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HIGHLIGHTS

• About 500 million hectares of tropical forests have been degraded due primarily to

overexploitation

• Preventing premature re-entry into harvested areas can retain up to 34% of carbon

stocks in the forests

• Adoption of reduced-impact logging and wood processing technologies (RIL+) along

with financial incentives can reduce forest fires, forest degradation, maintain timber

production, and retain carbon stocks

• About US$1.8 Mg CO−1
2 or US$2 billion year−1 is needed for the adoption of RIL+ for

the whole tropical production forests.

The REDD+ scheme of the United Nations Framework Convention on Climate

Change has provided opportunities to manage tropical forests for timber production

and carbon emission reductions. To determine the appropriate logging techniques,

we analyzed potential timber production and carbon emission reductions under

two logging techniques over a 40-year period of selective logging. We found

that use of reduced-impact logging (RIL) techniques alone in tropical production

forests (PdF) could reduce carbon emissions equivalent to 29–50% of net emissions

from tropical deforestation and land use change, while also supplying 45% of

global round-wood demand. Adopting RIL plus other improvements (RIL+) in forest

management (adopting forest certification and DNA timber tracking to prevent

illegal logging) and wood conversion practices (adopting technology to increase

recovery of sawn wood), would result in increasing long-term carbon storage in

sawn-wood and reduce logging-induced fire-prone wood wastes by 14–184%.

For this to happen, about US$2 billion or $1.86 per Mg CO2 in financial
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incentives are needed annually for parties to adopt RIL+ and to prevent premature

re-entry logging. Our findings suggest that future climate policies should explicitly include

RIL+ to satisfy the “sustainable management of forests” proviso in the REDD+ scheme,

and also count carbon in wood products as eligible credits for trading.

Keywords: forest degradation, production forest, REDD, selective logging, timber production, carbon emissions

INTRODUCTION

Tropical forests are diverse in terms of flora and fauna species.
Deforestation and forest degradation in the tropics have resulted
in the annual loss of natural forests of 13 million ha, while
degrading 500 million ha of primary and secondary forests
(ITTO, 2002), and affecting up to 85% of the threatened and
endangered species listed in the Red List of the International
Union for Conservation of Nature (www.iucnredlist.org). In
addition, tropical deforestation is responsible for net emissions
of about 1 Pg C year−1 (Pan et al., 2011; Baccini et al., 2012),
or 10% of global anthropogenic emissions. Not included in
these estimates are emissions from unnecessarily destructive
logging, which also unduly reduces commercial timber stocks
and, worse yet, render many forests prone to burning and
clearing (Asner et al., 2006). Losses of commercial timber stocks
and associated carbon emissions (referred to collectively as
forest degradation) are difficult to evaluate with the available
remote sensing technology (Bustamante et al., 2016; Palace et al.,
2016) because trees are selectively logged from forests with
dense canopies, but the extent of logging far exceeds that of
deforestation (Bicknell et al., 2014). Although carbon emissions
from forest degradation usually go unreported (Asner et al.,
2005), some estimate the magnitude of these emissions to be
equivalent to that from deforestation (Pearson et al., 2014). From
2000 to 2005, high-resolution global remotely sensed images
showed that humid tropical forest logging had at least 20-times
the geographic footprint of deforestation (Asner et al., 2009).
Unplanned logging by untrained crews causes severe damage to
residual forests and leaves behind huge amounts of logging waste.
Unnecessarily large canopy openings coupled with the presence
of flammable logging waste also render forests susceptible to
destructive fires (Cochrane, 2003).

Sustainable forest management is defined by the International
Tropical Timber Organization (ITTO) as the process of
managing forest to achieve one or more clearly specified
objectives of management with regard to the production of a
continuous flow of desired forest products and services without
undue reduction of its inherent values and future productivity
and without undue undesirable effects on the physical and social
environment (www.itto.int). In our study, the desired objectives
are to achieve the flow of timber production and to retain
carbon stocks in the forests by switching from conventional
logging (CVL) to reduced-impact logging (RIL). Defined in
this article as a logging practice with well-defined planning,
well-trained logging crews, and supervised implementation of
timber harvesting operations, RIL is capable of significantly
reducing logging damages and wood wastes caused by harvesting
operations compared to CVL (see Sasaki and Putz, 2009, for

comparison of damages and wastes). Main activities under RIL
include pre-harvest activities such as boundary demarcation,
pre-felling inventory, tree hunting, training, and tree marking
and mapping and harvest activities such as felling and bucking,
skidding, and log deck operation (Medjibe and Putz, 2012).

Sustainable forest management for timber and maximization
of carbon retention are currently jeopardized in much of
the tropics by poor logging practices and premature re-entry
into harvested areas (i.e., re-logging before the end of the
designated cutting cycle). Our previous studies suggest that
replacing CVL with RIL could substantially reduce carbon
emissions (Kim Phat et al., 2004; Putz et al., 2012; Sasaki et al.,
2012). RIL can contribute to biodiversity conservation ranging
from trees (Bicknell et al., 2014) to mammals (Putz et al.,
2012). Furthermore, Miller et al. (2011) demonstrated with eddy
covariance and ecological measurements that RIL impacts on
forest carbon stocks are minimal, ranging from 26.0 ± 1.5 to
32.6 ± 1.3Mg C ha−1 year−1 in forest before logging and 31.1
± 1.4 to 32.0 ± 1.1Mg C ha−1 year−1 in forests after 1–3 years
of logging. These findings provide further impetus for explicit
inclusion of RIL as a way to reach climate change mitigation
objectives. We assess the potential contributions of improved
tropical forest management to climate changemitigation through
the adoption of RIL, along with strict prohibition of premature
logging re-entry and technological changes in forest industries.
A combination of RIL and the use (PLUS) of improved logging
technology and wood processing technology is referred to here
as RIL+.

