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Bayesian (belief, learning, or causal) networks (BNs) represent complex, uncertain

spatio-temporal dynamics by propagation of conditional probabilities between

identifiable “states” with a testable causal interaction model. Typically, they assume

random variables are discrete in time and space, with a static network structure that

may evolve over time, according to a prescribed set of changes over a successive set

of discrete model time-slices (i.e., snap-shots). But the observations that are analyzed

are not necessarily independent and are autocorrelated due to their locational positions

in space and time. Such BN models are not truly spatial-temporal, as they do not allow

for autocorrelation in the prediction of the dynamics of a sequence of data. We begin

by discussing Bayesian causal networks and explore how such data dependencies

could be embedded into BN models from the perspective of fundamental assumptions

governing space-time dynamics. We show how the joint probability distribution for

BNs can be decomposed into partition functions with spatial dependence encoded,

analogous to Markov Random Fields (MRFs). In this way, the strength and direction of

spatial dependence both locally and non-locally could be validated against cross-scale

monitoring data, while enabling BNs to better unravel the complex dependencies

between large numbers of covariates, increasing their usefulness in environmental risk

prediction and decision analysis.
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ENVIRONMENTAL INFORMATICS

A wide array of statistical modeling approaches are available for exploring real-world complex
spatio-temporal phenomena including multivariate regression, multivariate analysis of variance
(MANOVA), principal components analysis (PCA), canonical correlation analysis (CCA), factor
analysis, spectral analysis, vector autoregressive models (VARs), and machine-learning tree and
expert rule-based techniques—to name just a few (Izenman, 2013). Deciding which technique
to employ relies heavily on the main purpose of a model in a given application context (e.g.,
estimation, prediction, and problem dimensional-reduction), the availability and quality of data
and auxiliary information, and the level of accuracy required to aid in decision-making. Given
the large uncertainties facing environmental decision making, and the need for more robust
prediction methods, Bayesian-hierarchical, causal-learning, and copula-based network techniques
are increasingly being employed to better resolve interactions and trade-offs in observed, latent, and
decision-making variables. These models also provide a tractable way to integrate both tradition
and more modern forms of data—from station monitoring networks, sensor-networks, and
remote-sensing/satellite imagery, and can prove computationally challenging to solve numerically
and to validate in the case of high-dimensional model systems.
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Too often, the degree of departure from statistical
assumptions, such as distribution type, linearity, spatial,
and/or temporal independence, stationarity, homoscedasticity,
changes of state, scaling, competing, and coevolving processes,
causality, and extended memory, often exhibited by the real-
world complex adaptive systems (ecosystems), are overlooked.
This is, in part, due to lack of sufficient data or information for
verification. Similarly, many models rely on cross-validation
tests, due to a lack of fully independent validation data. Dynamic
state and transition rule assumptions can require information
across scales—from individual to aggregation to population
to communities, where data may also be insufficient to verify
and validate assumptions. Liu et al. (2008) emphasize the
importance of the choice of model, modeling framework or
strategy, underlying assumptions and the real-world context,
including formal sensitivity, scenario, and uncertainty analysis
approaches play in facilitating “usable” scientific information
for management and policy decision-making. Newlands (2016)
discusses the importance of effective integration of science
(interdisciplinary knowledge and insights) and environmental
management for increasing the resilience and sustainability of
ecosystems over the longer-term.

Despite current challenges, statistical assumptions underlying
environmental models still, ultimately need to be verified
and validated across a range of process, measurement, and
management contexts to be useful (robust and effective)
in managing ecosystems, and guiding policy decisions and
reliable decision-making. An alternative perspective from just
obtaining more data is to better frame or partition models
to a representative set of spatio-temporal processes that span
spatial and temporal scales. We explore how local to non-
local space-time dependencies could be embedded into Bayesian
causal network models, from the perspective of fundamental
assumptions governing space-time dynamics (i.e., separable
space time dynamics, conditional independence, d-separation,
location, and time-invariance). We propose the decomposition
or factorization of the joint probability distribution of BNs into
potential functions with spatial dependence encoded, analogous
to Markov Random Fields (MRFs). In this way, the strength
and direction of spatial dependence both locally and non-locally
could be better validated against cross-scale monitoring data,
while enabling BNs to better unravel the complex dependencies
between large numbers of covariates, increasing their usefulness
in environmental risk prediction and decision analysis.

