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Winter survial during an annual cycle of temperate- and boreal-zone woody perennials is a multi-
component response. Two of these components are: (1) the timing, rate, and extent of cold
acclimation (CA; Box 1), and (2) plants’ ability to sufficiently maintain its freezing tolerance (FT)
until the danger of killing frosts is passed which is determined by, among other factors, plants’
ability to resist any premature/unseasonal deacclimation (DA; Box 1), which, under a predictable
seasonal pattern, typically occurs during spring-warming.

DA RESPONSE IS MORE CRITICAL THAN CA UNDER CLIMATE
CHANGE SCENARIO

CA is primarily initiated by the shortening day-length in autumn but further enhanced by
cold temperatures by mid-winter. Research shows that short-days alone are sufficient to induce
significant FT in woody perennials. Following are just of many examples that support this
observation: (1) Pinus sylvestris acclimated to −22◦C under short-days alone compared to −40◦C
under both the short-days and cold (Smit-Spinks et al., 1985), (2) Taulavuori et al. (2000) reported
significant induction of FT in pine seedlings by short-days at 20◦C, and (3) Fagus sylvatica are
already hardy to below −15◦C in October for an average year (Tranquillini and Plank, 1989).
Moreover, FT of overwintering tissues in mid-winter is generally much higher than the absolute
minimum temperatures typically encountered in nature (Vitasse et al., 2014). Therefore, the timing
or capacity of CA does not constitute a critical factor regarding the risk of freeze-damage unless,
however, an unusually early freeze in autumn causes premature leaf-loss and interferes with the
preparation for maximal CA.

The dominant driver of DA, on the other hand, is warm temperature, and DA proceeds much
faster (hours to days) than autumnal CA (weeks to months) (Fuchigami et al., 1982; Taulavuori
et al., 2004; Kalberer et al., 2006). Consequently, erratic temperature fluctuations, i.e., “unseasonal”
spring-like conditions followed by a freeze, could render partially or fully deacclimated tissues
vulnerable to freeze-damage. Indeed, magnitude and frequency of such fluctuations have been on
the rise in recent years (Jentsch et al., 2007; IPCC, 2014), and some of the most devastating killer-
frosts across North America are attributed to such vagaries of climate, e.g., Easter freeze of 2007
(Gu et al., 2008), Mother’s Day freeze of 2010, killer frost of 2012, and polar vortex of 2014. Field
simulations of winter-warming events have also confirmed their damaging effects on overwintering
perennials (Taulavuori et al., 1997; Bokhorst et al., 2009, 2010). We, therefore, opine that under
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a climate change scenario, the rate and extent of premature
DA is a particularly critical factor determining overall winter-
hardiness, and a genotype/tissue with relatively greater DA-
resistance during “unseasonal” warm spells may be resilient to
temperature extremes.

Notably, diurnal fluctuations in temperature impact FT
differently than do the constant temperatures because while
warm days might induce DA, cold nights could promote
reacclimation (RA; Box 1), (provided DA is not totally
irreversible) which could potentially serve as a “safety-net”
against premature DA (Kalberer et al., 2006, 2007a,b). For
example, a constant 6◦C exposure caused steady DA of Scots
pine needles whereas a temperature-cycle averaging 6◦C, i.e.,
11◦C/1◦C (D/N), caused DA and RA whereby the colder phase
resulted in reacclimation of up to 10◦C (Leinonen et al., 1997).
Such DA/RA cycling and its potential significance in winter-
survival are often ignored in studies undertaken to model winter-
hardiness response vis-à-vis climate change.

BUD DORMANCY STATUS IMPACTS DA

Limited research shows that DA kinetics (timing and extent) is
not a single-dimension response, and regulated by factors such as,
climate, genotype, and the bud dormancy status (endodormancy
vs. ecodormancy; Box 2) (Ögren, 2001; Taulavuori et al., 2004;
Kalberer et al., 2006; Arora and Rowland, 2011; Pagter and Arora,
2013; Ferguson et al., 2014; Vitasse et al., 2014). In endodormant
(END) state, buds are relatively resistant to deacclimation
whereas ecodormant (ECD) buds are “physiologically primed”
for growth resumption (spring phenology) and accompanying
deacclimation under conducive temperatures (Litzow and
Pellett, 1980; Wolf and Cook, 1992; Kalberer et al., 2006).
For example, fully cold acclimated buds of Rhododendron
viscosum var. montanum deacclimated by ∼40% in February
(chilling requirement; CR met; Box 2) when exposed to elevated
temperatures but the same dose of warming in December (CR
not met) resulted in only 19% DA (Kalberer et al., 2007a).

