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Estrogen receptors (ERα) are a critical target for drug design as well as a potential source

of toxicity when activated unintentionally. Thus, evaluating potential ERα binding agents

is critical in both drug discovery and chemical toxicity areas. Using computational tools,

e.g., Quantitative Structure-Activity Relationship (QSAR) models, can predict potential

ERα binding agents before chemical synthesis. The purpose of this project was to

develop enhanced predictive models of ERα binding agents by utilizing advanced

cheminformatics tools that can integrate publicly available bioassay data. The initial ERα

binding agent data set, consisting of 446 binders and 8307 non-binders, was obtained

from the Tox21 Challenge project organized by the NIH Chemical Genomics Center

(NCGC). After removing the duplicates and inorganic compounds, this data set was used

to create a training set (259 binders and 259 non-binders). This training set was used

to develop QSAR models using chemical descriptors. The resulting models were then

used to predict the binding activity of 264 external compounds, which were available to

us after the models were developed. The cross-validation results of training set [Correct

Classification Rate (CCR) = 0.72] were much higher than the external predictivity of the

unknown compounds (CCR = 0.59). To improve the conventional QSAR models, all

compounds in the training set were used to search PubChem and generate a profile of

their biological responses across thousands of bioassays. The most important bioassays

were prioritized to generate a similarity index that was used to calculate the biosimilarity

score between each two compounds. The nearest neighbors for each compound within

the set were then identified and its ERα binding potential was predicted by its nearest

neighbors in the training set. The hybrid model performance (CCR = 0.94 for cross

validation; CCR = 0.68 for external prediction) showed significant improvement over

the original QSAR models, particularly for the activity cliffs that induce prediction errors.

The results of this study indicate that the response profile of chemicals from public

data provides useful information for modeling and evaluation purposes. The public big

data resources should be considered along with chemical structure information when

predicting new compounds, such as unknown ERα binding agents.
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INTRODUCTION

Estrogen receptors are cellular proteins that are activated when
bound to estrogen molecules. When activated, estrogen receptors
trigger the expression of gene products crucial to the endocrine
system (Hall et al., 2001). These receptors can also be activated
by certain endocrine disrupting chemicals (EDC), resulting in a
disruption of normal estrogen signaling (Shanle and Xu, 2011).
There are two unique estrogen receptors: ERα and ERβ. These
two receptors are highly similar in the DNA binding domain, but
differ more significantly in other regions. While there are many
EDC that interact with both receptors, the difference between
these two receptors allows some ligands specifically bind to only
one receptor as well. Among all known binding agents, the ERα

binders are much better characterized than ERβ binders (Hall
et al., 2001; Shanle and Xu, 2011). Due to the nature of available
data, this study focuses solely on ligands binding to ERα.

When estrogen receptors are activated by small molecules
other than estrogens, the expression of the associated genes
is deregulated leading to neurological, developmental, and
reproductive toxicity (Mueller and Korach, 2001). There are
many small molecules with different chemical structures which
exhibit interaction with the ligand binding domain of the
estrogen receptor (Blair et al., 2000; Schug et al., 2011).
Considering the large number of compounds which needs to
be evaluated for their estrogen receptor binding potentials,
traditional experimental toxicology protocols can be costly and
time-consuming. As a result, there is a strong need to effectively
pre-screen and prioritize small molecules for potential endocrine
disruption prior to more costly animal testing. In a 2007
publication, the U.S. National Research Council identified both
high-throughput screening (HTS) and computational models as
critical chemical toxicity evaluation tools in Twenty-First century
toxicology (Committee on Toxicity Testing and Assessment of
Environmental Agents N.R.C., 2007). HTS has been viewed
as a potential alternative to animal models due to the ability
to test many molecules at a rapid pace and lower cost. The
large number of HTS studies has resulted in publically available
bioassay databases which are a rich source of in vitro data (Zhu
et al., 2014). Motivated by these available data, computational
modeling, which costs even less than HTS, has been used as
another important evaluation protocols for EDCs (Ding et al.,
2010).