BAYESIAN CAUSAL NETWORKS

Bayesian (belief, learning, or causal) network models (BNs) have
enjoyed a great deal of interest due to their flexibility in modeling
relationships and interactions between variables. These models
enable researchers to integrate quantitative data and expert
knowledge to help assess risk and decision analysis (Fenton and
Neil, 2013). BNs incorporate graphs that encode probabilistic
relations between variables in order to simplify the representation
of their joint distribution. In these probabilistic graphs, random
variables are drawn as nodes and the relationships between

variables are drawn as edges. Edges have arrows at one end and
the direction of an arrow indicates the direction of a causal
relationship between two variables (no edge between variables
implies they are independent). Thus, relationships are considered
to be directed and probabilities determine the strength of the
relationships between variables that are linked (Darwiche, 2010).
A collection of directed relationships may not contain feedback
loops, or cycles, and so the resulting graph structure is both
directed and acyclic, and often referred to as either a Directed
Acyclic Graph (DAG) or Directed Graphical Model (DGM). The
set of variables and arrangement of edges within a DAG defines
the causal structure of a BN and is typically ascertained from
expert opinion (more often the case in environmental modeling),
or by implementation of learning algorithms that determine the
most likely structure given the data (frequently used in robotics
and computer science applications; Koller and Friedman, 2009).
A DAG provides a visual representation of the dependency
structure within a set of variables and facilitates the factorization
of the joint distribution into a series of smaller conditional
distributions. Factoring the joint distribution into a series of
smaller conditional distributions facilitates the computational
aspects of inference within and therefore reasoning about
complex causal relationships.

THE NEED TO ENCODE SPATIAL AND
TEMPORAL DEPENDENCE

Current studies apply batch functions and “for loops” that allow
sequencing of batch functions so that the output of a BN can
be linked to the attribute table of a Geographic Information
System (GIS) file (a feature identifier that is associated with the
spatial coordinates of areal units; Meyer et al., 2014). In database
terminology, this is termed a table join because it associates data
in a table with areal units based on the value of a common field.
This procedure can be contrasted with a spatial join that joins
the attributes of two layers based on a spatial relationship (i.e.,
proximity, adjacency, containment) between the locations of two
sets of spatial features. Achieving a fully consistent “spatially
explicit” model would require the application of a spatial
analog to the Markov assumption employed for a class of BN
models called Dynamic Bayesian Networks (DBNs) that include
temporal variation, which has been formally described, although
not yet applied to BNs and largely overlooked or neglected
(Rozanov, 1977; Cressie and Lele, 1992; Simpson et al., 2012). In
this way, the integration of the spatial Markov assumption allows
a BNs model structure to encode correlations across space in a
manner similar to how DBNs encode correlations across time.

In many reported studies that couple or integrate BNs with
GIS (see case studies in Chen and Pollino, 2012 and Aguilera
et al., 2011), it would be easy to mistake a geographic predictive
map as a joint probability for all of the areal units within a
study area. Current coupled BN-GIS approaches typically do
not generate a joint probability distribution across the study
domain, but instead from conditional distributions within the
spatial extent of defined sub-regions (e.g., an aerial unit or grid
cell). When used to generate predictive maps, spatial dependency
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structure may not be well-represented by a simple aggregation
of independent joint distributions (Grêt-Regamey and Straub,
2006). In real-world problems like land-use decision-making,
representing interactions between neighboring regions properly
and reliably is crucial (Aalders, 2008; Grêt-Regamey et al.,
2013). Goodchild (1992) has formulated representation tests as
criteria for spatially-explicit models that require spatial locations
associated with BN network nodes to be explicitly considered in
the modeling process and in any extended coupling of a model’s
attributes, such as in any meta-analysis or model ensembles.

