. In GHPN models, the
system state is described at any time point during the simulation
as the union of discrete and continuous place marking.

Transitions

Transitions correspond to the basic events. GHPN employ five
transition types for convenient modeling of different types of
systems: stochastic, immediate, deterministically time delayed,

scheduled, and continuous transitions. The first four transition
types are discrete ones. However, they differ from each other by
the time delay assigned to them.

Stochastic transitions fire at discrete time steps, however, after
random time delays. These random delays are exponentially
distributed. Stochastic transitions can represent events that take
place at random time steps. During execution, the simulator
calculates the time at which the next event will occur, and
subsequently it decides the event type (which transition to fire).
Theoretically, an effective conflict (David andAlla, 2010) between
two stochastic transitions is not possible in a such random firing
scheme. Immediate transitions are also fired in a discrete manner,
but with zero delays. They fire directly as soon as they are enabled.
Similarly, deterministically time delayed transitions are fired after
a deterministic time delay. The delay of this transition type could
be set to zero. Nevertheless, when an immediate transition and a
deterministically delayed transition are concurrently enabled, the
immediate one will have higher priority to fire first. Moreover,
scheduled transitions are a special type of deterministically time
delayed transitions which fire at certain time point(s) previously
programmed by the user.

In contrast, continuous transitions fire continuously with
respect to time. The firing speeds of continuous transitions are
specified by their rates. Besides, the semantics of continuous
transitions is represented by a set of ODEs that account for in-
and outflow of each place.

Arcs

Arcsmodel the relation between themodel variables and the basic
events. Arcs connect places with transitions and maybe vice versa

FIGURE 1 | Graphical representation of the GHPN elements (Herajy and Heiner, 2012). Places are classified as discrete and continuous; transitions as

continuous, stochastic, immediate, deterministically delayed and scheduled; and arcs as standard, inhibitor, read, equal, reset, and modifier.
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depending on their type. There are six type of arcs in GHPN :
standard, read, inhibitor, equal, reset, and modifier arcs.

Standard arcs connect places with transitions and vice versa.
They control the enabling of the target transition as well as
affecting the preplaces (postplaces) when the target (source)
transition fires. Standard arcs can be discrete or continuous.
Discrete arcs adopt positive integer values as arc weights, while
continuous arcs use positive rational numbers as arc weights. The
rules that determine the type of arc weights are illustrated in
Figure 2.

In contrast, read arcs affect only the enabling of the target
transition. A transition connected with a preplace via a read arc
is enabled only (with respect to this preplace), if the marking
of this preplace is greater than or equal to the corresponding
arc weight. Similarly, inhibitor arcs govern the enabling of
transitions. However, a transition connected with a preplace
using an inhibitor arc is enabled only if the current marking of
the preplace is less than the arc weight. Equal arcs enforce more
stronger conditions on the enabling of transitions. A transition
connected with a preplace via an equal arc is enabled only if the
current marking of the preplace is exactly equal to the arc weight.

The other two remaining arcs do not influence the enabling of
the connected transitions. For example, reset arcs set the value of
the preplace marking to zero when the corresponding transition
fires. They are useful to implement certain model semantics.
Similarly, modifier arcs do not affect the enabling nor the firing
of a transition. They facilitate the use of a preplace in defining
a transition rate function while preserving the structure-related
constraints of the transitions’ rate functions.

Marking-dependent Arc Weights
GHPN permit arc weights to be specified as an algebraic
expression involving place names rather than just a constant.
This feature is called marking-dependent arc weights (Valk, 1978;
Matsuno et al., 2003; Herajy et al., 2013). Implementing certain
model semantics without the help of marking-dependent arc
weights may become intricate and even impossible in certain
circumstances.

For instance, consider the following model expression that
requires to be implemented using Petri nets:

IF x>=y AND y<5 THEN

z:=x+y

END IF

When x, y, and z are continuous variables, it is impossible
to represent the above semantics using just arcs with constant
weights. However, using marking-dependent arc weights this can
be easily modeled as it is depicted in Figure 3.

As another interesting example of the usefulness of marking-
dependent arcs consider the transformation of the whole
population from one age category to another one after an
elapsed period of time. For example in Xiang et al. (2013),
new-born snails are considered as old snails at the beginning
of the year. This process can be intuitively modeled using
marking-dependent arc weights where the outgoing and the
ingoing arc weights equal the value of the preplace.

FIGURE 3 | A GHPN example of using marking-dependent arc

weights. The example contains three places x, y, z and one immediate

transition t1. The transition t1 can fire only when the two conditions: x ≥ y

(enforced by the read arc) and y < 5 (enforced by the inhibitor arc) hold.