METHODS

Tropical Production Forests and Current
Logging Practices
Production forest refers to forest, where commercial logging for
timber production is allowed once per cutting cycle of 25–60
years on average, depending on forest types and management
intervention (Rutishauser et al., 2015). Timber is exploited
through selective logging systems, under which merchantable
trees with diameter at breast height (DBH) greater than the
DBH limits imposed by logging regulations in tropical countries
(see Sasaki and Putz, 2009, for a list DBH limits in selected
countries) are felled after logging permit is issued by the country
in question. As unsustainable logging, industrial agriculture
and smallholder subsistence crop cultivation, and agricultural
cultivation continue to destroy and degrade tropical forests and
biodiversity, international efforts to protect the forests began to
show promising results. The roles of Reducing Emissions from
Deforestation and forest Degradation PLUS (REDD+), which
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includes conservation of forests, sustainable management, and
enhancement of forest carbon stocks, were fully recognized in
the Copenhagen Accord adopted at the 15th session of the
Conference of the Parties (COP15) to the UNFCCC in December
2009 (Burgess et al., 2010). Under the Warsaw Framework for
REDD+ at COP 19, the need to protect tropical forests for
climate change mitigation was further encouraged by offering
result-based financial incentives to developing countries for
reducing carbon emissions under REDD+ (Norman et al., 2014).
In addition to pledging to reduce emissions by major emitters of
greenhouse gases, such as the United States and European Union,
and setting an emission cap for China, 24 countries pledged about
$10 billion to Climate Finance at the COP20 in Lima inDecember
2014 (UNFCCC, 2014). REDD+ will inevitably be part of the
future climate change regulations once Paris Agreement reached
at the COP21 in December 2015 enters into force (UNFCCC,
2015). Sustainable forest management is an important element
of REDD+ because of its multiple roles in commercial timber
supply, job generation, biodiversity conservation, and reductions
in carbon emissions from forest degradation. Sustainable forest
management is a suitable goal for production forests (PdF)—the
forests where logging for commercial timber is practiced. Logging
in the tropics is practiced mainly under forest concessions
in which governments grant logging licenses to companies
to operate according to governmental regulations. Logging
companies are usually required to submit a master plan outlining
forest resource assessment methods, harvest planning, sequences
of annual harvesting coupes, and socio-environmental impact
assessments. Despite progress being made toward the writing
of proper forest management plans, the called-for requirements
are rarely met in practice and corruption is common. Therefore,
sustainable forest management could play a positive role in
supporting good governance, global timber supplies, and carbon
retention if improved logging practices are adopted.

Forest Areas Available for the RIL Practice
According to forest functions classified in FAO’s Global Forest
Resources Assessment 2010 (FAO, 2010), about 28.4% of the
total area of tropical forests (1664 million ha in 2010) can be
considered as PdF. RIL can be applied to manage these PdF for
timber production and carbon retention. The area of PdF can be
further classified to operable and inoperable areas. The former
is the area suitable for logging operations, while the latter is the
area of forests located in culturally, socially and environmentally
sensitive areas such as around villages and culturally important
sites, buffer zones along waterways, and on steep slopes, or other
areas strictly protected by logging regulation. By subtracting
inoperable areas from the total area of PdF, a net operable area
of PdF can be obtained.

As reported in tropical forest resources assessment project (in
the framework of the Global Environment Monitoring System
of the FAO in 1984 (FAO, 1984), percentage of inoperable area
ranges from 13% of PdF in central and Southern Sumatra to
30% in the whole of Sulawesi in Indonesia. In other tropical
countries, inoperable area of PdF is about 30% of the total area
of PdF (Kim Phat et al., 2004). For this study, we used 30%
as the percentage of inoperable area and therefore the total net

operable area of PdF is 330.8 million ha [=1664∗0.284∗(1−0.3)]
for a 40-year cutting cycle or 8.27 million ha is subject to annual
harvesting.

Carbon Stocks for Each Logging Re-entry
Defined as re-logging before the end of the designated cutting
cycle, premature re-entry logging has repeatedly caused the
loss of carbon stocks until all marketable trees are harvested
(Sasaki and Putz, 2009; Putz et al., 2012). To illustrate the
impact of premature re-entry logging on carbon stocks on timber
production and forest degradation, we assessed carbon stocks in
natural PdF in the tropics under two logging methods—CVL and
RIL. Under RIL, logging is implemented once at the beginning of
a 40-year cutting cycle, while under CVL, two additional harvests
are allowed in year 5 and year 20, well before the end of the 40-
year cutting cycle. These two logging re-entries are referred to
as premature re-entry logging. Equations (1)–(3) estimate forest
carbon stocks for CVL and RIL. For the logging at the beginning,
30% of the aboveground biomass (including loss due to logging
damages and wastes) are removed. Only merchantable trees
(trees with DBH equal or greater than 50 cm) can be removed
in the subsequently logging re-entries. Eq. 1 is carbon stocks
affected by logging in the beginning of the cutting cycle under
both logging methods, while the rest are subsequent premature
re-entry logging under the CVL method:

