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The pharmaceutical industry constantly seeks new ways to improve current methods

that scientists use to evaluate environmental chemicals and develop new medicines.

Various automated steps are involved in the process as testing hundreds of thousands

of chemicals manually would be infeasible. Our research effort and the Toxicology

in the Twenty First Century Data Challenge focused on cost-effective automation of

toxicological testing, a chemical substance screening process looking for possible

toxic effects caused by interrupting biological pathways. The computational models

we propose in this paper successfully combine various publicly available substance

fingerprinting tools with advanced machine learning techniques. In our paper, we explore

the significance and utility of assorted feature selection methods as the structural

analyzers generate a plethora of features for each substance. Machine learning models

were carefully selected and evaluated based on their capability to cope with the

high-dimensional high-variety data with multi-tree ensemble methods coming out on

top. Techniques like Random forests and Extra trees combine numerous simple tree

models and proved to produce reliable predictions on toxic activity while being nearly

non-parametric and insensitive to dimensionality extremes. The Tox21 Data Challenge

contest offered a great platform to compare a wide range of solutions in a controlled and

orderly manner. The results clearly demonstrate that the generic approach presented

in this paper is comparable to advanced deep learning and domain-specific solutions.

Even surpassing the competition in some nuclear receptor signaling and stress pathway

assays and achieving an accuracy of up to 94 percent.

Keywords: Classification, random forest, toxicity, Tox21, challenge, competition

1. INTRODUCTION

Traditional toxicity testing protocols using animal experiment-based models have many
drawbacks; they are expensive, time-consuming (Shukla et al., 2010) and might raise ethical or
reliability concerns. The urgent need to involve alternative methods in chemical risk assessment
drove the National Research Council (NRC) in the U.S. to project a new vision and strategy for the
increased use of in vitro technologies in toxicity screening studies (Krewski et al., 2010). European
measures soon followed as the European Chemical Agency (ECHA) issued similar guidelines.
These guidelines promoted quick and cost effective computational methods and described the role
of animal testing as the last resort. Over the years, this lead to the development and wide-scale
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implementation of high-throughput screening (HTS) techniques.
A process that is capable of screening thousands of compounds
using a quick and standardized protocol, furthermore, it may be
combined with robotic methods (Malo et al., 2006).

The popularity of HTS opened up chemical toxicity research
to machine learning and the big data era. The need of novel
techniques in data handling, data transformation, and data
mining sparked substantial research efforts throughout the years.
This new emerging trend brought about the convergence of
toxicity screening protocols and conventional graphical data
mining tools (e.g., RapidMiner1, KNIME2) or popular scripting
languages in data science (R3, Python4). With various modules,
libraries, and extensions available to read, transform and analyze
HTS assay data, it really comes down to a choice of preference.

Over the years, Random forests (Svetnik et al., 2003),
projection pursuit, partial least squares and Support vector
machines (Si et al., 2007) have been applied successfully to the
Quantitative Structure-Activity Relationship (QSAR) task. Each
of these methods has different advantages and disadvantages (see
Liu and Long, 2009 for a detailed review). Judson et al. (2008) also
carried out an extensive review of conventional machine learning
methods applied in HTS; methods included Nearest neighbors,
Nave Bayes, Regression trees, Support vector machines, Artificial
neural networks. The comparison showed that most models
provide comparable performance when suitable data preparation
is carried out. The authors identified careful feature selection as
the most crucial step in preparing the data. Furthermore, Dahl
et al. successfully applied multi-task neural networks to exploit
task inter-dependencies (Dahl et al., 2014).

The usage of Random forests in HTS applications was first
suggested by Svetnik et al. (2003). Svetnik et al. demonstrated
superior performance compared to othermethods at the time and
described additional useful features of the proposed method. The
main strengths were identified as high classification performance,
aggressive regularization to capture sparsity and useful services
such as built-in performance assessment and feature importance.