Physiology
Physiological rationale for why plants are less prone to
deacclimation in END state is not well understood. Conceivably,

BOX 1 | DEFINITIONS (IN PRESENT CONTEXT):

Cold acclimation (CA): a seasonal increase in overwintering perennials’ freezing tolerance during each autumn reaching the maximum by winter. Deacclimation

(DA): loss of the freezing tolerance that was acquired during CA. Reacclimation (RA): Regain of some or most of the freezing tolerance (lost during DA) when

deacclimated tissues are exposed to cold acclimating conditions, e.g., cold.

BOX 2 | DEFINITIONS:

Endodormancy (END): the deepest state of dormancy in autumn during which buds must meet their chilling requirement (CR) in order to begin growth upon return

of conducive environment; also called physiological dormancy, winter-dormancy or rest. Chilling requirement (CR): exposure of buds to a minimum number of

chill-units (CUs) to overcome END; CUs: number of hours that buds are exposed to chilling temperatures, generally taken to be between 0 and 7◦C. Ecodormancy

(ECD): inability of non-endodormant buds to grow due exclusively to non-conducive environment, such as too cold or hot, drought etc.; also called imposed dormancy

or quiescence (for detailed definitions of END and ECD, readers are referred to Lang et al. (1987). Heat units (HUs): accumulated dose of conducive heat (time ×

temperature above a certain threshold) required by non-endodormant buds to break/grow.

symplastic-isolation of shoot apices due to down-regulated cell-
to-cell communication (Rinne et al., 2011; Paul et al., 2014)
and/or reduced content and mobility of water in END tissues
(low free to bound water ratio, Fennell and Line, 2001, lower
aquaporin activity/expression, Yooyongwech et al., 2008) are
non-conducive for DA biochemistry, such as the loss of soluble
sugars. Sugar depletion is believed to be a primary physiological
explanation for DA (Ögren, 2001; Pagter and Arora, 2013).
Growth regulator dynamics is also a likely factor. ABA, a growth-
suppressing hormone, is widely known to accumulate in END
tissues (Tanino, 2004). While bud-swell/opening is positively
correlated with DA (Arora et al., 2004; Rowland et al., 2008),
conditions prevailing during END are not favorable for cell
expansion or bud-swell. For example, the level/perception of
active GA, a hormone needed for bud burst, is lower in END
tissues (Cooke et al., 2012, and references therein). ECD tissues,
on the other hand, can and do deacclimate even in mid-winter
if exposed to conducive warm. Such mid-winter DA is known
as “passive DA” and requires ecologically unrealistic warming
(Taulavuori et al., 2002) as opposed to “active DA” that occurs
during spring-like conditions (Kalberer et al., 2006). Even though
the temperature is typically too cold during early ECD stage to
initiate ontogenetic development or deacclimation, the risk of
damaging events exists and is not fixed in calendar, i.e., sudden
deacclimation followed by extreme cold, absence of snow cover
and hastened spring followed by nocturnal frosts (Taulavuori,
2013). Other stresses (UV, nutrient etc.) may also accelerate DA
by diverting carbon allocation toward stress protection instead of
cryoprotective compounds (Taulavuori et al., 2013).

Chilling Requirement (CR)
Fulfillment of CR is dependent on prevailing chilling
temperatures during autumn. Elevated winter temperatures
may result in chilling-deficit and thus delay the transition from
END to ECD, especially at the southern and coastal edges of
species’ ranges in northern latitudes due to typically milder
winters (Harrington and Gould, 2015). Indeed, atypical warming
(15◦C) during autumn delayed END induction in birch seedlings
leading to delayed budbreak next spring (Skre et al., 2008).
However, such chilling-deficit is unlikely in regions currently
experiencing cold winters (high elevation or latitudes). These
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areas, on the contrary, could possibly experience even greater
chilling since winter warming could convert sub-freezing
temperatures with less effectiveness in fulfilling CR to slightly
>0◦C temperatures with high chilling effectiveness, thereby,
advancing the exit from END and potentially exposing tissues
to spring frost damage (Hänninen, 2006). CR, a genetically
determined trait with evolutionary background, varies greatly
across species and ecotypes. Though exceptions occur, the
northern species and ecotypes tend to have relatively low CR
(Taulavuori et al., 2004, and references therein). Rationale
for this may be the lack of selection pressure for evolving
high CR in regions where winter temperatures are usually
<0◦C. These species and populations are expected to meet
their CR despite warming winters, which would predispose
ECD tissues to deacclimation under unseasonal warming
and render vulnerable to early spring freeze. On the other
hand, such liability may not be an issue in regions with
cold but stable climates (Kalberer et al., 2007b). Figure 1A