FIGURE 2 | Possible connections between GHPN elements. The (obvious) restrictions are: discrete places cannot be connected with continuous transitions

using standard arcs, continuous places cannot be tested with equal arcs, and continuous transitions cannot use reset arcs.
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Obviously, marking-dependent arc weights extend GHPN

and permit the modeling of a larger class of environmental
systems that require the corresponding semantics.

Formal Definition
In this section we formally define the syntax of GHPN . The
formal semantics including the enabling and firing rules as well
as the conflict resolution are given in Herajy and Heiner (2012).

Definition 1 (Generalized Hybrid Petri Nets). Generalized
Hybrid Petri Nets are a 6-tuple GHPN = [P,T,A, F,V,m0],
where P, T are finite, non-empty and disjoint sets. P is the set of
places, and T is the set of transitions with:

• P = Pdisc ∪ Pcont whereby Pdisc is the set of discrete places to
which non-negative integer values are assigned, and Pcont is the
set of continuous places to which non-negative real values are
assigned.

• T = TD ∪ Tcont ,
TD = Tstoch ∪ Tim ∪ Ttimed ∪ Tscheduled with:

1. Tstoch is the set of stochastic transitions, which fire randomly
after exponentially distributed waiting time.

2. Tim is the set of immediate transitions, which fire with
waiting time zero; they have highest priority among all
transitions.

3. Ttimed is the set of deterministically delayed transitions, which
fire after a deterministic time delay.

4. Tscheduled is the set of scheduled transitions, which fire at
predefined time points.

5. Tcont is the set of continuous transitions, which fire
continuously over time.

• A = Adisc ∪ Acont ∪ Ainhibit ∪ Aread ∪ Aequal ∪ Areset ∪ Amodifier

is the set of directed arcs, with:

1. Adisc ⊆ ((P × T) ∪ (T × P)) defines the set of discrete arcs.
2. Acont ⊆ ((Pcont × T) ∪ (T × Pcont)) defines the set of

continuous arcs.
3. Aread ⊆ (P × T) defines the set of read arcs.
4. Ainhibit ⊆ (P × T) defines the set of inhibits arcs.
5. Aequal ⊆ (Pdisc × T) defines the set of equal arcs.
6. Areset ⊆ (P × TD) defines the set of reset arcs,
7. Amodifier ⊆ (P × T) defines the set of modifier arcs.

• the function F

F :



















































Acont → Dq,

Adisc → Dn,

Aread → Dq,

Ainhibit → Dq,

Aequal → Dn,

Areset → {1},

Amodifier → {1}.

assigns amarking-dependent function to each arc, where Dn and
Dq are sets of functions defined as follows:

Dn = {dn|dn : N
|•tj|

0 → N, tj ∈ T},

Dq = {dq|dq : R
|•tj|

0 → Q+, tj ∈ T}.

• V is a set of functions V = {g, d,w, f } where :

1. g : Tstoch → Hs is a function which assigns a stochastic
hazard function hst to each transition tj ∈ Tstoch, whereby

Hs = {hst |hst : R
|•tj|

0 → R+
0 , tj ∈ Tstoch} is the set of all

stochastic hazard functions, and g(tj) = hst ,∀tj ∈ Tstoch.
2. w : Tim → Hw is a function which assigns a weight function

hw to each immediate transition tj ∈ Tim, such that Hw =

{hwt |hwt : R
|•tj|

0 → R+
0 , tj ∈ Tim} is the set of all weight

functions, and w(tj) = hwt ,∀tj ∈ Tim.

3. d : Ttimed ∪ Tscheduled → R+
0 , is a function which

assigns a constant time to each deterministically delayed and
scheduled transition representing the (relative or absolute)
waiting time.

4. f :Tcont → Hc is a function which assigns a rate function hc to
each continuous transition tj ∈ Tcont , such that Hc={hct |hct :

R
|•tj|

0 → R+
0 , tj ∈ Tcont} is the set of all rates functions and

f (tj) = hct ,∀tj ∈ Tcont .

• m0=mdisc ∪mcont is the initial marking for both the continuous

and discrete places, whereby mcont ∈ R
|Pcont |
0 , mdisc ∈ N

|Pdisc|
0 .

Here, N0 denotes the set of non-negative integer numbers, R0

denotes the set of non-negative real numbers, Q+ denotes the set
of positive rational numbers, and •tj denotes the set of pre-places
of a transition tj. 2

A distinguishing feature of GHPN compared with other
hybrid Petri net classes is its support of the full interplay
between stochastic and continuous transitions. Such interplay is
implemented by updating and monitoring the rates of stochastic
transitions The crucial point for our paper is how stochastic
transitions are simulated when mixed with continuous ones.
So the next section focuses in particular on the simulation
of stochastic transitions, while numerically solving the set of
ODEs induced by the continuous transitions (for more details
see Herajy and Heiner, 2012). By this way, accurate results are
obtained during simulation.

