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Due to hollow and tubular structure, a natural kapok fiber (KF) was used as the support
and orientation matrix to control the polymerization of ethyleneglycol dimethacrylate
(EGDMA) and N-vinylimidazole (VIM) along its inherent axial surface via a facile in
situ rapid polymerization reaction in air atmosphere. The as-formed KF@VIM/EGDMA
composite is featured with porous surface and rich N-containing functional groups
for potential application as a highly efficient adsorbent for removal of toxic Hg(ll) from
aqueous solution. The variables affecting the adsorption capacity were studied, including
monomer ratio, external pH values, contact time, and initial Hg(ll) concentration. The
pseudo-second-order equation and two adsorption isotherms including Langmuir and
Freundlich equations were applied to determine the adsorption kinetics and adsorption
capacity. The results show that the as-prepared KF@VIM/EGDMA composite has a
maximum adsorption capacity of 697 mg/g to Hg(ll), while no appreciable adsorption
capacity can be found for KF itself. Given its intrinsic large lumen, faster adsorption
kinetics (45 min) are also expected and observed for KF@QVIM/EGDMA. After a simple
filtration, this adsorbent can be directly separated from the aqueous solution and then
be regenerated for multi-cyclable utilization. During the adsorption process, the chemical
complexing represents the main adsorption mechanism. As a naturally renewable KF,
such a simple preparation method opens a new avenue to develop highly efficient and
economically viable adsorbent for removal of toxic heavy metal from aqueous solution.

Keywords: kapok fiber, oriented, N-vinylimidazole, selective adsorption, Hg(ll)

INTRODUCTION

Owing to high surface-to-mass ratio, bio-compatibility, good mechanical performance and ability
to be shaped in various forms, many natural or man-made microfibers have been directly utilized
or modified as an ideal substrate material for loading active nanoparticles (El Ghali et al., 2012;
Xia et al., 2013). Among them, kapok fiber (KF) is obtained from the fruits of the kapok tree
(Zheng et al., 2012), and is a kind of single-cell natural cellulose fiber with about 64% cellulose, 13%
lignin, 2.5% xylan, and 0.8% wax (Liu et al., 2012b). KF is the lightest, thinnest, and highest hollow
degree material among the natural ecological fibers and exhibits flufy, low density, non-allergic,
non-toxic, better surface activity, good oil absorptivity, resistant to rot, and water-repellent nature
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(Lim and Huang, 2007; Liu et al, 2012b). Therefore, KF has
been traditionally used as the stuffing for bedding, life preservers,
upholstery, and water-safety equipment and for insulation
against sound and heat (Liu et al, 2012b). Structured with
rather fine natural microtubules (ca. 8-10 wm in diameter and
ca. 0.8-1.0 um in wall thickness) (Chung et al., 2008) with the
hollow rate of above 86% (Kang et al., 2007), this fiber shows
also its potential for various new application fields, especially
as the support for active nanoparticles and as the biotemplate
to prepare a series of microtubes originated from organic or
inorganic materials (Zheng et al., 2014). KF is an insoluble natural
polymer with a hollow and large lumen, and then it is anticipated
to guide the growth orientation of a polymerizable monomer
to avoid the agglomeration of polymer and enlarge the specific
surface. Accordingly, the resulting KF composites can be easily
separated or recovered from liquid system (Huang and Lim, 2006;
Abdullah et al., 2010). Furthermore, the orientated growth of
a polymerizable monomer on the surface of KF can afford the
resulting material with tailored functional groups for promising
application as an excellent adsorbent for removal of a targeted
pollutant.

Mercury (Hg) is one of the most hazardous heavy metals
included on the US Environmental Protection Agency’s (EPA) list
of priority pollutants (Idris et al., 2011). Due to its persistence
and bio-accumulation in the food chain (Shan et al., 2015), this
metal is extremely harmful to both public health and aquatic
life and thus, the removal of Hg(II) from aqueous solutions
has attracted increasing attention. Adsorption is an important
and useful technology for removal of heavy metal ions from
aqueous solution and the core of this technology is to develop
a novel kind of adsorbent. Up to date, this technology shows
little/no selectivity in generally (Idris et al., 2011) and the large
capital and high regeneration costs of adsorbent should also
be stressed for wastewater treatment (Uguzdogan et al., 2009).
Therefore, functional modification of abundant natural polymers
in particular for those plant materials with metal chelating sites
seems to be a useful method to overcome these problems (Zheng
et al., 2014). One can speculate that KF may be a promising
alternative for developing such a novel adsorbent with tailored
functionality by modifying it by a polymer coating with high
affinity to Hg(II).