Quantitative structure-activity relationship (QSAR) modeling
has been applied to develop estrogen receptor binding models
in the past decade, as shown in Table 1 (Hong et al., 2002;
Serafimova et al., 2007; Liu et al., 2008; Li and Gramatica,
2010; Taha et al., 2010; Vedani et al., 2012; Zang et al., 2013;
Zhang et al., 2013, 2014; Deng et al., 2014; Ng et al., 2015).
These studies have covered a wide range of modeling approaches
and data set sizes, from a descriptor-based decision tree (Hong
et al., 2002) to 3-D docking and multi-dimensional QSAR
(Vedani et al., 2012). The number of compounds used for
modeling purpose in these studies range from less than 100
to more than 8000. The QSAR modeling of estrogen receptor
binding agents has also been reviewed (Lo Piparo and Worth,
2010).

TABLE 1 | A sampling of QSAR studies on estrogen receptor interaction.

Year Receptor

studied

Data set size Method References

2005 α 232 training/

463 test

Decision Tree Hong et al., 2002

2007 α 645 COREPA Serafimova et al., 2007

2008 α 108 OLS/GA-VSS Liu et al., 2008

2010 β 119 GA-MLR Taha et al., 2010

2010 α 132 GA-MLR/kNN Li and Gramatica, 2010

2012 α 106α/96β Docking/mQSAR

(VirtualToxLab)

Vedani et al., 2012

2013 α/β 546α/137β kNN (STL and

MTL)

Zhang et al., 2013

2013 α 8147 SVM Zang et al., 2013

2014 α/β 81 MLR/RBFNN Deng et al., 2014

2015 α 3308 Decision forest Ng et al., 2015

Although, there have been many promising models developed
to predict ER binding data, these QSAR models are all based on
data derived from chemical structure alone. As a result, there
is increasing evidence that the applicability of these models is
limited to certain compounds (Johnson, 2008; Scior et al., 2009).
In certain cases, compounds with similar structures may show
significantly different activities, leading to prediction errors in
QSAR models. These pairs of molecules are known as “activity
cliffs” in QSAR studies (Maggiora, 2006). QSAR models predict
the activity of compounds only based on their chemical structure
information, but the presence of activity cliffs can lead to
unavoidable prediction errors if there is no other information
than chemical structures (Cruz-Monteagudo et al., 2014).

Inspired by the biosimilarity study reported by Low and
her coworkers (Low et al., 2013), in this study, we developed
enhanced computational models for estrogen receptor binding
agents using both QSAR approaches and a biosimilarity search,
which is based on publically available bioassay data. The initial
QSAR models developed using the combination of various
chemical descriptors and modeling approaches, were integrated
with the biosimilarity information to generate hybrid predictions.
Using the resulting hybrid models, the new compounds can be
directly predicted for their estrogen receptor binding potential.
The incorporation of a biosimilarity search based on additional
bioassay data can solve the activity cliffs issue of QSAR modeling
and improve the prediction accuracy of new compounds.

MATERIALS AND METHODS

Data Curation
The original dataset used in this study was obtained in two
parts separately from the National Center for Advancing the
Translational Science (NCATS) via the Tox21 Challenge project.
The dataset (PubChem assay AID 743077) consisted of the
results of the quantitative High Throughput Screening (qHTS)
to identify agonists of the ERα signaling pathway by measuring
the expression of a beta lactamase reporter gene controlled
by an ERα ligand binding domain (ER-LBD) fusion protein
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(National Center for Biotechnology Information, 2015). This
dataset was used as the training set in the Tox21 Challenge. The
original dataset consisted of 8753 compounds, of which 446 were
categorized as active (ERα binders) and 8307 were categorized
as inactive (non-binders). The compounds were processed by
the CaseUltra R© (www.multicase.com) structure checker tool to
remove duplicates and inorganic compounds, resulting in 5647
unique organic compounds (259 actives and 5388 inactives). All
the active compounds were selected for the training set and
combined with a randomly selected 259 inactive compounds to
produce a balanced training set of 518 compounds. An additional
but much smaller set of compounds not included in the original
qHTS data was provided by the Tox21 Challenge project as an
external test set to validate the resulting models (see Figure 1 for
modeling workflow). This external test set of 297 compounds (25
actives and 272 inactives) was also processed by the CaseUltra R©

structure checker to remove duplicates and inorganics, resulting
in 264 unique compounds (24 actives and 240 inactives).