Simulation
The simulation of a GHPN model has to take into account
the different types of GHPN transitions. Although it is easy
to simulate individual transition types when they are isolated,
it becomes more challenging to simulate a model combining
discrete and continuous transitions. Thus, the most important
aspect is how discrete and continuous transitions are interleaved
during the simulation, particularly, stochastic and continuous
ones.

Continuous transitions are fired continuously. Thus, they
necessitate the simultaneous (numerical) solution of a system
of ODEs representing the continuous part of a GHPN model.
From this perspective, the simulation of discrete transitions are
considered as events which are triggered whenever a discrete
transition is enabled and needs to be fired. Therefore, we
have different events corresponding to each transition type.
When an event occurs, a dispatcher is called to handle the
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appropriate actions. The corresponding system of ODEs is
generated using (1).

dm
(

pi
)

dτ
=

∑

tj∈
•pi

F
(

tj, pi
)

· vj (τ ) · read(u,m(pi)) · inhibit(u,m(pi))−

∑

tj∈pi
•

F
(

pi, tj
)

· vj (τ ) · read(u,m(pi)) · inhibit(u,m(pi))

(1)

where m(pi) represents the marking of the place pi, vj(τ ) =

fj is the marking-dependent rate function of the continuous
transition tj, and the functions read(u, pi), inhibit(u, pi), which
consider the effects of read and inhibitor arcs, respectively, are
defined as follows:

For a given transition tj ∈ TC,

read(u,m(pi)) =

{

1 ifm(pi) ≥ u

0 else

with u = F(pi, tj) ∧ (pi, tj) ∈ Aread, and

inhibit(u,m(pi)) =

{

1 ifm(pi) < u

0 else

withu = F(pi, tj) ∧ (pi, tj) ∈ Ainhibit .

Furthermore, two issues are of paramount importance
concerning this simulation procedure: how an event is detected
during the numerical solution of the set of ODEs and how we
know that a stochastic transition is enabled and needs to be fired.

Concerning the former issue, a special type of ODE solver
should be used that supports a root finding feature (Mao and
Petzold, 2002). The occurrence of enabling conditions of discrete
transitions are then formulated as a root that can be detected by
the ODE solver. As soon as a root is encountered by the ODE
solver, the control is transferred to the discrete regime to fire the
enabled transition(s). Afterwards, the ODE solver continues the
integration using the new system state.

Moreover, stochastic transitions are considered as a special
type of discrete events called stochastic events. Stochastic events
are detected by introducing a new ODE, described by Equation
(2), to the set of ODEs.

g(x) =

∫ t+τ

t
as0(x)dt − ξ = 0 , (2)

where ξ is a randomnumber exponentially distributed with a unit
mean, and as0(x) is the cumulative (the sum) rate of all stochastic
transitions.

The newly added ODE monitors the difference between
the summation of all the rates of the stochastic transitions
and a small, exponentially distributed random number.
When Equation (2) equals zero, the continuous simulation is
interrupted to call the dispatcher to fire the enabled stochastic
transition. Afterwards, the simulation is resumed as previously
discussed.

Results

In this section we apply GHPN to model and simulate a case
study from the environmental domain. GHPN can be used
for models which are completely deterministic, completely
stochastic, or a combination of them. The chosen example
illustrates the use of GHPN to represent and simulate the
dynamics of environmental and ecological systems. We
show how stochastic and continuous transitions are used to
provide the interplay between a discrete regime representing
the environment fluctuations and a deterministic one
representing the simulation of large populations. Additionally,
deterministically time delayed transitions and immediate
transitions proved to be useful in modeling real-life examples.