The following document describes in detail team Dmlab’s
approach to solving the Tox21 Data Challenge5. The challenge
offered a compound toxicity screening classification problem
on two panels [Nuclear Receptor Signaling (NR) and Stress
Response (SR)] and 12 different assays: Androgen Receptor (AR,
AR-LBD), Aryl Hydrocarbon Receptor (AhR), Estrogen Receptor
(ER, ER-LBD), Aromatase Inhibitors (aromatase), Peroxisome
Proliferator-activated receptor gamma (ppar-gamma),
Antioxidant Response Element (ARE), luciferase-tagged
ATAD5 (ATAD5), Heat Shock Response (HSE), Mitochondrial
Membrane Potential (MMP), and Agonists Of The P53 Signaling
Pathway (P53). For further details on the competition, see Huang
et al. (2016).

Our general approach was to utilize the vast machine
learning features offered by Python’s scikit-learn library6 and

1https://rapidminer.com/products/studio/
2https://www.knime.org/
3https://www.r-project.org/
4https://www.python.org/
5https://tripod.nih.gov/tox21/challenge/
6http://scikit-learn.org/

prepare the dataset for analysis by combining data manipulating
tools (RapidMiner and KNIME) with domain specific structure
analyzers in order to provide high-accuracy toxicity screening.

This article contains three major sections:

1. Materials and Methods shows the underlying models in detail
with references, introduces the software used, provides data
description, and basic statistics. The second part of this section
describes how the substance screening framework works and
how to reproduce contest results.

2. Results contains the thorough evaluation of the proposed
methods in the competition context

3. Conclusions and discussions are provided in the last section
with an indication of future research directions.

2. MATERIALS AND METHODS

The Tox21 Data Challenge portal contains helpful guidance
and a multitude of materials to start working on the problem.
The challenge organizers even generously provided a simple
benchmark solution to kickstart the process, comparison of the
benchmark and team Dmlab’s approach can be found in Table 1.
While the Naïve Bayes classifier utilized in the benchmark is a
good initial approach, it falls behind when it comes to parameter
tuning options and accuracy in general. Finding a more suitable
classifier was chief among the goals of this competition. The
same goes for replacing the lower level components of the stack;
using the same inputs as other challengers gives no edge in a
competitive environment.

The flow chart in Figure 1 gives a high-level overview
of the solution process and the techniques combined. The
process involves 3 major steps: data preparation, modeling, and
post-processing. The data preparation step includes deriving
descriptors from structural information, transforming the data
to suit modeling purposes and finalizing the set of descriptors
to be used. Modeling involves model selection, parameter tuning
and generating predictions. The post-processing step covers the
optimal threshold selection and application process to generate
toxicity decisions.

2.1. Data Description
The Tox21 Data Challenge provided a dataset with the structural
information of 11,737 distinct molecules. The different assays
contained results for between 7143 and 9068 of the molecules.
The respective activity flag was used as the target variable of
analysis for each individual track.

While challenge tracks are intended to be independent
a quick correlation and clustering analysis shows signs of

TABLE 1 | Building the solution stack.

Benchmark solution Dmlab solution

Molecular descriptors Library synthesizer PaDel descriptor/RDKit

Fingerprinting PCFP (PubChem) PubChem/Avalon

Structure standardizer LyChI PaDel descriptor/RDKit

Classifier model Naïve bayes Random forest/extra trees
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FIGURE 1 | Detailed overview of the proposed solution.
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positive correlation between track activities in various cases
(see Figure 2). Notably, the closest relationship is between
NR-AR, NR-ER and their LBD counterparts. Surprisingly
enough, NR and SR assays mix in the two other clusters,
one containing AhR, Aromatase, ARE, and MMP, while
the other includes the remaining assays; PPAR-gamma,
ATAD5, HSE, and p53. Correlation coefficients hint at possible
inter-track information gain that could be harnessed to
achieve better classifier performance, but no such action was
taken during the challenge. A promising direction for future
research.