Chemical Descriptors
Once the datasets were curated, chemical descriptors were
calculated using two commercial descriptor generators. A
total of 192 2-D Molecular Operating Environment R© (MOE)
(www.chemcomp.com) descriptors were generated using MOE
version 2013, which include physical properties, atom and bond
counts, connectivity and shape indices, adjacency and distance
matrix descriptors, etc. Dragon R© (www.talete.mi.it/) version 6

was used to generate 1259 descriptors including constitutional
indices, drug-like indices, connectivity indices, functional group
counts, etc. All descriptors were normalized to (0,1) and any
redundant descriptors were removed by deleting those with
low variance (standard deviation <0.01 for the whole training
set) and randomly keeping one of any pairs of descriptors
that had high correlation (R2 > 0.95 between two descriptor
values for the training set compounds), leaving 132 unique MOE
descriptors and 594 unique Dragon descriptors for both data sets.
In order to calculate the chemical similarity among compounds,
MOE 2013 was used to calculate 166 MACCS fingerprints of
each compound. These fingerprints were used as descriptors to
calculate the Tanimoto coefficient of each compound pair to
determine their chemical similarity (Willett, 2006).

QSAR Model Development and Model
Validation
Three machine learning algorithms were used to develop
QSAR models: support vector machines (SVM), random forest
(RF), and k nearest neighbor (kNN; Mitchell, 2014). In this
study, the RF (Breiman, 2001) and SVM (Vapnik, 2000)
algorithms available in R R© 3.0.2 using the packages “e1071”
and “randomForest” (Dalgaard, 2008) were implemented. The
available SVM algorithmwas tuned to identify the optimal inputs
for model performance. The kNN models (Zheng and Tropsha,
2000) were built using in-house modeling tools, also available
at Chembench (http://chembench.mml.unc.edu; Walker et al.,

FIGURE 1 | The hybrid modeling workflow.
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2010). This model uses a genetic algorithm selection procedure
to predict the activity of a target compound by identifying the
k most similar compounds within the chemical descriptor space
and using their activity to predict that of the target compound.
The best model of each run is kept, while inferior models are
discarded. In our modeling process, a random selection of 50
chemical descriptors was used in each iteration of the algorithm.
Each method was performed with both MOE and Dragon
descriptors, as shown in the modeling workflow in Figure 1.
The six resultingmodels (SVM-Dragon; SVM-MOE; RF-Dragon;
RF-MOE; kNN-Dragon; and kNN-MOE) were averaged to give
a consensus prediction, as described in previous publications
(Solimeo et al., 2012; Kim et al., 2014). All models were validated
using a five-fold cross validation. In this procedure, the training
set was randomly split into five equal selected subsets. Four
subsets (80%) were used as a training set and the compounds
in the fifth subset (20%) were used as a test set. The training set
was used to develop QSARmodels and the resulting models were
used to predict the test set. This procedure was repeated five times
until all compounds were used in the test set once (Golbraikh
et al., 2003; Tropsha and Golbraikh, 2007).

Biosimilarity Calculation
An in-house profiling tool (Zhang et al., 2014) was used to extract
relevant bioassay data from PubChem for each compound in
both the training and test sets. The PubChem assays were ranked
by the numbers of active responses for the compounds in our
training set. The resulting PubChem bioassay profile consisted
of 44 bioassays, which contain the largest number of active
responses in the training set, and was then used to calculate
the biosimilarity between pairs of two compounds using the
following formula:

Weighted Estimate of Biological Similarity (WEBS)