Modeling the Transmission of Chagas Disease
Infection
Background
The Chagas disease has been a major public health concern
in Latin America for some decades (Nouvellet et al., 2015).
The transmission of Chagas infection among humans involves
complex ecological and epidemiological interacting processes
(Cohen and Gürtler, 2001; Nouvellet et al., 2015). The Chagas
disease is caused by the protozoan Trypanosoma Cruzi (T.
Cruzi for short). The main insect vector responsible for the
transmission of T. Cruzi is a bug known as Triatoma infestans
(Cohen and Gürtler, 2001; Castañera et al., 2003). A vector is an
insect that transmits a disease, while the disease transmitted via
such an insect is referred to as a vector-borne disease. Vectors are
living organisms that can transmit infectious diseases between
humans or from animals to humans. Many of these vectors
are bloodsucking insects. Within a household, Chagas disease is
mainly transmitted to humans via the bitting by infected bugs
(Castañera et al., 2003). Bugs acquire infections by the feeding on
infected mammals (humans or dogs) (Cohen and Gürtler, 2001).
Chickens are another feeding source for Triatoma infestans.
However, blood meals taken from chickens do not transmit the
infection to bugs. Therefore, chickens can serve as an alternative
feeding source to Triatoma infestans such that bitting rates of
vectors to humans and infected dogs are minimized (Cohen
and Gürtler, 2001). Nevertheless, the four species involved in
the Chagas disease cycle are: humans, dogs, chickens, and
infected vectors. Besides, the population of Triatoma infestans
is oscillating seasonally with the highest population of vectors
recorded in warm seasons (spring and summer) (Cohen and
Gürtler, 2001).

Mathematical modeling of the transmission of the Chagas
disease is an important tool to understand the biological and
ecological factors influencing the spread of infections among
humans and household animals. To this end, manymathematical
models have been constructed (see e.g., Cohen and Gürtler, 2001;
Castañera et al., 2003; Coffield et al., 2013; Nouvellet et al., 2015).
However, all of these models utilize solely either the deterministic
or the stochastic approach. For the former modeling paradigm,
authors argue that the population size of the interacting species
is large enough so that the ODE approach can be deployed to
study the model dynamics (Coffield et al., 2013). In contrast,
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the latter models assume that the population size of interacting
species is relatively small. Thus, stochastic simulation will be
more accurate (Castañera et al., 2003). For instance, in Cohen and
Gürtler (2001) the number of humans of a household consists
of just five persons divided into different age categories. Each
category contains only one human. Nevertheless, modeling the
transmission of the Chagas disease can encompass variables
interacting at different time scales. For instance, vertebrate
species (humans, dogs, and chickens) can be found in scales
of tens or hundreds at the very most, because the majority of
realistic models operate on the level of small villages. In contrast,
vector population is abundant and exists at the scale of thousands.
Thus, hybrid modeling is a desirable approach worth being
investigated to gain deeper understanding of the Chagas disease
transmission.

Model Specification
In this section we use GHPN to model the transmission
of Chagas infection between humans, dogs, and vectors. Our
GHPN model is based on the deterministic one by Coffield et al.
(2013) as it accounts for the high-level transmission of infections
without considering the detailed stages of nymph bugs.

Coffield et al. (2013) simulated the evolution of the total
population of vectors, humans, and dogs involved in the
transmission of Chagas disease. The chicken population is
considered to be constant. Their population change is not
taken into account since they do not acquire infection. Figure 4
provides a GHPN representation of the Chagas transmission
cycle. To simplify the discussion, we divide the human
population into two groups: infected (denoted by the place Hi),
and susceptible (denoted by the place Hs). Similarly, we divide

FIGURE 4 | GHPN model of Chagas disease transmission.

Continuous and discrete places are used to model the population of

vectors and mammals, while continuous transitions are adopted to

represent the processes operating on the model species. The simulation

time is monitored by the discrete place time which is increased by one

time step (one day) when the deterministically delayed transition

increase_days fires. Stochastic and continuous transitions describe

physical processes that operate on the model species. Places given in

gray are logical places which help to simplify the connections between

model components. Please note the use of modifier arcs to include

non-preplaces into the transition rate functions. Modifier arcs make this

kind of dependency explicit. Moreover, arc weights and initial markings

specified by constants make the model easy to configure using different

constant values.
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the population of dogs into infected dogs (Di), and susceptible
ones (Ds). In contrast, we consider the total population of vectors
(V) and the infected ones (Vi) to minimize the connection
among the model components. We adopt the concept of logical
places (places represented in gray colors) to keep the connection
between model components intelligible. Moreover, the current
simulation time (in days) is represented by the discrete place:
time. The deterministically time delayed transition increase_days
increases the simulation time by a one-day step. The value of the
place time is reset after a duration of 365 days. Read and reset
arcs as well as the immediate transition reset_days implement
the reset semantics of the current year as it can be seen in
Figure 4. Furthermore, continuous and stochastic transitions
model the dynamics of the different processes involved in the
Chagas disease infection cycle.

In the sequel we elucidate the definition of each transition
rate. Moreover, we discuss our motivation of modeling certain
processes as stochastic transitions and others as continuous
ones by showing the effect of the random firing of stochastic
transitions on the overall dynamic results. Similar to Coffield et al.
(2013), we consider the total population of humans, dogs, and
chickens as being constant during the whole simulation period.
The total human population is considered to be roughly constant
as the sum of the number of infected humans and the number of
susceptible humans does basically not change, if we assume equal
rates for birth and death. Likewise, the dog population is also
considered to be constant. However, the number of chickens are
not divided into infected and susceptible, since chickens cannot
be infected. More information is provided in the equations below.