CS0(t = t0) =
CSMAX × CS0(t0)× EXP(α × t)

CSMAX + CS0(t0)× [EXP(α × t)− 1]

(1)

CS1(t = t0−e1) = CS0(t0−e1)

+
CSMAX × CS1(t0)× EXP(α × t)

CSMAX + CS1(t0)× [EXP(α × t)− 1]
(2)

CS2(t = t0−e2) = CS1(t0−e2)

+
CSMAX × CS2(t0)× EXP(α × t)

CSMAX + CS2(t0)× [EXP(α × t)− 1]
(3)

Where
CS0(t), CS1(t), and CS2(t) are carbon stocks (Mg C ha−1) at

time t under the RIL, the first premature re-entry and second
premature re-entry logging, respectively.

CS0(t0), CS1(t0), and CS2(t0) are carbon stocks (Mg C ha−1)
1 year after RIL, first premature re-entry, and second premature
re-entry logging, respectively.

CS0(t0−e1) and CS1(t0−e2) are carbon stocks affected by first
re-entry (e1) and second re-entry (e2) until next harvest occurs

CSMAX is the highest carbon stocks of the mature PdF. It
is assumed to be 600Mg C ha−1 for all logging methods. This
maximum value is equivalent to the stabilized level of carbon
stocks in the forest ecosystems (Krankina and Harmon, 1995).

α = MAI/CS(t0) is the growth rate for each logging method.
This calculation is based on the fact that forests grow faster when
more space is created by logging (Pinard, 2009). MAI is Mean
Annual Increment (Mg C ha−1year−1). Aboveground biomass
increment (i.e., MAI) was reported to be about 1.30Mg C ha−1

year−1 in Amazon forests (Mazzei et al., 2010), and 1.63Mg C
ha−1 year−1 in the northern Borneo (Berry et al., 2010). In a
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tropical wet forest in Nicaragua, it was estimated to be 2.68Mg
C ha−1 year−1 (Mascaro et al., 2005). For this study, MAI is
assumed to be 1.5Mg C ha−1 year−1.

The literatures on carbon stocks in tropical PdF have become
increasingly available (Table 1). The data suggest that the average
carbon stocks in PdF are 174.0 ± 11.6Mg C ha−1 (± is for
confidence interval of 90%). We took this average value for
initial carbon stocks (aboveground carbon) in PdF prior to
logging.

Merchantable trees account for 48.3% of total aboveground
biomass in the Southwestern Brazilian Amazon (Cummings
et al., 2002), 50.8% in Panama (Chave et al., 2005), and
56.2% in East Kalimantan, Indonesia (Sist et al., 1998). For
this study, 50% is used for estimating aboveground biomass
of merchantable trees. Biomass removal (biomass loss) at each
harvest for both logging methods is assumed to be 30% of
the total aboveground biomasses or 60% of the merchantable
trees (including biomass in felled log, top log, stump, branches,
and leaves). Subsequent first and second premature re-entry
logging removes 30% of the total aboveground biomass until
biomass of all merchantable trees is removed. When biomass
of all merchantable trees is less than 30% of all biomass,
that biomass is completely removed. However, no logging is
assumed to occur when merchantable trees are completely
logged.

Carbon Fluxes in Sawnwood and All Wood
Wastes
Important variables or factors relevant to RIL and CVL
methods are once-time logging at the beginning of cutting
cycle, first and second premature re-entry logging, logging
damages (LD) to residual stands, logging wastes (LW) due
to tree felling, skidding of felled trees, and transporting of
logs to sawmill, sawnwood (SW), and wood wastes (WW)
at the sawmill where logs are further processed to produce
wood for end use. Longevity of wood utilization is affected
by wood processing technology and therefore wood technology
(see CIRAD, 2015, for currently developed methods to
increase wood durability and lifespan) can increase carbon
storage in end-use wood products when appropriate wood
processing technology is employed under the RIL. Current
wood processing technology used in tropical countries results
in a sawnwood recovery rate of only about 40–50% (Enters,
2001). Carbon biomass allocation for each component after
harvesting is illustrated in Figure 1, and each wood component
and parameter under conventional and RIL can be derived
from:

LD = s× BL (4)

HB = BL− LD (5)

BR =
HB

BEF
(6)

SB = HB− BR (7)

LW = a× SB (8)

RW = SB− LW (9)

TABLE 1 | Summary of carbon stocks in production forests in the tropics

(Mg C ha−1).