As a kind of nitrogen-substituted aromatic heterocycle,
N-vinylimidazole (VIM) is considered to be one of the most
favorable species with great chelating tendency for Hg(II) (Kara
et al., 2005; Bessbousse et al., 2010). Sun et al. (2013) prepared
a silica-based adsorbent by y-radiation induced grafting of
VIM on the silica arisen from chlorotrimethylsilane, and the
adsorption capacity of the as-prepared adsorbent for Hg(II) was
as high as 355.9mg/g in HgCl,/HNO3 solution at pH 5. Shan
et al. (2015) modified the Fe304@SiO, magnetic nanoparticles
by grafting poly(N-vinylimidazole) oligomer to fabricate an
adsorbent (FSPV) to remove Hg(II) from water and found that
the Hg(II) adsorption capacity of FSPV was 346 mg/g at pH 7 and
25°C in 10 mM NaCl. Thus, orientated growth of polymerizable
VIM along the KF surface will be a feasible plan for developing
an adsorbent with high affinity for Hg(II). Furthermore, the
insolubility of KF enables the as-formed composite to be

easily separated or recovered from liquid system. However, the
existence of waxy coating on KF makes it hydrophobic, and
accordingly, this fiber is gaining much attention as an alternative
for oil removal (Ali et al, 2011; Wang et al, 2013a), but
rarely in aqueous solution (Duan et al., 2013). Therefore, it is
a prerequisite to change the wettability of KF from original
hydrophobicity to hydrophilicity so as to remove pollutants from
aqueous solution efficiently. It is reported that when KF was
treated with sodium chlorite (NaClO;) under acidic condition,
the surface wax can be efficiently removed while its hollow lumen
can be perfectly retained (Keshk et al., 2006; Kang et al., 2007).

Based on above background, KF used in this study can be
firstly pre-treated with NaClO, under acidic condition, and the
treated KF can then be coated with VIM as the metal chelating
sites, using ethyleneglycol dimethacrylate (EGDMA) as both of
comonomer and crosslinker by a facile step to achieve a cheap
adsorbent KF@VIM/EGDMA with efficient selectivity and high
regeneration for Hg(II) removal. The specific objectives of this
study are (i) optimization of the ratio of EGDMA to VIM and the
amount of KF for preparation of the adsorbent; (ii) preparation
of a fiber-like KF@VIM/EGDMA with unique morphology and
easy separation or recovery ability from liquid system; and (iii)
evaluation of the efficacy of the as-prepared KF@VIM/EGDMA
composite for Hg(II) removal.

EXPERIMENTAL METHODS

Materials

KF was purchased from Shanghai Panda Co. Ltd., China.
N-vinylimidazole (VIM, 99%) was purchased from Alfa
Aesar Chemical Co., Ltd.,, Tianjin, China. Ethylene glycol
dimethacrylate (EGDMA, >97%) was provided by Tokyo
Chemical Industry Co., Ltd. 2,2’-azobis(2-methylpropionitrile)
(AIBN, AR) was received from Tianjin Kaixin Chemical Industry
Co., Ltd., China. Hydrochloric acid (HCl), sodium hydroxide
(NaOH) and other reagents used were all analytical-reagent
grade. Deionized water was used throughout the experiments.
All of above reagents were used without further purification.

Kapok Fiber Treated by NaClO»

Kapok fiber (1.5g) was pre-treated with 100 mL of the mixture
solution of NaClO; (0.93 g) and glacial acetic acid (1.42mL) at
90°C for 1h. The treated KF was washed with distilled water
until the filtrate reached pH 6-7, then dried at 70°C to a constant
weight. The treated KF was whiter than the pristine one as a result
of bleaching property of NaClO,.

Preparation of
Poly(N-vinylimidazole-Co-Ethylene Glycol
Dimethacrylate)

For the preparation of poly(N-vinylimidazole-co-ethylene glycol
dimethacrylate) (P(VIM-co-EGDMA)) with high affinity to
Hg(II), the monomer ratio of EGDMA to VIM was firstly
optimized according to the following procedure (Table S1): a
designed amount of EGDMA and VIM (2 g) were dissolved into
10 ml methanol using 0.08 g AIBN as the initiator for free-radical
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polymerization. After the reactions were proceeded in an oven
at 60°C for 24h to obtain some white powder, the resulting
products were washed with distilled water and centrifugated for
several times, and then dried at 40°C in an oven to a constant
weight.

Preparation of KFQVIM/EGDMA

Composites

According to the optimization condition of Section Preparation
of Poly(N-vinylimidazole-Co-Ethylene Glycol Dimethacrylate), a
series of KF-based composite adsorbents were prepared by the
following procedure: A predetermined amount of KF (Table 1)
was added into 5mL of methanol containing 0.75 g EGDMA,
1.0 g VIM and 0.04 g AIBN, then the reaction was performed
in an oven under 60°C for 24h to obtain the products. After
the reaction was finished, the resulting adsorbents were washed
with distilled water for several times, filtered with a normal sieve
and dried at 40°C in an oven to a constant weight. Scheme 1
showed the schematic diagram of the structure and formation of
KF@VIM/EGDMA.