First, the growth of the total vector population is defined by
Equation (3) (Coffield et al., 2013).

dh × (V)× (1−
V

K
) (3)

Where dh is the vector hatching rate, and K specifies the
maximum number of bugs that can be supported in a village.
Equation (3) is used to define the rate of the transition born_V .
The hatching rate coefficient dh is defined in terms of the biting
rates b, which is varying seasonally (see below). Please note that
we assume that the rate at which vectors hatch at time t is equal
to the number of eggs laid at time t+τ .

Furthermore, vectors undergo two types of death: degradation
due to natural death and by the oral consumption by dogs
(Coffield et al., 2013). These two processes are represented by the
two transitions: dogs_consume_V , and V_die, respectively. The
rates of the transitions dogs_consume_V , and V_die are defined
by Equations (4) and (5), respectively.

(

E× V

V + A

)

× D (4)

(

dm

2
×

(

1−
V

K

)

+ dm

)

× V (5)

where E is themaximumnumber of vectors consumed by one dog
per day,A is the vector number at which dogs consume at the rate
E/2 vectors per day, and dm is the mortality rate coefficient.

The mortality rate coefficient of infected and uninfected
vectors is not constant. Instead, it is changing with respect to
time according to the current season (Castañera et al., 2003;
Coffield et al., 2013). Figure 5 illustrates the time-dependent
mortality rate of Triatoma infestants, while Figure 6 is a Petri
net sub model used to reproduce the piecewise function in
Figure 5. To model the seasonal variation in mortality rate,
we adopt read and inhibitor arcs to define the time period of
each piece of the piecewise function. The current value of the
mortality rate is represented by the continuous place dm. Two
constant values, dm_initial, dm_max are used to denote the

A B

FIGURE 5 | The effects of seasonal variability on: (A) the

mortality rate coefficient, and (B) the biting rate coefficient.

These curves can be modeled as piecewise linear functions (Coffield

et al., 2013). They can be produced using the Petri net submodel in

Figure 6. The time boundaries where the functions change their

behavior from decreasing to increasing or vice versa is shown in the

x-axis. The exact time points where the functions change their

behavior is illustrated in the upper axis. Similarly, the start and end

values of each piece is shown in the y-axis. The exact values of

these parameters are given in the Supplementary Material.
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FIGURE 6 | GHPN submodel to reproduce the seasonal variability

on mortality and biting rates. The deterministically time delayed transition,

increase_days, fires at each time step increasing the current simulation time

by one day. The immediate transition reset_days resets the current time to

zero when it reaches the maximal number of days in a year. Continuous

transitions are used to simulate the various pieces of the piecewise linear

functions describing the mortality and biting rates. All labels at arcs or places

are constants; compare caption of Figure 4.

initial and maximum values of dm, respectively. The x-axis of
the piecewise function in Figure 5 is divided into three intervals
[0, dm_t1[, [dm_t1, dm_t2[, and [dm_t2, year_days]. Where
year_days denotes the number of days per year (in our model we
consider each year to consist of 365 days). Read arcs are used to
specify the interval’s lower value, while inhibitor arcs are used to
specify the interval’s upper values. Afterwards, each continuous
transition piece1_dm, piece2_dm, and piece3_dm get assigned
the rates, (dm_max − dm_initial)/dm_t1, dm_max/(dm_t2 −

dm_t1), and dm_inial/(year_days − dm_t2), respectively. For
the simulation results in this paper we assign the values 0.0003,
0.0017,136, 228, and 365 to dm_initial, dm_max, dm_t1, dm_t2,
and year_days respectively. A similar procedure is applied to
capture the seasonal variation in the biting rate, as it can be noted
in Figures 5, 6. The complete list of all constant values is provided
in the Supplementary Table 1.

Similarly, the infected vector population can grow, naturally
die, or be consumed by dogs. The increase of infected bugs is
a result of the transmission of T. Cruzi parasites to some of
the uninfected vectors. In our model, this process is represented
by the transition Infection_Vi with a firing rate defined by
Equation (6).

b× (V − Vi)× (Phv ×Hi + Pdv × df × Di) (6)

where Phv is the human to vector infection probability, Pdv is the
dogs to vector infection probability, and df is the human factor of
one dog.