Country Pre-logging

above-ground

Carbon Stocks

References

Terra firme rain forest in the

eastern Amazon (Brazil,

Paragominas)

188.8 Sist et al., 2014

Terra firme rain forest in the

eastern Amazon (Brazil,

Paragominas)

205.0 Mazzei et al., 2010

Lowland moist forests in Central

Africa

126.0–216.0 Nasi and Frost, 2009

Managed forests in

Campo-Ma’an area in South

Western Cameroon

137.0–204.0 Djomo et al., 2011

Sulawesi, Indonesia 150.5–161.5 Culmsee et al., 2010

Primary forest in Seram, the

Moluccas, Indonesia

175.0 Stas, 2014

Unlogged forest in Sabah,

Malaysia

176.5 Morel et al., 2011

Brazil 127.0 Asner et al., 2005

Brazil 218.0 Pearson et al., 2006

Brazil 218.0 Keller et al., 2004

Brazil 186.0 Miller et al., 2011

Tapajos National Forest, Brazil 168.0 Figueira et al., 2008

Brazil 185.0 Huang and Asner, 2010

Cambodia 116.6 Kim Phat et al., 2000

Monts de Cristal region of

northwestern Gabon

210.0 Medjibe et al., 2011

Gabon 190.0–194.0 Medjibe and Putz, 2012

Guiana 210.0 Blanc et al., 2009

Berau, East Kalimantan,

Indonesia

346.0 Brown et al., 2011

Indonesia (Berau district) 199.3 Sist and Saridan, 1999

Malaysia 138.0 Berry et al., 2010

Ulu Segama Forest Reserve,

Malaysia

164.0–166.0 Pinard and Putz, 1996

Malaysia (Tangkulap) 126.0 Imai et al., 2009

Malaysia (Deramakot) 178.0 Imai et al., 2009

Malaysia (Pasoh) 137.0–155.0 Okuda et al., 2004

Papua New Guinea 208.0 Stanley, 2009

Papua New Guinea 96.0–126.0 Bryan et al., 2010

Papua New Guinea 121.0 Fox et al., 2010

Philippines 193.0 Lasco et al., 2006

Republic of Congo 271.0 Brown et al., 2005

Average (use for this study) 174.0 (range: 162.4–185.6)*

90% Confidence Interval 11.6 (6.7% of the average)*

*According to the Approved afforestation and reforestation baseline and monitoring

methodology (AR-AM0004) of the UNFCCC, the maximum allowable relative margin of

error of the mean for carbon biomass estimate is ±10% at 90% confidence level.

WW = b× RW (10)

SW = RW×WW (11)

where
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FIGURE 1 | Schematic illustration of carbon biomass allocation after logging and premature re-entry logging. Background photos were taken by the first

author in Kampong Thom and Koh Kong provinces in Cambodia.

BL is total Biomass Loss or reduction during each
logging entry. BL includes all harvested wood, branches,
top logs, and destroyed trees. BL is same for both logging
methods.

LD, HB, BR, SB, LW, RW, WW, and SW are Logging
Damages, Harvested Biomass, BRanches of harvested wood, Stem
Biomass of harvested wood, Logging Wastes, Round Wood, and
Sawnwood under CVL and RIL, respectively.

s is logging damage to residual stands calculated as
proportional to HB.

a is logging wastes such as top logs, broken trunks and high
stumps created during tree felling, log skidding and transporting.

b is wood wastes created during processing of roundwood for
sawnwood.

Values of BL, BEF and parameter s, a, and b are provided in
Table 2.

Due to similarity of time to decay of wood products,
cumulative carbon fluxes (carbon storage) in various harvested
wood products can be grouped to two carbon pools. They are
sawnwood (SW) and all logging and all wood waste (AW). AW is
the sum of LD, BR, LW, and WW. Carbon fluxes in SW and AW
(SWf and AWf ) can be derived using the first-order equations

below:

SWf (t) = SW× e−k
1 × t (12)

AWf (t) = AW× e−k
2 × t (13)

Where t is elapsed times (years) corresponding to time evolving
after logging.

k1, k2 are the decay rates, which are derived from k = ln(2)/τ
(τ is time to decay half of its volume or half-life time in year).
Subscript f refers to flux. τ and k are dependent on wood
processing technology to be employed under CVL or RIL.

Coupled with its trained staff, RIL is assumed to employ the
more efficient wood processing technology that can increase end-
use wood recovery rate by 10% more than that under the CVL
and prolong the half-life time of sawnwood from 30 years as
suggested in IPCC 2006 Guidelines to 50 years (IPCC, 2006). The
UN’s Clean Development Mechanism has an additional goal of
assisting non-Annex 1 Parties to achieve sustainable development
by providing an incentive for Annex 1 Parties to transfer climate
friendly technology to non-Annex 1 Parties—the developing
countries mainly in the tropics. It is anticipated that adoption
of REDD+ scheme in the future climate agreement will also
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TABLE 2 | Variables, parameters, and assumptions.

Description CVL RIL Remarks

Initial Carbon Stocks

(CS, Mg C ha−1)

174.0 174.0 See Table 3

BL rate 0.3 0.3 30% of CS. West et al. (2014)

reported at about 17–26%

BEF 1.74 1.74 (Brown, 1997)

s 0.3 0.15 30% of biomass loss (removed

biomass) under CVL (Johns

et al., 1996) and 15% under RIL

(Sist et al., 1998; Kim Phat et al.,

2000; Pinard et al., 2000)

a 0.3 0.15 30% of harvested biomass under

CVL (Sasaki and Putz, 2009) and

15% under RIL (Sasaki and Putz,

2009)

b 0.5 0.4 50% of roundwood under CVL

(Enters, 2001) and 40% under

RIL (40% was based on Enters,

2001; Owusu et al., 2011)

Conventional logging (CVL) is a selective logging practice commonly used in production

forests in the tropics. Usually, CVL does not have proper logging planning, enforcement

or control, and trained crews to carry out logging operations (see Holmes et al., 2002;

Medjibe and Putz, 2012) for detailed activities and associated costs for both CVL and

RIL). Logging re-entry is a common practice of CVL causing rapid reduction of carbon

stocks and biodiversity. CVL also creates huge logging damages to residual stands and

wood wastes.