Characterizations

The surface morphology was observed using a field emission
scanning electron microscope (FESEM, JSM-6701F JEOL)
after coating the samples with gold film. FTIR spectra
of samples were recorded on a Thermo Nicolet NEXUS
spectrometer in 4000-400 cm~! wavenumber region using
KBr pellets, with a KBr:sample ratio of 100:1. XRD patterns
were collected on a X'pert PRO X-ray power diffractometer
(PAN analytical Co., Netherlands) using Cu-K, radiation of
1.5406 A (40kV, 30mA). X-ray photoelectron spectroscopy
(XPS) was recorded on a PHI 5702 spectrometer equipped
with a monochromatic Al Ka X-ray source. Thermogravimetry
(TG) analysis of the samples was recorded by a Diamond
TG-DTA 6300 thermoanalyzer instrument from 30 to
800°C at a heating rate of 10°C min~! under a nitrogen
atmosphere.

The point of zero charge (pHpzc) was measured by an
immersion technology according to the following process
(Bourikas et al., 2003): adjusting the series aqueous solutions with
varying pH values by adding 0.1 and 1.0 mol/L HCI or NaOH
solutions, and then suspending 50 mg adsorbent sample in the
solutions. The aqueous suspensions were equilibrated for 24 h
to reach an equilibrium pH value, and then the pH value of
each suspension was measured with a digital pH meter (Mettler-
Toledo, FE20). The ApH was then determined from the pH
change between the solution without and with the adsorbent,
i, A pH = pH(blank solution) - pH(suspension). The pHpzc
was identified as the pH where the minimum A pH-value was
obtained. The zeta potentials were obtained by injecting the

TABLE 1 | Formulation for KF@VIM/EGDMA dispersion.

Serial number 1 2 3 4 5

KF (g) 0 0.3 0.4 0.5 0.6

suspension into the electrophoresis cell and measuring them with
a Malvern Zetasizer Nano-ZS apparatus.

Adsorption Experiments

The batch adsorption experiments were carried out to evaluate
the adsorption capacity of KF@VIM/EGDMA. Adsorption
experiments were carried out by dispersing 20 mg of adsorbent
into 25mL of heavy metal solutions in a thermostatic shaker
(THZ-98A, Chincan, Zhejiang, China) at 30°C and 130rpm
for a given time to achieve the adsorption equilibrium.
After filtration, all the supernatant was left for further
analysis to obtain the corresponding adsorption capacity. The
concentrations of heavy metal ions in the solution were measured
by ultraviolet spectrophotometry with a Specord 200UV/vis
spectrophotometer at the maximum absorbency wavelength
(456 nm for Cu?T, 550 nm for Pb?*, 582 nm for Cd*T, 548 nm
for Zn?>*, and 558nm for Hg(Il) using 2,9-dimethyl-1,10-
phenanthroline (for Cu?"), xylenol orange (for Pb?>* and Cd>*),
1-(2-pyridylazo)-2-naphthol (for Zn?**) and safranine T (for
Hg(II)) as the respective complexing agents. The amount of heavy
metal ions adsorbed (g, mg/g) was calculated according to the
following formulas:

_ (Co— Ce) x 0.025
1= m

(1)

Here, g is the amount of metal ion adsorbed at equilibrium
(mg/g), Co (mg/L) is the initial concentration, C (mg/L) is the
equilibrium concentration (mg/L), 0.025 is the volume of the
adsorbate solution (L), and m is the mass of the adsorbent used
(g). All of these experiments were carried out in triplicate to
assure the results were reproducible, and the relative standard
deviation was less than 5% in this study.

The HgCl, solution with initial concentration of 300 mg/L was
used to evaluate the adsorption capacity of the series P(VIM-
c0-EGDMA) and KF@VIM/EGDMA adsorbents to optimize
the monomer ratio of EGDMA to VIM and the amount of
KEF. For the KF@VIM/EGDMA composite, selective adsorption
was performed under non-competitive conditions by using
single CuCl,, PbCly, ZnCl,, CdCl,, HgCl, solution with each
concentration of 300 mg/L as the model. The required pH of
solution was adjusted by 0.1 mol/L NaOH and HCI solutions.
Batch adsorption experiments were carried out with a freshly
prepared HgCl, solution with an initial concentration of
400 mg/L at different contact time to study the adsorption kinetic.
The adsorption capacity of Hg(II) onto KF@VIM/EGDMA was
determined using an increasing concentration from 100 to
1000 mg/L.