=

∑

(p+ (ω)n)
∑

(p+ (ω) n+ d)

where p is the number of assays in which both compounds show
active results, n is the number of assays in which both compounds
show inactive results, and d is the number of assays in which the
two compounds show opposite results. Inconclusive data were
not considered in the calculation. The negative response data
(inactives) are weighted less than positive responses (actives) in
the biosimilarity calculation. In this study, the weight parameter
ω was given the value of 0.06. The resulting WEBS values
range from 0 to 1 and were used to determine the nearest
neighbors in the training set for each test set compound. Any
compound with WEBS similarity score over 0.6 was considered
as a potential nearest neighbor for the target compound. The
ERα binding activities of up to the top five nearest neighbors
were used to calculate the predicted activity of the relevant test
set compound. When fewer than five nearest neighbors existed
within the training set, all nearest neighbors were used.

In order to form a hybrid model, the biosimilarity prediction
was averaged with the QSAR prediction for each compound.
For compounds which were not able to be predicted by the
biosimilarity tool due to missing data, the QSAR consensus

prediction was used as the predicted value. Compounds with
opposite results from QSAR consensus models and biosimilarity
search were considered as inconclusive and removed. This
method returned a prediction for 192 of the 264 test set
compounds.

RESULTS

QSAR Results
The modeling set was used to develop six individual QSAR
models and their predictions were averaged as a consensus
prediction. The model performance was indicated by five-fold
cross validation of the modeling set itself and external prediction
of a set of 264 unknown compounds. The performance was
evaluated by calculating the sensitivity, specificity, and CCR for
all models, as shown in Figure 2.

sensitivity =
true positives

(

true positives + false negatives
)

specificity =
true negatives

(

true negatives + falsepositives
)

CCR =
sensitivity + specificity

2

For the five-fold cross-validation procedures, the predictivity was
similar across all the models (CCR = 0.642−0.749). However,
the external predictions of the 264 unknown compounds showed
a significant decrease in accuracy (CCR = 0.544−0.627), as
observed in previous QSAR studies (Zhu et al., 2008a; Solimeo
et al., 2012; Ng et al., 2015). Compared to individual models,
the consensus model gave similar performance to the best
individual models for both five-fold cross validation (sensitivity
= 0.730, specificity = 0.704, and CCR = 0.717) and external
predictions (sensitivity = 0.500, specificity = 0.683, and CCR
= 0.592). Applying an applicability domain (AD), as described
in previous studies (Zhu et al., 2008a, 2009), to both validation
procedures did not show an improvement in predictive ability,
so all predictions (100%) were retained when analyzing the QSAR
models.

Bio-Assay Profile and Predictions
Our previous studies have shown improvements of QSARmodels
by incorporating biological data as extra descriptors into the
modeling procedure (Sedykh et al., 2011; Kim et al., 2014).
Relevant bioassay activity has been shown to be useful for the
bioactivity predictions (Zhu et al., 2008b; Wang et al., 2015;
Kim et al., 2016). In this study, the in-house profiling tool was
used to automatically extract and optimize a biological profile
containing 44 PubChem assays for 518 modeling set compounds.
Using the WEBS score to calculate the biological similarity of
each two compounds, those most similar compounds withWEBS
scores over the nearest neighbor cut-off were identified for each
test set compound and then used to predict the ERα binding
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FIGURE 2 | The performance of all resulting models. (A) Cross-validation of the 518 training set compounds; (B) external validation of 264 unknown compounds.

potential. When combining the biosimilarity search with the
QSAR consensus model as a hybrid model, the cross validation
demonstrated a significant improvement of the accuracy over
traditional QSAR modeling only based on chemical descriptors.
Compared to the QSAR consensus model, the sensitivity,
specificity and CCR of the hybrid model increased from 0.730 to
0.963, from 0.704 to 0.925, and from 0.717 to 0.939, respectively.

The external test set was also predicted by including up
to five of the most biosimilar compounds in the training set.
These hybrid predictions showed a noticeable improvement over
the QSAR based solely on chemical descriptors. The external
test set predictions returned a sensitivity = 0.813, specificity =

0.540, and CCR = 0.676 with a coverage of 73% (192 out of
264). The increase of sensitivity in both cross validation and

external predictions brings considerable benefit when prioritizing
potential EDCs for experimental testing.