RIL is also a selective logging but it involves the use of proper planning of logging

operations and trained crews. Refer to Medjibe and Putz (2012) and Holmes et al. (2002)

for logging activities and associated costs. Logging damages and wood wastes created

by CVL and RIL were reported by Sasaki and Putz (2009).

BL rate is the total reduction rate of aboveground biomass due to logging.

BEF is biomass expansion factor referring to proportion of total dry biomass of

aboveground tree components such as leaves, branches, top logs, and twigs of the living

trees to biomass in tree trunk.

s is logging damage caused by logging. Damage includes dead tree of residual stands

killed by fallen trees.

a is logging wastes caused by logging operations such as tree skidding, trimming, and

exporting.

b is wood wastes created during wood processing at the sawmill. It occurs outside forest

area.

result in the need for technology transfer to developing countries.
Half-life time for AW is 5 years under both logging scenarios.

RESULTS

Sawnwood Production
Although same amount of biomass is removed under both
CVL and RIL methods, removed biomass under RIL contains a
smaller proportion of logging damages and other wood wastes,
and therefore sawnwood production available for end use is
much higher. Considering all tropical PdF, the RIL adoption
could produce 287 million m3 year−1 of sawnwood production
(about 478 million m3 of roundwood) over a 40-year cutting
cycle (Table 3) or 29% of global roundwood consumption in
2012 (FAO, 2012). We compared the results of our findings
with the data produced by the ITTO because ITTO is the
only intergovernmental organization that has maintained good
statistical data on global tropical timber trade. ITTO’s member
countries represent about 80% of the world’s tropical forests and

90% of the global tropical timber trade. ITTO’smember countries
produced 173.6 million m3 of roundwood in 2011, or about an
estimate of 204 million m3 from all tropical forests. Given the
fact that up to 87% of logging in the tropics is illegal (Hansen
and Treue, 2008; Lawson and MacFaul, 2010; Lawson, 2014) and
was usually unreported (Colfer and Resosudarmo, 2002; Asner
et al., 2005), and by assuming an average illegal logging rate of
60% (Lawson and MacFaul, 2010), a conservative estimate of
roundwood production using the figure reported by ITTO would
be 510 million m3 [= 204/(1−0.6)].

Our model suggests that sawnwood production under RIL
is 124.7m3 (207.8 m3 of roundwood) or 77.0% higher than
that under the CVL if premature re-entry logging is prevented
(Table 3). As first premature re-entry logging is allowed in
the 5th year, the CVL method can produce total sawnwood
similar to that of RIL. The CVL method with two logging
re-entries produces by 345.9 million m3 of sawnwood (692
million m3 of roundwood) or 20.6% higher than that from RIL
when sawnwood from the second premature re-entry logging
in the 20th year is also included in the calculation (Table 3).
However, when future commercial wood availability is compared
(88.0m3 ha−1 remaining at the year 40 under RIL compared
to only 27.3m3 under the CVL as shown in Figure 2X), the
RIL adoption results in a 222% [222 = (88.0–27.3)/27.3] higher
availability of merchantable timber than under CVL. Although
total wood production from all premature re-entry logging is
higher, CVL is likely to destroy all merchantable trees, and
therefore putting tropical PdF at risk of being cleared for
industrial agricultures as logging option is no longer feasible
economically.

Carbon Stock Changes, Emission
Reductions, and Removals
Average carbon stocks decline from 174.0 Mg C ha−1 to 121.8
Mg C 1 year after RIL logging, but recovers to the pre-logging
level or higher by year 40th if premature re-entry logging is
prevented (Table 4 and point A in Figure 2X), depending upon
forest growth rate and harvest intensity. Our model results agree
with those of Keller et al. (2004). Similarly in Amazonian Brazil,
where premature early-entry logging was prevented, it took only
16 years for forests to recover 100% of their biomass under RIL
while during the same period only 77% was recovered under
CVL (West et al., 2014). In contrast, under CVL with two
premature re-entries, carbon stocks continue to decline until
all merchantable trees are harvested (point D in Figure 2X).
If premature re-entry logging is allowed, carbon stocks decline
by 19.5 and 34.3% for first and second premature logging,
respectively. Considering all PdF, and by taking carbon stocks
under RIL for meeting the “sustainable management of forests”
provision of REDD+ as carbon stocks retained through project
activities, and using carbon stocks under CVL as the baseline,
preventing first and second premature re-entry logging could
reduce emissions of 279.9 and 493.7 Tg C year−1 (1026.4–
1810.4 Tg CO2 year−1) respectively, in addition to removing
(sequestering) −8.2 Tg C year−1 (−30.1 Tg CO2 year−1)
from the atmosphere (Table 4 and Figure 2Y). These emission
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TABLE 3 | Adopting RIL to increase sawnwood production while decreasing fire-promoted wood waste.