2.1.1. Generating Descriptors
At the beginning of the analysis, the structural information of
the molecules in the training and test set has to be processed

to generate descriptive attributes for data analysis. During
the challenge, our team used 2 different versatile tools to
generate the descriptive attributes; PaDel Descriptor and RDKit
cheminformatics toolkit. Other tools, like the CDK Descriptor
Calculator7, were also experimented with but failed to generate
conclusive results.

2.1.2. PaDel Descriptor
PaDel Descriptor8 was developed by the Pharmaceutical Data
Exploration Laboratory at the National University of Singapore.
The tool has the capabilities to generate 1-dimensional, 2-
dimensional structural information and many fingerprints
as seen in Yap (2011), and also operates in a multi-core

7http://www.rguha.net/code/java/cdkdesc.html
8http://www.yapcwsoft.com/dd/padeldescriptor/

FIGURE 2 | Correlation and potential clustering of challenge tracks.
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fashion to reduce computational times. It also acts as a
structure standardizer; removes salts, detects aromaticity, and
standardizes nitro groups. As a result, 1444 2-dimensional
attributes were extracted from the structures. 3-dimensional
descriptors were also experienced with, but failed to be generated
for many molecules, and ultimately were discarded from the
analysis.

In addition, the tool also offers 12 different fingerprint
versions; CDK fingerprint, CDK extended fingerprint, Estate
fingerprint, CDK graph only fingerprint, MACCS fingerprint,
PubChem fingerprint, Substructure fingerprint, Substructure
fingerprint count, Klekota-Roth fingerprint, Klekota-Roth
fingerprint count, 2D atom pairs, and 2D atom pairs count. Out
of those the PubChem Substructure Fingerprint (see Bolton
et al., 2008) was selected based on its empirical performance
widespread use, which is also the default fingerprinting method
in the PaDel Descriptor. It is a 2-dimensional chemical structure
fingerprint that consists of an 881-dimension binary vector.
Each bit represents a boolean determination of the absence or
presence of a specific structural element as can be seen in the
PubChem Substructure Fingerprint manual9.

2.1.3. RDKit Cheminformatics Toolkit
RDKit, an open source toolkit for cheminformatics10, was
also utilized in the descriptor generating process. There are

9ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
10http://www.rdkit.org

many wrappers available to work with the tool in different
environments; our team chose the KNIME extension, which
inherently works with SDF and SMILES files (see Figure 3).

Descriptive attributes were generated by the descriptor
calculation feature. In addition Gasteiger charges were also
calculated by the calculate charges feature, see Gasteiger and
Marsili (1980) for details. The toolkit also offers 8 distinct
fingerprints to be generated; Morgan, FeatMorgan, AtomPair,
Torsion, RDKit, Avalon, Layered, and MACCS. Empirical results
showed the Avalon fingerprint11 as the most promising, and was
selected as the final fingerprinting option to work with.

Similarly to the PaDel scenario, salts were removed at the
beginning of the process using the salt stripper feature. In the
end, 117 descriptors, 118 charges, and 1024 fingerprint flags were
extracted as new features.

2.2. Data Preparation
The resulting dataset used in data analysis combines two main
sources. PaDel descriptor provides 2-dimensional features and
the PubChem fingerprint, while RDKit adds its respective
structural descriptors along with the Avalon fingerprint.

The whole dataset contains 3418 attributes; this means a
relatively wide data table that makes feature selection a top
priority. The many descriptors represent a high dimensional
sparsely inhabited feature space. Cautious measures have to be

11http://sourceforge.net/projects/avalontoolkit

FIGURE 3 | Sample molecule structures displayed by the RDKit cheminformatics toolkit. (A) NCGC00260687. (B) NCGC00261143. (C) NCGC00261111.