DISCUSSION

The estrogen receptor has been the target of many modeling
studies due to the effects of endocrine disruption that occur
when a compound present in the environment or in a consumer
product activates the receptor. While recent modeling studies
(Ng et al., 2015) have demonstrated impressive relative balanced
accuracy and specificity based on only chemical structures, these
models are still challenged by the high prevalence of false negative
results when testing an external set, leading to a low sensitivity.
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There is a need for methods that can quickly and effectively
screen a wide range of chemicals to correctly identify potential
EDCs before a product is brought to market. This is a particular
challenge when screening new compound sets, such as that used
as an external test set in this study, where only a small fraction
of the new compounds may be active binders. The attempt to
use QSAR models based on only chemical descriptors to fill
this need has been hindered by the structural diversity of the
estrogen receptor binders and has reached a bottleneck due
to the existence of activity cliffs. In this study, the noticeable
improvement of the sensitivity of the model when predicting an
external test set using the hybrid model suggests that the use
of biological response data may be of particular importance in
lowering the rate of false negative predictions from a model.
Although this study focuses on activation of ERα only, there is
a wide variety of chemical structures that are able to activate
this receptor due to its large ligand binding domain (Shanle
and Xu, 2011). The lack of experimental data, especially for
active compounds (ERα binders), has resulted in activity cliffs in
QSARmodels based solely on chemical structures and limited the
applicability of traditional QSAR modeling methods.

The QSAR models all showed acceptable predictivity when
considering the cross validation of the training set. However,
the external prediction of 264 unknown compounds had
significantly decreased prediction accuracy, especially for
individual models. Although the consensus model shows
relatively stable performance, the sensitivity of its external test set
prediction is much lower than the cross validation results due to
the high proportion of false negatives. Table 2 displays examples
of compounds that were consistently predicted incorrectly by the
original QSAR models along with both their chemical nearest
neighbor and biological nearest neighbor in the training set.
The first active compound, A-315456 (PubChem CID 6603710),
an α-1D-adrenoceptor antagonist, is an ERα binder that was
incorrectly predicted as inactive by all QSAR models. This
compound’s chemical nearest neighbor in the training set is the
inactive compound sulfamethoxazole (PubChem CID 5329).
Dimethoxynaphtoquinone (PubChem CID 3136) is also an
active ERα binder that was incorrectly predicted by the QSAR
consensus model. Its chemical nearest neighbor dichlofop-
methyl (PubChem CID 39985) is an inactive compound in
this assay. Similarly, the compound N-methyl-2,3-diphenyl-
1,2,4-thiadiazol-5-imine (PubChem CID 682802) is an inactive
compound. However, its chemical nearest neighbor, in the
training set, dichlorodiphenyltrichloroethane (DDT) (PubChem
CID 3036), is an ERα binder. These prediction errors cannot
be avoided if only chemical structure information is used for
modeling.

The prediction of the test set compounds improved when
biosimilarity results were combined with the QSAR consensus
model to form a hybrid model. Of particular note, the sensitivity
of the external test set prediction increased from 0.500 for the
QSAR consensus model alone to 0.813 for the hybrid model. In
these examples, the biological nearest neighbors, as determined
by WEBS score, provide more useful information for the
predictions of external compounds. For example, the biological
nearest neighbor in the training set of A-315456 (PubChem

CID 6603710), an ERα binder, is toxaphene (PubChem CID
5284469), also an active compound (Table 2). For the other
external test set compounds in Table 2, their biological nearest
neighbors show the same ERα binding activities as the relevant
target compounds. Furthermore, the WEBS scores for these
test set compounds show dissimilarity to their chemical nearest
neighbors. For example, the inactive compound N-methyl-
2,3-diphenyl-1,2,4-thiadiazol-5-imine (PubChem CID 682802)
has a biological nearest neighbor, malathion (PubChem CID
4004), a widely used insecticide that also showed inactive
response in the ERα binding assay. Its chemical nearest neighbor,
DDT (PubChem CID 3036), a now-banned insecticide, has
a very low biosimilarity (WEBS = 0.0169) to N-methyl-
2,3-diphenyl-1,2,4-thiadiazol-5-imine. Seven PubChem assays
with testing data for both compounds show opposite results
between these two compounds. The above analysis indicates
that the activity cliffs are chemically similar compounds
but have different biological effects (i.e., ERα binding).
The hybrid model, using biosimilarity search as additional
information in the modeling process, was able to differentiate
them.