In order to evaluate the reusability, the influences of
different desorbing agent and desorbing agent concentration
on desorption efficiency were firstly studied to figure out
the optimum desorption conditions. Firstly, 0.5 mol/L H3SOy4,
thiourea, HCl and KI solution were used as the desorption media.
Then the effects of initial concentration of a chosen desorption
medium on the desorption efficiency were evaluated. After that,
the following procedures were performed to study the reusability
of the as-prepared adsorbent: 20 mg adsorbent was mixed with
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SCHEME 1 | The representation of a possible structure of KF@VIM/EGDMA and its adsorption for Hg(ll).

25mL HgCl, solution (300 mg/L) for 2h. After the adsorption
equilibrium, the KF@VIM/EGDMA was desorbed with 25 mL
chosen desorbing agent solution for 5 h. Before the next cycle, the
adsorbent was filtered and washed with distilled water for several
times, and was neutralized with NaOH solution for 10 min, then
washed with distilled water till the pH reached about 5.5. The
consecutive adsorption-desorption process was performed for
seven times to test the reusability of the composite.

Isotherm and Kinetics Models

The models of Langmuir (Equation 2) and Freundlich (Equation
3) were used to fit the isotherm equations to the experimental
data and calculate the theoretical maximum adsorption capacity
(Alila and Boufi, 2009).

Ce

. . €
Langmuir equation: —

1
=— (2)
e me qm

Freundlich equation: logg. = log K + (1/n) log C. (3)

Here Cc(mg/L) is the equilibrium concentration of Hg(II), g
(mg/g) is the equilibrium adsorption capacity, and g, (mg/g) is
the theoretical maximum value of adsorption capacity, b (L/g) is
the Langmuir adsorption constant representing the free energy of
adsorption. n (dimensionless) and K (L/g) are the heterogeneity
factor and the Freundlich isotherm constant, respectively. 1/n
indicates the bond distribution and K represents the strength of
the adsorptive bond related to the adsorption capacity.

Among various established kinetic models, the pseudo-first-
order (Equation 4) and pseudo-second-order (Equation 5)

kinetic models are considered as the most commonly used
models to investigate the mechanism ruling the adsorption
process and quantify the changes in adsorption with time (Oo
et al., 2009).

kq
Pseudo-first-order: 1 —q¢) =1 - — )t 4
seudo-first-order og (qe qt) 0g ge (2.303> (4)

t 1 t
Pseudo-second-order: — = —-+—— + — (5)

a  (kaxq?)  qe
Here g; and g, are the adsorption capacities of the adsorbent
at time f (s) and at equilibrium, respectively. k; (min~!) and
ky (g/mg min) are the rate constants of the pseudo-first-
order equation and pseudo-second-order equation, respectively.
Kinetic constants k and ge were calculated from the slopes and
intercepts of the plots of log (ge-q¢) vs. t and t/q; vs. t, respectively.

RESULTS AND DISCUSSION

Formation of KFRVIM/EGDMA

During the formation of KF@VIM/EGDMA, the involved
reaction mechanism is a typical free radical polymerization.
When the temperature reached 60°C, the initiator AIBN
was decomposed to produce a radical which can initiate the
polymerization. At the same time, the P(VIM-co-EGDMA)
particles were formed in the dispersion and deposited on the fiber
surface (Fan et al., 2012). With the proceeding of polymerization
reaction, the surface of KF was coated by a thin layer of polymer
coating consisted of P(VIM-co-EGDMA), as shown in Scheme 1.
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2000 1500 1000 500

FIGURE 1 | FTIR spectra of (A) VIM, (B) EGDMA, (C) KF and (D) KF@VIM/EGDMA.

The point of zero charge (pHpzc) and isoelectric point
(pHigp) were measured by immersion technique and zeta
potential measurements to understand the formation of
adsorbent better. As shown in Figure S1, the pHpyc is 7.7 for
KF@VIM/EGDMA and 7.2 for P(VIM-co-EGDMA), while the
pHigp is 7.8 for KF@VIM/EGDMA and 8.4 for P(VIM-co-
EGDMA). The difference between pHpyc and pHigp would give
an indication of the surface charge distribution of the adsorbents.
Compared the pHigp with pHpyc, the equal value of them would
indicate the similar positively charged external surface and the
interior of KF@VIM/EGDMA, suggesting that the inner wall of
KF was also coated with polymer layer. In addition, the pHpzc
and pHjgp values for KF@VIM/EGDMA are closer than that of
P(VIM-co-EGDMA), suggesting a more homogeneous surface
of KF@VIM/EGDMA (Strelko Jr et al., 2002).