illustrates the responsiveness (susceptibility) of deacclimation
to environmental, genetic and physiological factors over a
dormancy continuum. Due to the dormancy’s impact on the
propensity (or lack thereof) to deacclimate, it is critically
important to include dormancy-status as a key parameter
in the models for predicting plants’ FT vis-a-vis climate
change.

TEMPERATURE IMPACTS DA KINETICS

Arguably, the extent and rate of DA depends on the total
“dose” of warm temperatures, a “degree x duration” response,
akin to classic degree-day calculations. The “threshold dose”
required to induce DA in ECD tissues varies with species and
regulated by genotype x temperature interaction. Moreover,
“threshold minimum” temperature (i.e., degree) required for
DA varies with species, and, in many perennials, is found
to be ∼ +5◦C (Bigras et al., 2001; Pagter et al., 2011).
For example, DA rate in Vaccinium myrtillus was higher in
plants kept at +20◦C for 10 days, compared to those kept at
+10◦C for 24 days, and essentially no DA occurred in plants
exposed to +5◦C up to 24 days (Taulavuori et al., 2002).
Relationship between the warming duration and deacclimation
rate, however, is not always linear. Whereas some plants
rapidly deacclimate followed by gradually decreasing rate,
others deacclimate more stably and at moderate rates for
relatively longer (Kalberer et al., 2006; Pagter and Arora,
2013).

PROPENSITY TO SLOW VS. FAST
DA—POSSIBLE ENVIRONMENTAL OR
BIOLOGICAL DRIVERS

In light of above discussion, species better able to resist
deacclimation under unseasonal warming are expected to
be resilient against temperature extremes and freeze-damage.
Question then arises: what environmental/biological factors
might promote such a trait, and at what cost?

Selection Pressure by Fluctuating
Temperature Extremes and the Role of
Carbohydrate Pool
DA-resistance may possibly be a function of temperature
fluctuations (frequency and magnitude) to which plants are
exposed in their native habitats. Arguably, plants experiencing
relatively stable temperatures may be under little evolutionary
pressure to develop DA-resistance to unseasonal warming. For
example, when exposed to a warming regime, azalea genotypes
native to Appalachian mountains (a fluctuating temperature
climate) deacclimated much slower than those from lowland,
coastal regions of the northeastern U.S. (cooler and stable
temperatures) which is less likely to cause sudden DA (Kalberer
et al., 2007a). It may also be argued that the genotypes
with greater mid-winter freezing tolerance may experience less
selective pressure for resisting DA than do less-hardy ones,
because the former can safely undergo significant deacclimation
before becoming vulnerable to cold injury. Ecotypic differences
in DA-resistance of mountain birch support this viewpoint
whereby alpine ecotypes deacclimated at much faster rate than
the oceanic ones (Taulavuori et al., 2004). We opine that the data
on warming dose (“degree-duration”) should be compared with
the climatic history and plant survival of a region/provenance
in question to determine if indeed genotypes exposed more
frequently to DA-inducing warm-dose also tend to be slow
deacclimators. Such information should be useful in “simulation
studies” to provide robust parameters for modeling winter-
hardiness vis-à-vis climate change scenarios.

To resist DA, in spite of conducive environment, plant
conceivably requires special physiology/biochemistry. Ögren
(2001) proposed that an inherently higher respiration rate and
therefore the sugar expenditure may explain higher temperature
sensitivity of lodgepole pine to deacclimation compared to
Norway spruce and Scots pine. Ögren hypothesized that while
lodgepole pine (native to colder region) may rely on cold
suppression of respiration in winter, those native to milder
climates (Norway spruce, Scots pine) perhaps actively down-
regulate respiration. Such active adjustment may incur metabolic
cost but a relatively larger carbohydrate reserve may favor
slower deacclimation under transient warming. An accelerated
deacclimation in those bilberry tissues with relatively smaller
carbohydrate pool (Taulavuori et al., 1997) supports this notion.
Slow deacclimators will likely also need to maintain CA
associated genes (e.g., cor genes) and compounds sufficiently
up-regulated despite the transient warming, which too may
incur metabolic cost. Lower carbohydrate status, resulting from
warmer winters, may also be mal-adaptive for any possible
reacclimation. Notably, the size of carbohydrate pool will also be
influenced by the weather conditions in autumn, with sunny days
favoring its production and storage.