EXTENDING THE CAPABILITY AND
REAL-WORLD APPLICABILITY OF BNS

Temporal Dependence
If values of random variables are changing over time, it is
plausible to assume that a variable at one time step is more similar
to values at proximate time steps than in distal time steps. The
similarity of the observations of a variable with themselves due to
their relative locational positions is referred to as autocorrelation.
For instance, your weight today (t) and your weight tomorrow
(t + 1) are likely to be more similar than your weight 2
weeks from today (t + 14) so the autocorrelation is strongest
between proximate time steps and therefore associated measures
of autocorrelation will increase in magnitude.

Using the Markov assumption, that a random variable’s future
value t + 1 is independent of all previous values up to t − 1 when
conditioned on its present value t, temporal dependence can be
incorporated into the structure of a BN (Dean andKazawa, 1989).
Temporal trajectories of the joint distribution is the product of
conditional distributions for the variables in each time interval
T given the preceding intervals according to the assumptions of
a first-order Markov chain (Koller and Friedman, 2009; Bishop,
2011),

P(x1, ..., xT) = P(x1)

T−1
∏

t=1

P(xt+1 |x1,...,xt) (1)

and may be simplified according to the Markov conditional
independence assumption, (xt+1 ⊥ x1,..., xt−1|xt), where
the symbol “⊥” denotes independence (or in the case of
representation of xt ’s in a graph model, as a “graph separation
of nodes”), yielding the compact representation of the joint
distribution,

P(x1, ..., xT) = P(x1)

T−1
∏

t=1

P(xt+1 |xt). (2)

The d-separation property, P(xt |x1,..., xt−1) = P(xt+1|xt), and
stationarity (time-invariance) assumptions then allow us to apply
this reasoning to every time step,

P(xt+1 |xt)∀tǫT. (3)

The Markov assumption of conditional independence is critical
for modeling time-dependent dynamic networks (Koller and
Friedman, 2009). This allows researchers to specify and

perform inference on complex models that would otherwise
lack the structure necessary for estimation of joint probability
distributions and prediction of random variables along a
temporal gradient.

Spatial Dependence
Environmental researchers have used BNs because of their ability
to model uncertainties in relationships among variables and to
reinforce empirical data with expert knowledge (Aguilera et al.,
2011; Chen and Pollino, 2012). Many problems and questions
that arise in natural resource management or environmental
modeling have strong spatial components and so a growing body
of literature addresses the use of BN modeling involving network
cliques or interactions between GIS spatial sub-regions in real-
world problems and application areas, such as spatial co-location
pattern mining and context awareness in hospitals and other
public areas for ubiquitous GIS (Kim et al., 2014), urban road
congestion prediction (Liu et al., 2014), or habitat suitability and
landscape carrying capacity estimation (Donovan et al., 2012).
Whereas, temporal models parameterize the distribution using
the chain rule for probabilities in a direction consistent with
time, a spatial model must parameterize the joint distribution
using the chain rule in a manner consistent with the connectivity
of areal units (e.g., radial directions from an aerial unit being
conditioned or through some theoretical basis; Koller and
Friedman, 2009). In a DAG, dependence is indicated by an arc,
so spatial dependence in a series of DAGs (one for each areal
unit) would be indicated by arcs drawn from the ground variables
in an aerial unit to only those it depends on in its first order
neighbors.

More generally, for any set of areal units sri (i= 1,..., n) within

a study area R, where srj (j 6= i) are all other areal units than the ith

areal unit, and Ni(i = 1,..., n) is the collection of all neighboring
areal units of the ith areal unit:

P(s1, ..., sR) = P(s1)

R
∏

r=1

P(sri |s
r
j ). (4)

This expression can be further simplified according to the
spatial Markov conditional independence assumption (Cressie
and Lele, 1992), (sri ⊥ srj |s

r
j :j|Ni), yielding the following compact

representation of the joint distribution,

P(s1, ..., sR) = P(s1)

R
∏

r=1

P(sri |s
r
j j|Ni). (5)

Applying the d-separation property (Bishop, 2011),
P(si|s1,...,sr−1) = P(sri |sj

r
:
j|Ni), and the stationarity (location-

invariance) assumption, allows the spatial Markov property to be
applied to every areal unit within a study area, given by,

P(sri |s
r
j
:

j|Ni)∀rǫR. (6)