FTIR Analysis

The FTIR spectra of VIM (Figure 1A), EGDMA (Figure 1B), KF
(Figure 1C), and KF@VIM/EGDMA (Figure 1D) are shown in
Figure 1. The FTIR spectrum of KF@VIM/EGDMA (Figure 1D)
is similar to that of KF (Figure 1C) except several characteristic
absorption bands originated from VIM (Figure1A) and
EGDMA (Figure 1B). The broad band of KF at about 3422 cm!
derived from the stretching vibration of O-H in cellulose had
almost no change after modification. The ester bands of KF
at 1738 cm ™! which was ascribed to the vibration of C=0 was
merged with the other carbonyl bond at 1723 cm™! of EGDMA to
create a strong and sharp absorption band in KF@VIM/EGDMA
spectrum at 1723 cm~!. The absorption bands at 3112cm™!
in the spectrum of KF@VIM/EGDMA was assigned as the
stretching vibration of the =CH in the ring of VIM (Sun
et al,, 2013), and the narrow peak at 1229 cm™! was ascribed
to chain C-H bending with C=N stretching of imidazole (Talu
et al., 2015). The band observed at 1495cm~! (Figures 1A,D)
was assigned to the C-H bending vibrations of the aliphatic

chain in coupling with the C-C and C=N ring stretching
vibrations of VIM (Sun et al., 2013). Furthermore, the narrow
band at 1649cm™! in VIM spectrum which attributed to the
characteristic of C=C stretching vibration and the characteristic
band of puckering vibration of imidazole ring at 660 cm™!
were also appeared in the KF@VIM/EGDMA spectrum. The
characteristic absorption bands of VIM and EGDMA appeared
in the FTIR spectrum of KF@VIM/EGDMA confirm that KF is
combined successfully with polymers.

SEM Morphology

The photographs of the raw and modified KF presented in
Figures 2A,B show that the raw KF is coated with polymer
successfully and the as-prepared adsorbent has a fibrous shape.
The FE-SEM images show that the raw KF presents regular
hollow tubular structure with a smooth surface (Figure 2C).
After being modified, both of external surface and inner wall
are all covered with plenty of highly aggregated polymer
particles with rough surface (Figures 2D-F). Therefore, it can be
concluded that KF can provide a wonderful substrate material
to orient the growth of polymerizable monomers to form the
KF@VIM/EGDMA fiber with amazing microstructure.

XRD Analysis

The crystalline structures of the native and the modified KF were
also investigated by means of XRD technology. As can be seen
from Figure 3A, the characteristic diffraction peaks of KF appear
at 20 of 15.78°, 22.62°, and 34.96°, which correspond to the
(110), (200) and (004) crystallogrphic planes, respectively (Liu
etal,, 2012a). Otherwise, the XRD pattern of KF@VIM/EGDMA
(Figure 3B) shows significant changes in the crystalline peaks.
The diffraction peak of KF at 26 of 34.96°(004) has disappeared
and the intensity of diffraction peak at 26 of 22.62°(200) gets
weaker, indicating that the aggregating crystalline phase has been
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FIGURE 2 | Photographs of the treated KF (A) and KF@VIM/EGDMA (B)
and SEM image of the KF (C) and KF@VIM/EGDMA (D-F).

greatly altered after modification. The XRD data indicate that KF
is favorable to the attachment of polymer.

TG Analysis

Thermal analysis was performed to analyze the decomposition
temperature and thermal stability of materials. The thermograms
of the raw KF and KF@VIM/EGDMA are presented in Figure 4.
The thermograms of KF and its composites showed the first
weight loss at around 30-250°C. This was due to the evaporation
of water (Prachayawarakorn et al., 2013). The sudden steep
weight losses of KF (Figure 4A) started at 242°C and ended
around 364°C with almost 70% weight loss. Then a slow
degradation started below 364°C and ended at 619°C with a little
weight loss of 19%. For the KF@VIM/EGDMA (Figure 4B), the
thermogravimetry curve resembles apparently to that of KF. The
maximum weight loss was occurred approximately at 269°C and
ended near 411°C with an accompanying 51% weight loss. Then
the followed degradation started from about 411 to 770°C. The
results of thermal analysis suggested that the thermal stability of
the KF@VIM/EGDMA composite was improved.

Intensity

2009

FIGURE 3 | XRD spectra of (A) KF and (B) KF@VIM/EGDMA.

100

Residual weight (%)
& 2 £
T T T

[
=
T

1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900
Temperature (°C)

FIGURE 4 | TGA thermograms of (A) KF and (B) KF@VIM/EGDMA.

Effect of Monomer Ratio on Adsorption
Capacity

The effects of EGDMA to VIM ratio on the adsorption capacity
were investigated in Figure5. It is clear that the adsorption
capacities increased from 248.52 to 342.02mg/g as the ratio
of EGDMA to VIM was ranged from 3/2 (VIM%: 40.0%) to
1.5/2 (VIM%: 57.1%), beyond which the adsorption capacities
showed a monotonic decrease. In general, increasing the VIM
content is beneficial for the adsorption capacities, while excess
VIM will result in a reduction in the adsorption capacity. The
falling adsorption capacities of the adsorbent can be attributed
to increasing steric hindrance of the imidazole ring as the VIM
content increased. The large amount of VIM would impede the
grafting of VIM, and accordingly, the adsorption capacity will
be affected. This fact can be further testified by the decreasing
yield. According to the results presented in Figure 5, the sample
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with EGDMA/VIM ratio of 1.5/2 was adopted for further
investigation.