Logging Practices Harvest (TgC) Sawnwood All Waste

CVL RIL RIL-CVL CVL RIL RIL-CVL

TgC (%) TgC (%)

ANNUAL PRODUCTION IN ALL PRODUCTION FORESTS IN THE TROPICS FOR A 40-YEAR CUTTING CYCLE IN TgC, EXCEPT OTHERWISE STATED

No Re-entry 431.7 60.8 107.6 46.8 77.0% 370.9 324.1 −46.8 −14.4%

1st Re-entry 327.9 46.2 N/A 281.8 N/A

2nd Re-entry 290.4 22.7 N/A 267.7 N/A

Total for first re-entry logging (*1) 759.6 107.0 107.6 0.6 0.6% 652.7 324.1 −328.5 −101.3%

Total for second re-entry logging (*2) 1050.0 129.7 107.6 −22.2 −20.6% 920.3 324.1 −596.2 −183.9%

ANNUAL PRODUCTION IN ALL PRODUCTION FORESTS IN THE TROPICS FOR A 40-YEAR CUTTING CYCLE IN MILLION m3 (*3)

No Re-entry 162.1 286.8 124.7 77.0%

1st Re-entry 123.1 N/A

2nd Re-entry 60.7 N/A

Total for one re-entry logging 285.2 286.8 1.6 0.6%

Total for second re-entry logging 345.9 286.8 −59.1 −20.6%

(*1 ): Total production for first premature re-entry logging practice is the sum of production from “No Re-entry” practice and actual harvest at the first re-entry.

(*2 ): Total production for second premature re-entry logging practice is the sum of production from “No Re-entry” practice, actual harvest at the first and second re-entry.

(*3 ): Sanwood volume in m3 was derived by CarbonVolume/(sawnwood density, 0.75 times carbon density, 0.5). Sawnwood density (0.75) was based on Simpson (1999) and carbon

density (0.5) was based on IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry (IPCC, 2003).

reductions and removals are equivalent to about 28.8–50.2% of
carbon emissions from tropical deforestation between 2000 and
2010 (Baccini et al., 2012) or 93–162% of emission reductions
committed by European Union for the second period of the
Kyoto Protocol (European Commission, 2013). Furthermore,
using logging emission factors of wood extraction and logging
damages of 0.82 Mg C m−3 harvested wood in Indonesia
(Pearson et al., 2014), total emissions from harvesting 324–692
(324 = 162.1/0.5 and 692 = 345.9/0.5 in Table 3) million m3 of
roundwood are 266–567 TgC year−1, respectively. However, in
practice, such logging-related emissions were usually unreported
(Pearson et al., 2014).

Minus (−) in Table 4 refers to carbon sequestration (sinks or
removals). Emissions from tropical deforestation was based on
Baccini et al. (2012). Emission reductions committed by EU were
based on European Commission (2013).

Reducing Fire-Prone Wood Waste by
Adopting RIL and Preventing Premature
Re-entry Logging
In recent years, increasing fires in selectively logged forests were
observed and pose threats to forest management. Humans are
the direct cause of most fires in tropical forests and indirectly
exacerbate the problem through anthropogenic climate change
induced droughts and destructive logging (Cochrane, 2003). The
presence of flammable logging wastes coupled with openings
of tropical forest canopies render forests very susceptible to
destructive fires (Siegert et al., 2001; Gerwing, 2002; Cochrane,
2003). Although CVL could produce more sawnwood when
all premature re-entry logging is considered, it creates huge
wood waste (371–920 TgC) or up to 183.9% higher if compared
to waste created by RIL (Table 3). This wood waste is prone

to destructive fires but can be reduced with the adoption of
RIL combined with improved logging technology such as use
of Logfisher, skyline, yarder, and/or helicopter (Abdul Rahim
et al., 2009) and wood processing technology such as use of
wood-Mizer milling technology rather than freehand chainsaw
or chainsaw with frame attachments (Owusu et al., 2011). Forests
become prone to destructive fires when the canopy is opened by
selective logging and huge amounts of wood waste are left after
timber felling. According to Matricardi et al. (2013), the total
forest area affected by fires, selective logging, and a combination
of logging and fires in the Amazon tripled from 5,889, 5,588,
and 392 km2 in 1992 to 9038, 24,188, and 2471 km2 in 1999,
respectively.

Carbon Storage in Harvested Wood
Products
As short-life wood waste is reduced and long-life sawnwood is
increased, more carbon storage in harvested wood products can
be achieved under RIL+. Using equations (12, 13), adopting
RIL+ could result in carbon storage in sawnwood of 82.6
TgC year−1, while it is only 39.7 TgC under the CVL
if compared to one harvest under the “RIL+” (Figure 3).
Carbon storage in all wood waste is 370.9 TgC and 324.1
TgC at the start of harvesting but reduces to 1.5 TgC and
1.3 TgC at the year 40th, representing the annual average
storage of 69.6 TgC and 60.9 TgC under CVL and RIL+,
respectively over a 40-year cutting cycle (Figure 3). Since carbon
storage in all waste under RIL is 8.7 TgC (69.6–60.9) smaller
than that under CVL, adopting RIL+ for managing all PdF
could reduce emissions by 34.1 TgC year−1 (125 TgCO2) or
about 21% of emission reductions committed by the United
Kingdom for the first commitment period of the Kyoto Protocol
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FIGURE 2 | Forest carbon stocks, storage, and loss in a typical hectare of lowland tropical forest affected by harvest methods and re-entry logging.