Frontiers in Environmental Science | www.frontiersin.org 5 August 2016 | Volume 4 | Article 52

ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
http://www.rdkit.org
http://sourceforge.net/projects/avalontoolkit
http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Barta Identifying Toxins Using Multi-Tree Ensembles

taken as this kind of classification problem is particularly prone
to overfitting.

Additionally, some of these attributes overlap, as different
sources provide the same functionality. First, correlated attributes
were removed to avoid the effect of multicollinearity as suggested
by Chong and Jun (2005). In this step, attributes were filtered
where a pairwise correlation was above 0.95. Other attributes
were deemed useless and removed, based on their low variance
(below 0.1) or high ratio of missing values (above 10%). Note,
this step removes many of the Gasteiger charges.

Literature review underlined the importance of feature
selection in QSAR protocols. To carry out careful filtering of the
feature space, the functionality of conventional methods were
combined in a novel way. RapidMiner, a reliable data analysis
software, offers various feature selection operators (Schowe,
2011), and also comes with a powerful extension12 to further
extend options. In this attempt, 5 basic feature selector operators
were combined to generate a versatile ranking of individual
attributes, thus creating a flexible attribute filtering scheme.
The basic operators include calculating feature relevance by
computing the value of correlation with respect to the target
attribute, based on the information gain ratio, based on the
Gini impurity index, by measuring the symmetrical uncertainty
with respect to the class, and according to how well their values
distinguish between the instances of the same and different
classes that are near each other.

Summing the aforementioned ranks represents the universal
scoring for the given input variable provided by a committee of
experts, thus creating amore reliable ranking. Using the universal
scoring, 681 features were selected for further analysis, meaning
depending on the assay the analytical base table contained
roughly 10–13 timesmore observations than features, a data table
size much less prone to overfitting. Further details on the final set

12http://sourceforge.net/projects/rm-featselext/

of descriptors andmost important input features for all 3 winning
tracks are provided in the Supplementary Materials.

Many of the structural descriptor features contain missing
values; we decided that attributes with excessive missing values
are to be entirely removed. Some molecule structures are
prone to fail to generate descriptors in PaDel and/or RDKit,
and thus missing values are generated. Classification models
implemented in Python do not handle missing values well, so
all rows in the training set including such values were removed
entirely. On the validation sets (test set and final evaluation set),
where dropping a molecule was no option, such values were
imputed with a fixed 0 value, which in the case of fingerprints,
represents the absence of a specific pattern and is considered a
safe option.

2.3. Random Forests and Extra Trees
The Random forest is perhaps the best-known of ensemble
methods, thus it combines simple models called base learners for

TABLE 2 | Searching the parameter space.

Model Parameter Options tested

Random forest classifier

Extra trees classifier

Splitting criterion Gini, entropy

Number of estimators 499, 799, 999, 1200

Support vector classifier Kernel Radial basis function, linear

Gamma parameter 0.01, 0.001, 0,0001

C parameter 1, 10, 100,1000

Class weight auto, none

Gradient boosting classifier Learning rate 0.01, 0.1, 0.3

Number of estimators 250, 500,1200

Max tree depth 2, 3, 5

Subsampling 0.75, 0.9, 1.0

FIGURE 4 | Illustrative example of 5-fold cross-validation.
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TABLE 3 | Comparison of leaderboard and final performance on all assays.

Panel Assay Modeling method Tuned model parameters LB AUC Eval. AUC Balanced acc.