Spatial BNs specify how each proposition at a given areal unit
relates to a proposition at other areal units in R. This information
is then replicated for each areal unit in a map, a process referred
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FIGURE 1 | (Left) Hypothetical depiction associating subregions (red) within a complex spatio-temporal GIS environment/landscape to a constructed clique-based

Bayesian causal network (BN) model with encoded dependence (Right). In this way, general BN virtual model representations could be designed for various intended

applications (e.g., urban land-use, animal habitat suitability) and encoded linked with a given GIS study region/real-world environment. The BN can then be pruned to

remove irrelevant variables, and updated based on new knowledge as it becomes available, with prior marginal clique probabilities computed via (maximal) clique tree

propagation.

to as unrolling. So, using a chain rule according to the spatial
Markov property will allow a set of conditional BNs (each
corresponding to an aerial unit) to be unrolled into a map and the
unrolling process will allow probabilistic predictions to account
for the fact that spatial processes are not confined to the extent of
each aerial unit (Figure 1).

A BN with encoded spatial dependence, to satisfy the
conditions necessary for its constituent conditional distributions,
would require a valid joint distribution (i.e., strictly positive
density) according to the Hammersley-Clifford (HT) Theorem
(Hammersley and Clifford, Unpublished). A MRF is a random
field superimposed on a graph or network structure (that may
be cyclic), as an undirected graphical model (UGM) in which
each node corresponds to a single or set of random variables, and
its edges represent conditional probability dependencies. One
can convert a DGM- to a decomposable UGM-type network
by means of moralization to ensure conditional independence
assumptions are satisfied. Finding a clique in an UGM is
equivalent to a clique in a DGM, if edges between node pairs
(u,v) are created iff (if and only if) there are directed edges
u→v and v→u. Some distributions can be perfectly modeled by
either type (so-called decomposable or chordal), while neither
representation is more powerful than the other (Murphy, 2013).
However, UGMs (e.g., MRFs) have no topological ordering,
so the chain rule cannot be used to represent the joint
distribution, and conditional probability distributions (CPDs)
are associated with potential functions in maximal cliques in
a graph, rather than with each node. According to the HT
Theorem, Gaussian MRFs can be decomposed into a set of so-
called neighborhood Gibbs probability measures, or potential
functions, in maximal graph cliques (a maximal-clique is the
largest possible complete subgraph where each pair of vertices
are connected). A mixture or ensemble of models comprising
mixtures of Gaussian CPDs, p, can be defined by the following
log-linear form, involving a random variable z(si) across sites si
(i=1,...,n) within neighborhoods Ni for the ith site can then be

defined as (Cressie and Lele, 1992),

logp(z (si) |z (Ni)) = G
(

z(si)
)

+ β
∑

j ǫ Ni

z(si)z(sj)

− κ



β ,
∑

j ǫ Ni

z(si)



 . (7)

The first term G(z(si)) represents dominant features of random
variation and the second term β

∑

j ǫ Ni
z(s i) z(s j) specifies

spatial dependence within a neighborhood N, where the
parameter βmeasures spatial dependence strength and direction.
The exponential of the third term (i.e., exp(-κ(,))) is the
normalizing constant that ensures p is a probability density (i.e.,
integrates to 1). By choosing differentG functions, different auto-
models can be generated (e.g., assuming z is real-valued and
continuous, then exp(G) can comprise a mixture of Gaussian
densities; Cressie and Wikle, 2011).