Moreover, the natural death of vectors and the loss of vectors
due to the consumption by dogs are modeled by the two
transitions: Vi_die and dogs_consume_Vi, respectively. The rate
of Vi_die is defined by Equation (7), similar to the death of the
total vectors V , while the rate of dogs_consume_Vi is defined by
Equation (8).

(

dm

2
×

(

1−
V

K

)

+ dm

)

× Vi (7)

E× D× Vi

V + A
(8)

Now we consider the dynamics of humans and dogs. Susceptible
humans (Hs) can be bitten by vectors and become infected
(Hi). The infection process is denoted by the transition
Human_infection. The firing rate of this transition is given by
Equation (9)

b× Pvh × Hs × Vi (9)

where Pvh is the probability of a susceptible human to be
infected. A human infected by Chagas disease unfortunately
cannot be recovered in the future. Both susceptible and infected
humans can die with rates defined by Equations (10) and (11),
respectively.

γHs ×Hs (10)

γHi ×Hi (11)

where γHs , and γHi are the mortality rates of susceptible and
infected humans, respectively. Equations (10) and (11) define the
rates of the transitions: death_Hs, and death_Hi, respectively.

Under the assumption that the number of humans are
constant during the whole simulation period, the growth rate
of susceptible and infected humans can be made equal to their
corresponding death rate. However, according to Coffield et al.
(2013), infection can be transferred from a mother to her fetus.
Thus, we can model the growth of susceptible and infected
human using Equations (12) and (13), respectively,

(1− Thi)× (γHi ×Hi + γHs ×Hs) (12)
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(Thi)× (γHi ×Hi + γHs ×Hs) (13)

where Tni is the congenital transmission probability for infected
humans. Equations (12) and (13) imply that we take Tni, the total
of died humans (infected and susceptible) as new born infected
humans, while the remaining 1 − Tni are added to the suspected
humans.

Likewise, susceptible dogs can be infected with T. Cruzi
parasites. However, an infection is transmitted to dogs either by
the bitting by vectors or by the oral consumption of infected
vectors by dogs. This process is modeled by the transition
dogs_infection in Figure 4. The transition rate is given by
Equation (14).

b× df × Pvdb +
Pvdc × E× Ds × Vi

V + A
(14)

where Pvdb denotes the vector to dog infection probability, and
Pvdc the vector to dog infection probability via oral consumption.
Obviously, the first term of Equation (14) represents the dogs
infection via bug biting while the second term represents
dog infection via oral consumption. Similar to humans, dogs
(susceptible and infected) may die. The death of susceptible and
infected dogs is represented by the transitions death_Ds, and
born_Di, respectively. The firing rates of these transitions are
given by Equations (15) and (16), respectively.

γDs × Ds (15)

γDi × Di (16)

Similar to humans, and under the assumption that the overall dog
population is constant during the whole simulation period, we set
the rate of growth equal to the rate of death. However, new born

dogs can be infected if they are born to an infected mother. Thus,
the growth rates of susceptible and infected dogs are defined by
Equations (17) and (18), respectively.

(1− Tdi)× (γDi × Di + γDs × Ds) (17)

(Tdi)× (γDi × Di + γDs × Ds) (18)

where Tdi is the congenital transmission probability for infected
dogs. The complete model definition is provided in Figure 4,
while the meaning and rate function of each transition are
summarized in the Tables 1, 2.

Model Simulation
The GHPN model in Figure 4 is executed using Snoopy’s hybrid
simulation engine (Herajy and Heiner, 2012; Heiner et al., 2012)
to produce the dynamics of the Chagas disease cycle. An initial
simulation of this model using the purely deterministic approach
reveals that the values of the model transition firing rates are
clearly distinguishable. Figure 7 compares the cumulative firing
rates of the model transitions for a simulation period of 30 years
(10,950 days). This comparison shows that certain transitions fire
very slowly, while others fire very fast. These different timescales
can be interpreted as a result of a small population in the
preplaces of the corresponding transitions, or they may be due
to the relatively small values of the rate coefficients. For a better
view of the quantitative differences among the transition rates,
we summarize the cumulative firing rates of the net transitions in
Table 3.

The simulation statistics in Table 3 show that growth and
death of humans and dogs occur infrequently compared with the
death and growth of vectors. For instance, the total firing rates
of human growth and death is 0.0021%, compared to 32.88% for

TABLE 1 | Detailed specification of the main transitions of the model in Figure 4.