Optimization of the Content of KF

There is no doubt that the content of KF will influence the
adsorption properties significantly. As shown in Figure 6A, KF
shows no appreciable adsorption for Hg(II). Therefore, it is not
surprising that with increasing amount of KE, KF@ VIM/EGDMA
exhibits a decreasing adsorption capacity for Hg(II) (Zheng et al.,
2012). Otherwise, too much KF will result in insufficiency use of
KF and cause unnecessary waste, while too little amount of KF is
insufficient to orientate the growth of polymers onto its surface.
Thus, 0.3 g KF was finally selected for further studies.

Selective Adsorption of Hg(ll)
The selective adsorption results of KF@VIM/EGDMA are
summarized in Figure 6B. It was found that the adsorption

350

300

250

q.(mg/g)

0.5:2 1:2 1.5:2 ' 2:2 2.5:2 3:2
EGDMA(g):VIM(g)

FIGURE 5 | The effect of EGDMA/VIM ratio on adsorption capacity.
Adsorption experiments: Cp: 300 mg/L; sample dose: 20 mg/25 mL; pH: 5.5;
temperature: 30°C; equilibrium time: 120 min.

capacity for Hg(II)(286.20 mg/g) was much higher than the other
four heavy metals [Cu(II) (32.12mg/g), Pb(II) (20.08 mg/g),
Cd(II) (17.47 mg/g) and Zn(II) (22.67 mg/g)], indicating that the
as-prepared adsorbent exhibited obvious adsorption selectivity
to Hg(II) due to different metal ion species between Hg(II)
and the others in the aqueous solutions. Compared with ionic
heavy metals, the major species of Hg(II) in the solution was
present in the form of electroneutral species such as HgCl, and
HgCIOH that could promote the combination between Hg(II)
and protonated imidazole ring to form the mercury-imidazole
complex (Sun et al., 2013). The positive zeta potential values of
KF@VIM/EGDMA at pH < 7 in aqueous solution (Figure S1)
could explain the selectivity of the adsorbent for Hg(II) very
well. Furthermore, the interaction between Hg(II) and imidazole
ring did not break the Hg-Cl bond in HgCl, and HgCIOH.
All the information implies that the Hg(II) could be absorbed
by KF@VIM/EGDMA via non-electrostatic forces (Shan et al.,
2015).

Effect of pH

In general, the pH value has been considered as a significant
parameter governing the extent of metal ion adsorption by an
adsorbent as it influences both the surface properties of the
adsorbent molecule (Shen et al., 2013; Kyzas et al., 2014), metal
species and the availability of binding site of the adsorbate which
depends on the functional group of an adsorbent (Afkhami
et al., 2010). Since the metal species are mainly in the forms
of precipitation at higher pH (Kampalanonwat and Supaphol,
2014), so the adsorption experiments were carried out at the
initial pH range from 1 to 6 with initial concentration of 200 and
500 mg/L to avoid the precipitation.

As the results shown in Figure 7, the adsorption capacities
remarkably increase with increasing initial pH at the highly
acidic condition (pH < 4.0) and obtained the maximum metal
uptakes at close to neutral condition (pH = 4-6). The adsorption
capacities could largely be affected by the competitive interaction
between metal and hydrogen ions with the active sites on

0 0.3 04 0.5 0.6 KF
Amount of KF (g)

CuCl, PbCl, CdCl

ZnCl,

HgCly

FIGURE 6 | (A) The effect of the amount of KF on adsorption capacity and (B) Adsorption capacities of KF@VIM/EGDMA adsorbents for various divalent heavy metal
ions. Adsorption experiments: Cq: 300 mg/L; sample dose: 20 mg/25 mL; pH: 5.5; temperature: 30°C; equilibrium time: 120 min.
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the surface of the adsorbent at acidic conditions (Chen et al,,
2008). The decreasing concentration of H' which resulted from
the pH increased from 1 to 4 promoted the formation of
the mercury-imidazole complex and increased the adsorption
capacity of KF@VIM/EGDMA for Hg(II) (Sun et al., 2013). The
protonation of imidazole groups in acidic conditions sharply
increased the equilibrium pH of the heavy metal solutions
(as shown in inset in Figure7) and hindered the interaction
between heavy metal cations and the adsorbent (Ijagbemi et al.,
2010), resulting thus in the reducing number of binding sites
available for metal ions uptake. The equilibrium adsorption
capacities for Hg(II) were 262.76 and 653.34 mg/g when the
initial concentration were fixed at 200 and 500 mg/L at pH 6.0,
respectively. According to the results, a series of freshly prepared
HgCl, solutions were directly used without adjusting their
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FIGURE 7 | Effect of pH on the adsorption capacity of Hg(ll) onto
KF@VIM/EGDMA adsorbents. Inset shows the plot of equilibrium pH
against initial pH. Adsorption experiments: sample dose: 20 mg/25mL; t:
120 min; temperature: 30°C.

pH-values since the original pH values for each concentration
were all closed to 5.5.