CONCLUDING REMARKS

We have explored how such dependencies could be embedded
into BN models, from the perspective of fundamental
assumptions governing space-time dynamics, highlighting
the potential benefits of decomposing or factorization of the
joint probability distribution of a BN into potential functions
with spatial dependence encoded (Zhang and Poole, 1994).
Encoding spatial dependence facilitates predictive modeling
of a BN’s joint distribution across an entire geographic region
of interest (with respect to potential functions computing
based on network cliques) enabling network pruning irrelevant
variables and accommodating changes to the knowledge base,
but relies on clique tree propagation for precomputation prior
marginal probability of each clique. Consequently, coupled
BN-GIS models that do not generate a joint probability
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distribution across a full study domain are represented as a set
of conditional distributions for individual sub-regions. Often
these sub-regions are context-specific, being defined from
attributes of a problem (e.g., availability of data, identifiable
boundaries), rather than more complex notions of spatial
and temporal dependence (e.g., memory, covariance etc.)
within the context of model prediction. A more complete
representation of spatial dependency, potentially provides
greater methodological consistency in verification and validation
of dependence modeling and decision-making assumptions
(e.g., for monitoring and predicting resource use and allocation
decisions within heterogeneous-structured urban and rural
landscapes). There is also increasing interest both in cluster-
based randomized controlled trials (RCTs) and partitioning
ecosystems for sustainability, where randomization is carried
out over geographic units such as defined “maximum network
cliques” or resource competition “harvesting niches” (Donovan
et al., 2012; White et al., 2014; Murray, 2016). This approach
is particularly well-suited to integrating new monitoring
technologies (sensor networks, drone and satellite remote-
sensing), while also adding greater flexibility to the suite of
sampling approaches (i.e., simple, matched-pair, stratified,
quasi-experimental) available. Computationally, an encoded
dependence approach facilitates BN-inference by means of
clique tree clustering and propagation (i.e., clique tree growth as
a function of parameters that can be computed in polynomial
time from BNs; Mengshoel, 2010). This is a crucial aspect,
as the inclusion of the spatial Markov property results in an
Mth-order Markov chain, with M depending on the number of
first order sub regions that border a given region. For square
grid cells, M = 4 for Rook’s contiguity and M = 8 for Queen’s
contiguity whereas for sub regions based on vector data (e.g.,
soil features, administrative features, agro-economic zones),
M would vary according to the number of adjacent neighbors.
Given that there are KM−1(K−1) parameters, it is preferable
to use connectivity rules that keep M as low as possible but
still capture spatial dependencies in the data (Bishop, 2011). A
class of BN namely, Bayesian copula-based BNs, are attracting
increasing interdisciplinary interest, and may offer great
benefits for modeling non-Gaussian multivariate probability
distributions in high-dimensional applications. This approach

to encode spatial dependence via a copula function applied to a

set of cumulative distribution functions involving the random
variables could then be seamlessly integrated within GIS via a
separation of geographic buffer and overlay, whereby categorical
distance relationships define buffers, and transformed equations
represent spatial overlays. Encoding spatial (and temporal)
dependence into BNs through factorization of the joint
probability distribution could increase their accuracy, reliability,
and scalability for environmental risk prediction and decision
analysis, particularly for those applications that involve their
verification and validation within GIS computing environments.

AUTHOR CONTRIBUTIONS

JS: Worked with DL and NN to review literature and
implement spatial concepts in model formulation. Exchanged
the Markov assumption with Spatial Markov assumption and
extended temporal Bayes Net model formula to accommodate
spatial concepts. NN: Evaluated the validity of the joint
probability distribution under Spatially explicit Bayes net
concept (incorporating the Spatial Markov assumption) in
light of the Hammersley-Clifford Theorem. Synthesized JS
model formulation within broader mathematical framework
and explained impact for modeling environmental variables.
Created Figure 1. DL: Identified the need to use other
quantitative techniques than linear combinations to model
environmental variables (agroecological) for yield estimation and
other agronomically important activities as part of biofuels grant
JS and DL were operating under. Conducted literature review
with JS and helped determine that current implementations of
Bayesian networks were not actually spatially explicit. Guided JS
in implementing spatial concepts in model formulation, serving
in an advisory capacity.

ACKNOWLEDGMENTS

JS and DL were supported by Research Grant Award No. 2012-
10008-19727 from the USDA National Institute of Food and
Agriculture. NN was supported by Growing Forward 2 Program,
Agriculture and Agri-Food Canada (AAFC). We thank Dr. T. A.
Porcelli for editorial assistance.

REFERENCES

Aalders, I. (2008). Modeling land-use decision behavior with Bayesian belief

networks. Ecol. Soc. 13:16. doi: 10.5751/ES-02362-130116

Aguilera, P. A., Fernández, A., Fernández, R., Rumí, R., and Salmerón, A. (2011).