NR AR ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.71 0.83 0.61

NR Ahr ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.85 0.78 0.56

NR AR-LBD RandomForestClassifier No. estimators: 499, criterion = “entropy” 0.86 0.82 0.49

NR ER ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.70 0.77 0.66

NR ER-LBD RandomForestClassifier No. estimators: 799, criterion = “entropy” 0.79 0.77 0.59

NR Aromatase ExtraTreesClassifier No. estimators: 999, criterion = “entropy” 0.85 0.84 0.56

NR PPAR-gamma ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.83 0.83 0.55

SR ARE SupportVectorClassifier Kernel type: ANOVA 0.82 0.77 0.52

SR ATAD5 ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.80 0.80 0.61

SR HSE ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.88 0.86 0.56

SR MMP ExtraTreesClassifier No. estimators: 799, criterion = “entropy” 0.93 0.95 0.69

SR p53 ExtraTreesClassifier No. estimators: 499, criterion = “entropy” 0.74 0.88 0.58

FIGURE 5 | ROC curves of the winning models. (A) NR-AR. (B) NR-Aromatase. (C) SR-P53.

increased performance. In this case, multiple treemodels are used
to creating a forest as introduced by Breiman (2001).

There are three key factors of forest creation:

1. bootstrapping the dataset
2. growing unpruned trees
3. limiting the candidate features at each split

These steps ensure that reasonably different trees are grown
in each turn of iteration, which is key to the effective model
combination.

The bootstrapping step of the model creation carries out
a random sampling of a dataset with N observations with a
replacement that results in N rows, but only ca. 63% of the
data used as stated in (1) (Efron and Tibshirani, 1993). The
probability that an observation x does not get into the sample S
equals

P(x /∈ S) = (1−
1

n
) ≈ e−1

= 0.368 (1)

Pruning the trees would reduce variance between trees and thus
considered inessential as the overfitting of individual trees is
balanced anyway by the ensemble.

When growing trees a different set of features is proposed as
candidates in finding the best split based on information criteria
like Gini or entropy. The subset of features is selected randomly
further increasing the variance between trees.

The output of the trees is then combined by averaging the
results based on some weights or by performing a majority vote
in the case of classification problems.

Random forests have very few vital parameters to tune,
they are effectively non-parametric. The unique architecture
provides many benefits and is widely recognized as a good
initial approach to most problems. Unlike decision trees, the
ensemble method’s averaging property inherently finds a balance
between high variance and bias. It is insensitive to many data
related issues such as the large number and heterogeneity of
features, outliers, missing data, and even an unbalanced target.
Other than being a great out-of-the-box tool it offers various
useful services. Random forest gives an intrinsic evaluation of
the results based on the data discarded by bootstrapping (called
out-of-bag error), it also gives estimates what variables are
important.

Extra Trees is a slightly different Random forest variant
suggested by Pierre Geurts, Damien Ernst and Louis Wehenkel
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FIGURE 6 | Top 20 empirical feature importance assessment on assay SR-P53.

FIGURE 7 | Using a cutoff threshold on assay NR-AR to transform probabilistic predictions (A) to actual activity (B) that resembles training

distribution (C).

in the article “Extremely randomized trees” in 2006 (Geurts et al.,
2006). The extreme randomization comes from the fact that the
variable splitting in each node is no longer based on finding the

best split, but done in a completely random manner. This causes
the trees grown to be even less data dependent, thus introducing
extra variance between them.
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TABLE 4 | Performance comparison of final solution and winning solution on all assays.

Panel Assay Modeling method Cutoff point Evaluation AUC Position Best AUC Perf. ratio (%)

NR AR ExtraTreesClassifier 0.50 0.83 1 0.83 100

NR Ahr ExtraTreesClassifier 0.40 0.78 28 0.93 84.20

NR AR-LBD RandomForestClassifier 0.50 0.82 7 0.88 93.11

NR ER ExtraTreesClassifier 0.35 0.77 11 0.81 94.61

NR ER-LBD RandomForestClassifier 0.35 0.77 12 0.83 93.26

NR Aromatase ExtraTreesClassifier 0.45 0.84 1 0.84 100

NR PPAR-gamma ExtraTreesClassifier 0.50 0.83 6 0.86 96.58

SR ARE SupportVectorClassifier 0.60 0.77 10 0.84 91.43

SR ATAD5 ExtraTreesClassifier 0.35 0.80 4 0.83 96.65

SR HSE ExtraTreesClassifier 0.50 0.86 7 0.86 98.93

SR MMP ExtraTreesClassifier 0.50 0.95 2 0.95 99.54

SR p53 ExtraTreesClassifier 0.35 0.88 1 0.88 100

2.4. K-Fold Cross-Validation
Cross-validation is the primary method of model evaluation. In
this technique, multiple models are trained using the same tuning
parameters and subsequently tested on a different subset of data.
The results are more reliable than performing the simple holdout
method that could be misleading when a not-so-fortunate split
is used.