# Transition name Type Rate Purpose

1 Death_Hs Stochastic γHs × Hs Death of susceptible humans

2 Born_Hs Stochastic (1− Thi ) (γHi
× Hı+ γHs × Hs ) Growth of susceptible humans

3 Death_Hi Stochastic γHi
× Hi Death of infected humans

4 Born_Hi Stochastic (Thi ) (γHi
× Hı+ γHs × Hs ) Growth of infected humans

5 Human_infection Stochastic b× Pvh × Hs × Vi Infection of susceptible humans

6 Death_Ds Stochastic γDs × Ds Death of susceptible dogs

7 Born_Ds Stochastic (1− Tdi )(γDi × Di + γDs × Ds ) Growth of susceptible dogs

8 Death_Di Stochastic γDi
× Di Death of infected dogs

9 Born_Di Stochastic (Tdi ) (γDi × Di + γDs × Ds ) Growth of infected dogs

10 Dogs_infection Stochastic b× df × Pvdb +
Pvdc×E×Ds×Vi

V+A
Infection of susceptible dogs

11 V_die Continuous
(

dm
2 ×

(

1− V
K

)

+ dm

)

× V Death of total vectors

12 Born_V Continuous dh × (V )× (1− V
K
) Growth of total vectors

13 Dogs_consume_V Continuous
(

E×V
V+A

)

× D Dogs oral consumption of total vectors

14 Vi_die Continuous
(

dm
2 ×

(

1− V
K

)

+ dm

)

× Vi Death of infected vectors

15 Dogs_consume_Vi Continuous E×V
V+A

× D×
Vi
V

Dogs oral consumption of infected vector

16 Infection_Vi Continuous b× (V − Vi )(Phv × Hi + Pdv × df × Di ) Vector infection
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TABLE 2 | The specification of the transitions involved in mortality and the biting rate of the submodel in Figure 6.

# Transition name Type Rate Purpose

1 Piece1_dm Continuous (dm_max−dm_initial)
dm_t1

First time period of the vector mortality rate variation

2 Piece2_dm Continuous dm_max
(dm_t2−dm_t1)

Second time period of the vector mortality rate variation

3 Piece3_dm Continuous dm_initial
(year_days−dm_t2)

Third time period of the vector mortality rate variation

4 Piece1_b Continuous b_initial
b_t1

First time period of the vector biting rate variation

5 Piece2_b Continuous b_max
(b_t3−b_t2)

Second time period of the vector biting rate variation

6 Piece3_b Continuous (b_max−b_min)
(b_t4−b_t3)

Third time period of the vector biting rate variation

7 Piece4_b Continuous (b_initial−b_min)
(year_days−b_t4)

Fourth time period of the vector biting rate variation

8 Increase_days Deterministic 1 Increase the current time by one day

9 Reset_days Immediate 1 Reset the current time to zero after the end of the year

FIGURE 7 | Cumulative firing rates of each transition in the T. Cruzi model during the whole simulation period of 30 years. Transitions representing

processes operating on humans and dogs are very slow compared to the other transitions operating on vectors.

TABLE 3 | Comparison of the cumulative transition firing rates (in

percentage) of the model in Figure 4.

Human (%) Dogs (%) Vectors (%) Infected vectors (%)

Growth 0.0021 0.023 32.88 16.33

Death 0.0021 0.023 26.34 13.33

Infection 0.0048 0.0448 17.38 –

The firing rates of processes related to humans or dogs are calculated by taking the

average of infected and susceptible species. The simulation time of this experiment is

11,000 days.

the growth rate of vectors. The reason for such a difference is that
over a period of 30 years the age of humans and dogs is much
larger than the age of bugs. Similarly, the accumulative firing rates
of human and dog infections are very low in comparison with the
firing rate of vector infections. This is a result of the abundance

of the vector population in comparison with the human and dog
populations.

Furthermore, the statistics in Figure 7 and Table 3 suggest
that slow firing processes can be better represented by stochastic
transitions, while faster ones should be better modeled via
continuous transitions. Therefore, in Figure 4 all processes
related to human and dog populations (e.g., growth, death, and
infection) are modeled using stochastic transitions. In contrast,
vector-related processes (e.g., vector growth, vector death, and
vector infection) are modeled via continuous transitions.

To examine the implication of introducing stochastic
transitions to the Chagas disease model, we compare the time
course simulation result produced by the purely deterministic
approach with the result of the hybrid simulator. Figures 8, 9
give the time course simulation results of the population of dogs
and infected vectors simulated using both the deterministic and
hybrid simulation techniques.
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In Figure 8A, the population of infected dogs implies the same
qualitative conclusions for the deterministic and hybrid results.
Both simulation results suggest that the population of infected
vectors oscillates with respect to time. However, they differ in
the specific quantitative values. Hybrid simulation results imply
that the population of infected dogs enter the steady state at a
lower value compared with the simulation results produced by
the deterministic approach.