The bioassay response profile of the compounds shows
promising potential to improve traditional QSAR models.
Furthermore, when examining the PubChem assays used in the
profile of this study, many targets of the assays regulate or are
regulated by ERα. This provides additional useful information
as to the types of bioassays which may be most useful in
developing hybrid prediction models for ERα. The highest
ranked assay, which consists of the highest number of active
responses for our training set compounds, was used to screen
potential inhibitors of histone lysine methyltransferase G9a
(PubChem AID 504332). This assay acts as a co-regulator in the
estradiol-induced activation or repression of gene transcription
by ERα (Métivier et al., 2003; Purcell et al., 2011). Several
other assays used in this profile specifically target enzymes in
the cytochrome P450 (CYP450) family. These assays include
screening inhibitors for CYP1A2 (PubChem AID 410) and
CYP3A4 (PubChem AID 884), and a composite screening results
for various CYP450 inhibitors (PubChem AID 1851). These
proteins modulate ERα signaling by helping to maintain the
androgen/estrogen balance (Tsuchiya et al., 2005). By analyzing
the bioassays within the response profile, it indicates the future
direction of gathering useful data for evaluating potential ERα

binders.
The biosimilarity methodology used in this project shows

a promising way to improve the predictivity of traditional
QSAR modeling, particularly for increasing the sensitivity of the
prediction results. However, since many compounds may not
have been tested and have no data available in public resources,
the usefulness of biosimilarity is limited by its coverage. A
potential strategy to address the limitation of missing data is by
using “read-across” methods (Patlewicz et al., 2014) to fill gaps
in bioassay data for unknown compounds. Another pitfall of
using the public data is the presence of experimental errors and
the redundancy between various assay results. Currently, we are
developingmultiple novel datamining approaches to address this
issue and will report them in future studies.
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TABLE 2 | Three test set compounds (the first compound in each group) with their chemical nearest neighbor (the second compound) and biological

nearest neighbor (the third compound).

Compound Activity WEBS Score Bioprofiles*

1 Active –

*

Inactive 0.117

Active 1.00

2 Active –

**

Inactive N/A N/A

Active 1.00

3 Inactive –

***

Active 0.0169

Inactive 1.00

*In the selected bioprofiles, the red color indicates active response, blue color indicates inactive response and white color indicates no data available. The bioprofiles only consist of the

assays out of 44 PubChem assays that have the data for the three compounds in each group:

*First group bioprofile assays: PubChem AID 410, 883, 884, 893, 504832, 686978.

**Second group bioprofile assays: AID 410, 884, 504847, 686978, 686979, 743244.

***Third group bioprofile assays: AID 884, 886, 887, 893, 504847, 686978, 686979.

N/A indicates there is no data available for this compound within these assays.
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CONCLUSION

In this study, we first developed QSAR models for the qHTS
assay data, which identify agonists for the ERα signaling pathway,
provided in the Tox21 challenge. The external test set prediction
of all QSAR models, including the consensus model, is lower
than the cross validation results of the training set. However, by
combining the biosimilarity search, developed using the bioassay
response profile automatically extracted from PubChem, with
the QSAR consensus predictions, a hybrid model was created.
The resulting hybrid model showed a noticeable improvement in
both cross-validation and external prediction results compared
to QSAR models based only on chemical descriptors. This
result demonstrated that integrating extra biological data in the
modeling process can improve traditional QSAR models when
predicting ERα binding potentials for unknown compounds.
This strategy can be used to develop enhanced models to evaluate
other types of toxicity for compounds of interest.
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