During cross-validation the data is partitioned into K disjoint
subsamples; typicalK values lie between 5 and 10. Model training
is then carried out using K-1 folds and testing on the last
fold, as seen in Figure 4. The process is performed until all the
folds have been used for testing and the cross-validation error
equals

ECV =
1

K

K∑

i=1

Ei, (2)

where Ei is the error measured at each iteration. A 3-fold
cross-validation scheme was used in the evaluation phase to
ensure honest performance assessment. In general, local cross-
validation scores were close to the leaderboard but slightly
overestimated accuracy in some cases. K-fold cross-validation
also ensured that the modeling has been executed using all
data.

3. RESULTS

3.1. Model Implementation and Evaluation
The distribution of the target variable for all assays is highly
skewed (target event between 3 and 16%). This causes difficulties
for conventional modeling methods when it comes to predicting
target values. Model alternatives were preselected based on
their ability to handle the characteristics of the specific
classification problem; having highly imbalanced target and a
high dimensional feature space. Out of the many modeling
methods Python’s scikit-learn provides, the following were tested
thoroughly:

1. Random Forest Classifier
2. Extra Trees Classifier

3. Gradient Boosting Classifier
4. Support Vector Classifier

Results clearly showed that neither Gradient boosting classifier
(GBC) nor Support vector classifier (SVC) was able to handle
target imbalance properly. Literature suggests balancing of
target (Zakharov et al., 2014), which takes either substantial
modification of the original method (Chen et al., 2004)
or re-sampling of the whole dataset (Zhang et al., 2013).
None of these advanced approaches was pursued in depth,
as the random forest class was able to deliver convincing
results in most cases without any further transformation
needed. GBR and SVC approaches were subsequently
discarded.

All models were evaluated using the K-fold cross-validation

paradigm, using 3 folds to perform honest performance

assessment. As the number of observations compared to the

number of features is relatively low, this represents a crucial

step in involving all observations in both the training and

the testing phase. Model parameters were tuned using the

grid search method; a combination of cross-validation and an

exhaustive search in parameter space. Results were evaluated

based on the area under the receiver operating characteristics

curve score (ROC-AUC) as designated by the challenge
organizers. Table 2 shows the parameter settings that were
tested.

The final evaluation models were trained on the combined

training and testing dataset to encapsulate all the information

available.
Table 3 shows the parameter settings found optimal for each

track along with leaderboard and final evaluation performance.

All solutions were ranked based on the challenge criteria:

ROC-AUC, but balanced accuracy scores are also provided.

As a sole exception, modeling for the SR-ARE assay was

carried out completely in RapidMiner using Support vector

classifier and is not discussed in this article. Any parameters

not mentioned in Table 3 were set to their respective default

values (see the scikit-learn documentation for details). Although

a wide spectrum of models was experimented with, all
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FIGURE 8 | ROC curves of best models (blue) and selected Dmlab models ranked 2–10th (red). (A) SR-ATAD5. (B) SR-MMP. (C) SR-HSE.

optimal solutions came from the Random forest class of
models with very similar parameter settings, meaning this
approach proved to be a relatively robust that worked well
on all assays. The only real difference is the number of
estimators employed, that varies in a broader spectrum from
499 to 999 depending on the assay. Performance discrepancy
between leaderboard and final evaluation was also minimal,
4.73 ± 0.04 percent for NR and 4.62 ± 0.05 percent for SR
panel.