To better understand such differences in the quantitative
results, we compare the results of the ODE approach with the
individual runs of the hybrid simulation. Figure 8B presents
two single runs of the hybrid simulation. These individual
runs show that the population of infected dogs fluctuates as
the result of simulating growth, death, and infection processes
via stochastic transitions. In fact, modeling such processes
in this way is more natural than using the deterministic
approach to simulate them. Indeed, growth, death, and infection
of dogs and humans are inherently stochastic processes.
Moreover, the relatively small population of dogs motivates
the use of stochastic transitions to simulate this type of
processes.

To examine the influence of such fluctuation on the
population of dogs and humans and on the rest of those model
components, which remain modeled using the ODE approach,
we plot the simulation results of infected vectors for the purely
deterministic and the hybrid simulation results. Figure 9 shows
that the population of infected vectors produced through the
hybrid simulation technique oscillates at a lower amplitude than
the purely deterministic counterpart. This implies that the noise
related to the stochastically modeled part also influences the
deterministically simulated components.

In summary, although deterministic and hybrid simulation
techniques applied to the Chagas disease provide similar
qualitative conclusions, the latter technique exhibits more
accurate results due to the more realistic representation and
simulation of inherently fluctuating natural processes.

Discussion

In this paper we propose the utilization of a special class
of hybrid Petri nets, Generalized hybrid Petri nets, for the
modeling and simulation of multi-timescale environmental
systems. GHPN provide flexible and rich modeling features to
represent and execute the different processes that are frequently
encountered during the construction of dynamic models to
explore environmental systems. The major advantage of using
Petri nets compared with other techniques to represent and
simulate environmental models is the graphical depiction of the
system components’ interactions supporting the communication
in a multidisciplinary research team. Hybrid Petri nets extend the

FIGURE 9 | Simulation results for the infected vector population (Vi ) in

the deterministic and hybrid setting. Vi oscillates in the hybrid setting at

slightly lower amplitude than in the purely deterministic setting.

A B

FIGURE 8 | Simulation results of the Chagas model in Figure 4 for the dog population: (A) continuous and average hybrid time course result (1000

runs), (B) deterministic and two single runs of hybrid simulation.
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modeling power of standard Petri nets by providing a number of
specific elements that can be used to represent physical processes
operating at different timescales, which subsequently widens the
classes of models that can make use of the Petri net approach and
its unifying power.

The case study presented in the Result section explains
the motivation behind the different elements of GHPN . For
instance, read and inhibitor arcs are used to define boundary
conditions for time periods, where vector mortality rates behave
in a certain way (increasing or decreasing). Discrete transitions
like immediate and deterministically delayed ones can be used
to model the duration of time periods. The chosen case study,
the Chagas model, involves processes that occur at different
scales making the hybrid simulation technique most appropriate
to execute such models. In this paper, the processes related
to humans and dogs are represented by stochastic transitions.
The effects of the other processes could also be investigated by
modeling them as stochastic transitions. However, this would
increase the simulation runtime for the model. In fact, GHPN

provide a favorable tradeoff between a simulation’s accuracy and
runtime.

The discussed case study is implemented using the Petri net
tool Snoopy (Heiner et al., 2012) which supports the construction
and simulation of different Petri net classes including stochastic,
continuous, and hybrid Petri nets. Snoopy can be download
free of charge for academic use from Snoopy (2015). A GHPN

model constructed with Snoopy can be simulated via a purely
deterministic, stochastic, or hybrid simulator. This feature
permits to experiment with different simulation techniques using
one and the same model. We applied this specific feature to
execute the case study in this paper using the deterministic and
the hybrid simulator. Besides, a model constructed in Snoopy
can be remotely simulated via Snoopy’s Simulation and Steering
Server (S4) (Herajy and Heiner, 2014a,b). S4 provides a further
flexible tool to remotely simulate and steer Petri net models
constructed using Snoopy. The Snoopy file implementing this
model can be downloaded from http://www-dssz.informatik.

tu-cottbus.de/DSSZ/Software/Examples. Thus, all our results
presented in this paper are reproducible.

In the original model of Coffield et al. (2013), the vector
growth rate at time t depends on the hatching rate at a previous
time t − τ . The value of τ is approximated to be 20 days
(Spagnuolo et al., 2011). This can be simulated as a delayed
differential equation with a constant delay. In the discrete world,
this delay can be accounted for in the model semantics using
a deterministically time delayed transition with a delay of 20
days. However, using continuous transitions to simulate the
growth rate of vectors, we need to adjust the semantics of such
a transition type to take into account such a delay period while
generating and solving the corresponding system of ODEs. This
could be added in a future extension of the continuous Petri nets
in Snoopy.
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