Spring Phenology
Exposure to sufficient “degree and duration” of warming (heat-
units; HUs; Box 2) by ECD buds is the most important factor
in regulating the timing and extent of ontogenetic development
to budburst (spring phenology) (Menzel et al., 2001; Harrington
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FIGURE 1 | (A). Basic concepts of plant deacclimation (DA) potential in response to interaction between environmental, genetic and physiological factors.

Temperature, through genetics, determines the state of dormancy (END, ECD), and the level of freezing tolerance, which is also prone to environmental stress. Plant

genome affects responsiveness to accumulating chilling units (CUs). Genotypic responsiveness to accumulating chilling units (CUs; Box 2) refers to DA resistance

(strong/weak). Responsiveness to temperature patterns reflects genetic variation in DA kinetics at different times of winter. DA potential varies during the

(Continued)
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FIGURE 1 | Continued

dormancy continuum, with being weakest during END and progressively becoming stronger toward and during ECD due to physiological changes. Reacclimation (RA)

potential exists during early ECD but decreases with accumulating HUs; (B). correlation (r = 0.84) between freezing tolerance and stage of opening in blueberry buds

(drawn using the data extracted from Rowland et al. (2008); bud stages 1–4) 1: dormant bud with no visible sign of swelling; 2: visible bud swelling; 3: bud scales

noticeably separated and flower tips becoming visible; and 4: bud scales dropped and corollas of individual flowers beginning to elongate.

et al., 2010). However, some reports have also suggested for
photoperiodic control of phenology (Körner and Basler, 2010).
Genetic variation exists for the HU requirement across and
within species conceivably explained by the climate, latitude,
altitude etc. of origin. HU requirement can also be regulated
by a supposedly poorly understood relationship between chilling
and HUs (Charrier et al., 2011; Polgar and Primack, 2011;
Vitasse and Basler, 2013; Dantec et al., 2014) whereby HU
requirement is negatively correlated to chilling accumulation
(Harrington et al., 2010; Junttila and Hänninen, 2012; Laube
et al., 2014). That chill- and heat-units can be satisfied by
the same temperatures for some species (Cooke et al., 2012
and references therein) further adds to the complexity to this
relationship.

Advance in spring phenology as a consequence of climate
change/global warming has been widely reported (Peñuelas
and Filella, 2001; Menzel et al., 2006; McEwan et al., 2011;
Fu et al., 2014). It is amply evident that growth and
development can lead directly or indirectly to irreversible
DA (Leinonen et al., 1997; Mahfoozi et al., 2001; Rapacz,
2002a,b) and that FT is negatively correlated with bud-swell
and budburst (Rowland et al., 2008; Figure 1B). Therefore,
plants with somewhat delayed spring phenology, i.e., those with
deeper ECD or higher HU-requirement, would be expected
to better maintain FT despite the transient warming or
be slow deacclimators. How does ontogenetic development
modulate FT is not well understood. Conceivably, growth (cell
expansion)-associated increased cellular hydration compromises
FT by rendering tissues susceptible to mechanical damage from
extracellular ice (Levitt, 1980) or active growth interferes with
FT-maintenance by competing for energy resources (Levitt, 1980;
Rapacz, 2002a,b). Growth initiation involves developmental
reprogramming requiring de novo gene expression that may
preclude maintenance of FT. However, it must be recognized
that delayed spring phenology could shorten the growing

season (and reduce productivity) of tree species in northern
climates.

CONCLUDING REMARKS

Molecular genetic understanding of the cross-talk between loss
of FT, i.e., DA, bud dormancy status, and growth/budbreak is
needed in order to inform the selection of cultivars/genotypes
with predictable responses to unseasonal warming episodes.
A recent study by Wisniewski et al. (2015) is an important
step in this direction. It is also important to include species-
specific requirements for CR vs. HUs and both the magnitude
and frequency of physiologically and regionally/locally relevant
temperature fluctuations (rather than averages) in simulation
experiments/modeling studies in order to infer about FT
responses under a changing climate. While logistically it may
be the best option available, caution should be exercised in
drawing such conclusions from experiments using juvenile plants
since their phenological responses may not accurately reflect the
response of mature trees (Wolkovich et al., 2012; Vitasse, 2013;
Lim et al., 2014).
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