Under reduced-impact logging (X), carbon stocks dropped 30% to P1 after logging but carbon stocks recovered to the pre-logging level (A) after 40 years. If premature

re-entry logging is allowed at the 5th and 20th years and CVL practices are employed, carbon stocks continue to drop to point P2 (losing all marketable trees) and P3,

respectively. Commercial harvests for timber are unlikely when stocks are below D, but wood extraction for charcoal might continue. Over a 40-year time span, carbon

stocks can recover back to point B and C (reaching 81–66% of pre-logging) if the area is not cleared. Reduced emissions from forest degradation are about 35–61

Mg C ha−1 over a 40-year period if the first and second episodes of premature re-entry logging are prevented, respectively. At the global level, carbon loss (Y) was

derived by subtracting the carbon stocks under RIL from the baseline (i.e., carbon stocks under the first and second episodes of premature re-entry logging).

between 2008 and 2012. If sawnwood and all waste obtained
under the CVL from all premature re-entry loggings are
compared, carbon storage in wood products (sawnwood plus
waste) under CVL is higher but its declines faster because
of a greater proportion and rapid decay of short-life wood
waste.

DISCUSSION

One of the major problems in managing tropical production
forest is premature re-entry logging of stands that have not
been allowed to recuperate for the entire length of the

cutting cycle determined to be needed to sustain timber yields

(Putz et al., 2012). Premature re-entry logging is driven by

timber scarcity and prices, often coupled with governance

failures; when market demands or timber prices increase,

forests are often harvested prematurely. Low harvest costs

due to the availability of previously constructed logging

roads further encourage premature re-entry logging (Ravenel,
2004). The same phenomenon is also associated with changes

in governmental and corporate leadership when concession
maps are commonly redrawn and previous harvest plans
are disregarded. Furthermore, in anticipation of unfavorable
treatment by newly installed governments, logging companies
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TABLE 4 | Achieving emission reductions and removals by preventing premature re-entry logging in tropical production forests.

Logging practices Carbon Stocks

Per hectare All production forests

Year0 Year40 Change Year 0 Year40 Annual Change (reductions or removals)

(Mg C) (Tg C) (Tg C) (Tg CO2)

No re-entry 174.0 175.0 −1.0 57,559.8 57,888.5 −8.2 −30.1

1st re-entry 174.0 140.2 33.8 57,559.8 46,363.0 279.9 1026.4

2nd re-entry 174.0 114.3 59.7 57,559.8 37,810.3 493.7 1810.4

Total reductions 1056.5–1840.5

Proportion to tropical deforestation (%) 28.8–50.2

Proportion to emission reductions committed by the EU (%) 93.0–162.0

FIGURE 3 | Carbon storage in harvested wood products (sawnwood and wood waste).

often harvest as much timber as possible prior to or during
elections (Burgess et al., 2012). Future climate agreements should
include binding agreements that validated projects adopting RIL
shall not be interrupted before the end of a harvest cycle.

In the wood processing sector, rapid technological
developments provide new hope for increasing the use and
lengthening the longevity of wood products (Fleming et al.,
2014). Since RIL increases the amount of wood product from
the same amount of harvested timber, RIL adoption can increase
carbon storage in long-lived wood products and reduce short-
lived wood waste. Furthermore, technological advancements
in the logging industry can create more jobs (Clark, 2004) and

facilitate low-carbon based economies. To encourage the use
of advanced technologies for higher carbon retention in wood
products, future climate agreement should also include carbon
credits for long-lived wood products as eligible credits for
trading.

As up to 87% of the timber harvests can be illegal in a
given (Lawson, 2014), about $30–100 billion year−1 is lost
globally due to this illegal logging (UNEP INTERPOL, 2013).
Forest certification schemes have played an important role in
certifying the timber products from sustainably managed forests
(Durst et al., 2006; Cerutti et al., 2011; Putz et al., 2012),
thereby reducing illegal and unsustainable logging practices to
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some extent (Cerutti et al., 2011; Kishor and Lescuyer, 2012).
Nevertheless, as forest certification is based commonly on paper,
and logging in the tropics is being practiced with corruption
and falsification of logging permits (Nellemann, 2012), forest
certification alone is still vulnerable to document falsification. A
combination of forest certification and newly developed timber
tracking technologies (Dormontt et al., 2015) to monitor and
control wood products is critical for reducing illegal logging and
for the prevention of premature re-entry logging. According to a
recently established working group of the United Nations Office
on Drugs and Crime, a range of technologies are available to
verify timber source claims (e.g., anatomy, stable isotopes), but
DNA timber tracking technology seems like the best source of
information about the tree species, country, forest concession and
even individual tree from which wood was derived (Dormontt
et al., 2015). Further development, integration, and support for
this verification technologies is now required.