Besides successfully avoiding overfitting and working reliably
on all assays, the solution stack discussed in this paper also
provides useful insights into variable importance, a feature
crucial to the deeper understanding of complex problems like
toxicity screening. Figure 6 shows empirical feature importance
assessment for the assay SR-P53, and underlines the significance
of specific patterns to this problem, such as conventional
bond orders and the presence of particular ring patterns.
Further details on the most important input features for
all 3 winning tracks are provided in the Supplementary
Materials.

3.2. Post-Processing the Results
As part of the final evaluation task, molecule activity decisions
had to be submitted instead of simple activity probabilities. As
seen previously, the distribution of the target variable for all
assays is highly skewed. This made cutting at the conventional
0.5 probability threshold impractical. The output of each model
was further tuned to better represent the expected distribution of
the target using a flexible cutoff point. Figure 7 contains details
of the process; do note the logarithmic scale on the figure. The
optimal cutoff point per assay was calculated to closely resemble
the target distribution observed on the training set published by
the organizers. A strong assumption was made that evaluation
and training data was sampled in a nearly stratified manner.
The optimized cutoff point used in each assay can be found in
Table 4.

4. DISCUSSION

The Tox21 Data Challenge offered a novel way of mass chemical
assay classification. Much of our team’s efforts were focused on
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developing accurate predictions with the help of well-established
domain specific descriptors and finding the right approach to
feature selection. Modeling was carried out using the cutting
edge of open source data science tools available. This approach
was highly capable of capturing toxicity driving factors while
also avoiding overfitting on the training data. In the competition
context, the proposed solution achieved a winning position in 3
of the Tox21 Data Challenge 2014 tracks and delivered highly
comparable results on the rest.

The solution’s robustness and competitiveness are proven
through empirical results. The model evaluation shows empirical
evidence that Random forest class predictors suit the particular
classification problem well. When built on carefully preselected
features they offer extremely high performance in the chemical
assay classification domain.Model performance, however, greatly
depends on the feature set used and the cutoff threshold applied;
the proposed approach for both issues worked convincingly in
11 out of the 12 challenge tracks. The Random forest method is
found to be insensitive to most modeling parameters; the number
of estimators has a slight effect on performance, but overfitting is
rarely an issue.

When compared to other challenger’s solutions the Random
forest stack offers convincing performance with 3 assay wins and
6 more places among the top 10. Figure 5 shows the graphical
representation of the winning solution performances. Even when
the achieved ranking is not so prominent, ROC-AUC scores show
a promising performance ratio compared to the assay winning
solutions proving the approach’s versatility (see Table 4). Average
performance ratios were found to be 94.54± 4.99 percent for NR
and 97.31± 3.16 percent for SR panel. Figure 8 offers additional
graphical comparison of performance ratios on selected assays
SR-ATAD5 (96.65%), SR-MMP (99.54%), and SR-HSE (98.93%)
respectively.

All computations were carried out on a quad core PC with
Intel Core i5 CPU @ 3.20 GHz processor and 16 GB of RAM.

Depending on the assay, single thread model building on the
full dataset took between 28.3 and 42.2 s. Random Forests

also possess the capability for multi-thread execution; using
scikit-learn’s parallelization feature reduces model building time
between 9.6 and 13.7 s. Model application is generally quick;
predictions are generated within seconds regardless of the data
size.

In summary, the article provides a detailed description of
the solution stack used to develop high accuracy QSAR models.
This approach was able to achieve the highest accuracy in 3
different tracks of Tox21 Data Challenge. This accurate modeling
approach also provides useful services, such as intrinsic feature
importance that gives immediate feedback and further facilitates
understanding the proposed toxicology screening method. The
methodology used in the competition may be applied in other
problems in cheminformatics as well. Furthermore, winning
models are made publicly available for comparison and further
research.
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