Adsorption Isotherms

As the initial concentration of heavy metal ions has a significant
influence on the adsorption capacity of the heavy metal ions,
the equilibrium isotherms for the adsorption of Hg(II) by
KF@VIM/EGDMA at 30°C were studied covering a wide range
of initial concentrations, as shown in Figure 8A.

The isotherm results reveal the good adsorption capacity of
KF@VIM/EGDMA for Hg(II) with the maximum adsorption
capacity to Hg(II) of 696.87 mg/g at 30°C in aqueous solution.
The increasing Hg(II) concentration would provide the
maximum driving force for metal ions to conflict with the
mass transfer resistances from the aqueous to adsorbent surface
and result in higher probability of collision between the active
adsorption sites and Hg(II), thus allowing the active adsorption
sites to be completely used, by which a higher adsorption
capacity can be realized.

As shown in Table S2 and Figure 8A, the experimental
data could be well fitted by the Langmuir isotherm model
(R? = 0.9902) than the Freundlich equation (R? 0.5427).
The Langmuir model assumes that the adsorption sites are
energetically equivalent and identical, and only monolayer
adsorption occurs in the process (Weber et al, 1991). The
adsorption capacities of Hg(II) onto various adsorbents are listed
in Table2. Compared with other adsorbents, the adsorption
capacity of KF@VIM/EGDMA composite for Hg(II) is quite high.
Therefore, KF@VIM/EGDMA is a superior adsorbent that has
potential application for the removal of Hg(II) from polluted
water.

Adsorption Kinetics

The adsorption kinetics of KF@VIM/EGDMA was investigated
to determine the adsorption rate which is especially significant
for the practical application of an adsorbent. Figure 8B shows the
time dependent of Hg(II) adsorption on KF@VIM/EGDMA. The
adsorption capacity of the adsorbent for Hg(II) ion shows a rapid
increasing with prolonging the contact time, and the adsorption
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FIGURE 8 | (A) Adsorption isotherm and (B) adsorption kinetics of Hg(ll) onto KF@VIM/EGDMA adsorbents. Adsorption experiments: (A) sample dose: 20mg/25 mL;
pH: 5.5; t: 120 min; temperature: 30°C. (B) Cp: 400 mg/L; sample dose: 20 mg/25 mL; pH: 5.5; temperature: 30°C.
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FIGURE 9 | FTIR spectra of KF@VIM/EGDMA before (A) and after (B) Hg(ll) adsorption.
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TABLE 2 | Maximum adsorption capacity (qm) of various adsorbents for
Hg(ll).

Adsorbents gm (mg/g) References
Hg-C-TU2 110 Monier et al., 2014
poly(vinylalcohol)/poly(vinylimidazole) 120 Bessbousse et al., 2010
TESMP 139 Wang et al., 2013b
poly(1-vinylimidazole)-grafted 346 Shan et al., 2015
FegO4@SiOy

silica-graft-vinyl imidazole 356 Sunetal.,, 2013
Chitosan-poly(vinylalcohol)/ 10% 455 Wang et al., 2014
bentonite

Chitosan-poly(vinylalcohol) 460

EMCRC® 539 Zhou et al., 2010
polyaniline/humic acid 671 Lietal, 2011
KF@VIM/EGDMA 697 This study
polyaniline/attapulgite composite 800 Cuietal., 2012
Polypyrrole-reduced grapheme 980 Chandra and Kim, 2011
oxide

aHg?+ ion-imprinted chelating fibers based on thiourea modified natural cellulosic cotton
fibers.

bThiol functionalized eggshell membrane.

¢ Ethylenediamine-modified magnetic crosslinking chitosan microspheres.

equilibrium was achieved within 50 min. The experiment date
indicate a fast adsorption rate of KF@VIM/EGDMA for Hg(II)
removal.

Table S3 indicated that the correlation coefficient values
of pseudo-second-order kinetic model (R> = 0.9983) are
much better than that of pseudo-first-order kinetic model
(R* = 0.8015), suggesting that the adsorption process is in line
with the pseudo-second-order kinetics model. Otherwise,
the close similarities between experimental adsorption
capacity (468.39mg/g) and calculated adsorption capacity
value (478.47 mg/g) for Hg(II) once again proved the better
fitting of pseudo-second-order kinetic model in comparison to
pseudo-first-order kinetic model. All the information presented
in Table S3 signified that the pseudo-second-order model is

more appropriate to represent the experimental kinetic data and
there is complexation between the Hg(II) and the adsorbent. The
chemical adsorption may be the rate-limiting step (Tapaswi et al.,
2014).