Costs are currently the major concern for adopting the RIL
or RIL+. RIL has higher costs for pre-harvest and harvest
planning activities, and infrastructure development (depending
on locations, it may also include costs for helicopter or cable
system for logging on steep terrain or wet soil) and for adopting
chainsaws to increase wood recovery rate (Holmes et al., 2002;
Medjibe and Putz, 2012) but lower costs for harvest operations
(Sasaki and Putz, 2009). In Malaysia, although average costs for
helicopter logging are $50–60 compared to US$10 m−3 for CVL,
logging damage to surrounded trees were 3.8 times lower than
damage created by CVL (Abdul Rahim et al., 2009). Our previous
study (Medjibe and Putz, 2012) found that the costs for RIL
techniques are lower in four of the ten case studies than costs
of using CVL for logging in PdF in Brazil, Gabon, Guyana, and
Malaysia. On average, costs for adopting RIL are US$1.43 ± 1.57
(90% of CI) higher than that under CVL (Table 5). For the whole
tropical PdF, total additional costs for adopting RIL are about
US$821 million year−1 in order to harvest 574 million m3 of
roundwood. The cost for certifying forests where RIL has been
adopted are estimated to be US$2.55 to $10.06 m−3 for every
5 years in Brazil and Indonesia, respectively (White, 2011) or
$0.51 to $2.00 m−3 year−1. Assuming $2.00 m−3 for certifying
forests implementing RIL, it would cost US$1969 million year−1

to certify all 574 million m3 of roundwood.
As adopting RIL can result in emission reductions of 288–502

TgC (1056–1840 TgCO2), the costs for adopting RIL techniques
with certified timber products are US$0.60–1.86 per Mg CO2.
This is well below the carbon price for reducing deforestation
project traded in the voluntary carbon markets in 2013 and 2012,
which was US$ 4.20 and 7.40, respectively. As Paris Agreement
was reached at the COP21 by the parties to the UNFCCC to
limit the greenhouse gas emission emissions, new demand for
carbon is likely to increase, especially after this agreement enters
into effect after 55 countries responsible for 55% of global carbon
emissions ratify the agreement (UNFCCC, 2015). Thus, carbon
price is also likely to increase. Furthermore, costs for DNA timber
tracking (to enforce legislation as well as to reduce export/import
of illegally sources timber) is less than 0.01% of the timber values
but these costs can be covered from the premium price of the
certified timber. Although using DNA technology to track the

TABLE 5 | Cost differences between conventional logging and RIL.

Cost

Difference

(US$ m−3)

Remarks Locations References

−1.82 RIL cost is cheaper Fazenda

Cauaxi, Brazil

Holmes et al., 2002

2.84 RIL cost is higher Para, Brazil Boltz et al., 2001

−0.05 RIL cost is cheaper Pibiri, Guyana Van der Hout, 1999

1.53 RIL cost is higher Fazenda

Agrosete,

Brazil

Barreto et al., 1998

6.50 RIL cost is higher Sabah,

Malaysia

Healey et al., 2000

0.35 RIL cost is higher East

Kalimantan,

Indonesia

Dwiprabowo et al.,

2002

4.04 RIL cost is higher Sarawak,

Malaysia

Dagang et al., 2002

3.24 RIL cost is higher Monts de

Cristal,

Gabon

Medjibe and Putz,

2012

−0.54 RIL cost is cheaper Terengganu,

Malaysia

Saharudin et al.,

1999

−1.83 RIL cost is cheaper Sarawak,

Malaysia

Schwab et al., 2001

1.43 Average (RIL cost is higher)

±1.57 90% Confidence Interval

tropical timber trade is still in its infancy stage, a study on
38,000 log transactions from sustainable forestry in the Japanese
market found that certified timber has a price premium of 1.4–
4.0% depending on timber species (Yamamoto et al., 2014).
Furthermore, as some governments such as European Union,
Australia, the United States of America began to enforce the
legality of timber import from tropical countries, DNA timber
tracking is the only natural identification technology that cannot
be falsified (Lowe and Cross, 2011). Financial incentives are
therefore still required to get tropical forest industries to reform
their harvesting practices such as appropriate logging planning;
use of trained crews for forest inventory, tree marking, tree
directional felling, log skidding and trimming; and supervision
of logging, to adopt less destructive technologies whenever
possible such as the use of directional felling, cable system, or
helicopter logging system or a combination, and to increase
efficiencies (i.e., through the use of trained crews and advanced
chainsaws at wood processing mills) from harvest to the final
product.

CONCLUSION

Improved tropical forest management is an important element
of the UNFCCC’s REDD+ scheme that also supports the long-
term supply of commercial timber products and safeguards
local social welfare and biodiversity. Our study suggests that
about 28% of the total area of tropical forests (i.e., all the
officially designated tropical PdF) can be targeted for RIL+
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and RIL+ can produce 287 million m3 year−1 of sawnwood,
reduce emissions of up to 494 Tg C year−1 or 50% of carbon
emissions from tropical deforestation, and increase carbon
storage of 8.2 Tg C year−1 in sawnwood, while preventing
logging-promoted and enhanced forest fires. RIL+ also requires
technological development because it requires proper planning at
every stage of logging and wood processing operations. Our study
also suggests that technological development throughout the
logging industry can further reduce carbon emissions through
the use of improved machinery used in logging operations,
transport, wood processing and source verification. Recent
advances in DNA timber tracking technology along with forest
certification scheme will further enforce the legality of tropical
timber import. To achieve long-term production of tropical
sawnwood and logging-induced emission reductions, financial

incentives of US$ 1–2 billion per year or up to $2 Mg CO2

will be needed at least initially for the management of all
tropical PdF.
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