Adsorption Mechanism

Shifts and changes of FTIR peaks would provide powerful
evidence to clarify the adsorption mechanism of Hg(II) onto the
functional groups of the as-prepared adsorbent. The chelation
between the heavy metal ions and the functional groups will
result in the shift of some characteristic absorption bands.
The FTIR spectra of KF@VIM/EGDMA before and after
Hg(II) adsorption are shown in Figure 9. After adsorption, the
characteristic absorption bands of VIM were all shifted. For
examples, the absorption bands at 3112 cm™! in the spectrum of
KF@VIM/EGDMA was shifted to 3124cm™"! and the intensity
became stronger. The peak at 1495 and 1229 cm~! were shifted
to the high wavenumber at 1515 and 1238 cm™!, respectively.
The characteristic peaks at 1649 and 660 cm~! were shifted to
the low wavenumber at 1627 and 650 cm™! after adsorption.
There are no obvious change of the strong band at 1723 cm™!
ascribed to the vibration of C=O after adsorption. All the
information listed above indicated that during the adsorption,
midazole groups had been participated in the chelation reaction,
while carbonyl group was not involved. The X-ray photoelectron
spectroscopy (XPS) was also used to investigate the adsorption
mechanism of Hg(II) onto the KF@VIM/EGDMA. As shown
in Figure 10, the appearance of the Hgy spectrum after the
adsorption revealed that the Hg(II) was specifically adsorbed
onto KF@VIM/EGDMA. Two photoelectron peaks detected for
Hgue7/2 (100.78 eV) and Hgypso (104.88 eV) in Figure 10C
implied that Hg(II) existed in a divalent state (Wang et al., 2012).
Additionally, as shown in the survey spectra in Figures 10D,E,
after adsorption, the binding energy of the imine (>N-) nitrogen
of the imidazole ring at 398.88 eV (Lazaro Martinez et al., 2011)
shifted to 399.18 eV, while the amine (-N-C-) nitrogen at 400.78
has no obvious change, demonstrating that the imine (>N-)
nitrogen of the imidazole ring mainly chelates with Hg(II) (Sun
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et al., 2013). The complexation between Hg(II) and nitrogen
atoms transferred the electrons from Hg to the imidazole rings,
and constructed an electron-rich environment for the nitrogen
species, decreasing thus the binding energy of Nj, peaks. The
probable formation mechanism of mercury-imidazole complex
was proposed in Scheme 1.

Desorption and Regeneration Performance
The desorption studies and the reusability of the
KF@VIM/EGDMA  were investigated to evaluate the
regeneration and reusabilities of the as-prepared adsorbent.

The species of the desorbing agents would significantly
affect the desorption efficiency. Thus, the influences of different
desorbing agents with the same concentration on desorption
efficiency were investigated. According to the results presented
in Figure 11A, H,SO4 presented the best desorption efficiency
among the four desorbing agents. Subsequently, the influences
of the concentration of H;SO4 on desorption efficiency
were performed and the results revealed that the desorption

ratio showed no significant differences by varying H,SO4
concentration from 0.1 to 0.9 mol/L. According to the experiment
date, 0.5 mol/L H,SO4 solution was selected to investigate
the regeneration and reusability of the adsorbent. As shown
in Figure 11B, there appears no significant decrease in the
adsorption capacity during the whole adsorption-desorption
process, revealing that KF@VIM/EGDMA can be used for
multiple cycles, an indication of excellent reusability of the
adsorbent for removing Hg(II) from aqueous solution.

CONCLUSIONS

A novel adsorbent KF@VIM/EGDMA composite was designed
and developed by a facile and green in situ polymerization
reaction under mild conditions. The hollow structure and fibrous
surface of KF can orientate the polymerization growth, by
which a uniform N-containing polymer layer was formed along
the KF surface. The as-prepared KF@VIM/EGDMA composite
possesses the advantages of excellent adsorption capacity and
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selectivity, and fast adsorption kinetics for Hg(II) ions, with the
adsorption capacity of as high as 697 mg/g and the adsorption
saturation of 45 min. Moreover, the composite based on KF can
be separated from the liquid system easily, which is benefit for
the recycle of the adsorbent, and the fact of experiment suggested
that the as-prepared adsorbent exhibits no obvious retrogress for
Hg(II) removal during several adsorption-desorption process. In
conclusion, the KF@VIM/EGDMA can be used as an efficiently
and economically viable adsorbent for selective adsorption of
Hg(II) and the development of the composites coated on natural
KF by a facile and green method proposed an effective way to
utilize natural resources.
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