Bayesian networks in environmental modelling. Environ. Model. Softw. 26,

1376–1388. doi: 10.1016/j.envsoft.2011.06.004

Bishop, C. M. (2011). Pattern Recognition and Machine Learning. New York, NY:

Springer.

Chen, S. H., and Pollino, C. A. (2012). Good practice in Bayesian network

modelling. Environ. Model. Softw. 37, 134–145. doi: 10.1016/j.envsoft.2012.

03.012

Cressie, N., and Lele, S. (1992). New models for Markov random fields. J. Appl.

Prob. 29, 877–884. doi: 10.1017/S0021900200043758

Cressie, N., and Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. Hoboken,

NJ: John Wiley & Sons.

Darwiche, A. (2010). Bayesian networks. Commun. ACM. 53, 80–90.

doi: 10.1145/1859204.1859227

Dean, T., and Kazawa, K. (1989). A model for reasoning about persistence

and causation. Comput. Intell. 5, 142–150. doi: 10.1111/j.1467-8640.1989.tb

00324.x

Donovan, T. M., Warrington, G. S., Schwenk, W. S., and Dinitz, J. H. (2012).

Estimating landscape carrying capacity throughmaximum clique analysis. Ecol.

Appl. 22, 2265–2276. doi: 10.1890/11-1804.1

Fenton, N., and Neil, M. (2013). Risk Assessment and Decision Analysis with

Bayesian Networks. Boca Raton, FL: Taylor & Francis (Chapman & Hall/CRC

Press).

Goodchild, M. F. (1992). Geographical information science. Int. J. Geogr. Inf. Sci.

6, 31–45.

Grêt-Regamey, A., Brunner, S. H., Altwegg, J., Christen, M., and Bebi, P. (2013).

Integrating expert knowledge into mapping ecosystem services trade-offs for

sustainable forest management. Ecol. Soc. 18:34. doi: 10.5751/es-05800-180334

Frontiers in Environmental Science | www.frontiersin.org 5 January 2017 | Volume 4 | Article 84

https://doi.org/10.5751/ES-02362-130116
https://doi.org/10.1016/j.envsoft.2011.06.004
https://doi.org/10.1016/j.envsoft.2012.03.012
https://doi.org/10.1017/S0021900200043758
https://doi.org/10.1145/1859204.1859227
https://doi.org/10.1111/j.1467-8640.1989.tb00324.x
https://doi.org/10.1890/11-1804.1
https://doi.org/10.5751/es-05800-180334
http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Sulik et al. Spatial Bayes Nets

Grêt-Regamey, A., and Straub, D. (2006). Spatially explicit avalanche risk

assessment linking Bayesian networks to a GIS. Nat. Hazard Earth Sys. 6,

911–926. doi: 10.5194/nhess-6-911-2006

Izenman, A. J. (2013). Modern Multivariate Statistical Techniques: Regression,

Classification, and Manifold Learning, 2nd Edn. New York, NY: Springer.

Kim, S. K., Lee, J. H., Ryu, K. H., and Kim, U. (2014). A framework of spatial co-

location patternmining for ubiquitous GIS.Multimed. Tools Appl. 71, 199–218.

doi: 10.1007/s11042-012-1007-2

Koller, D., and Friedman, N. (2009). Probabilistic Graphical Models: Principles and

Techniques. Cambridge: MIT Press.

Liu, U., Gupta, H., Springer, E., and Wagener, T. (2008). Linking science with

environmental decision making: experiences from an integrated modeling

approach to supporting sustainable water resources management. Env. Model.

Sofw. 23, 846–858. doi: 10.1016/j.envsoft.2007.10.007

Liu, Y., Feng, X., Wang, Q., Zhang, H., and Wang, X. (2014). Prediction of urban

road congestion using a Bayesian network approach. Proc. Soc. Behav. Sci. 138,

671–678. doi: 10.1016/j.sbspro.2014.07.259

Mengshoel, O. J. (2010). Understanding the scalability of Bayesian network

inference using clique tree growth curves. Artif. Intell. 174, 984–1006. doi: 10.

1016/j.artint.2010.05.007

Meyer, S. R., Johnson, M. L., Lilieholm, R. J., and Cronan, C. S. (2014).

Development of a stakeholder-driven spatial modeling framework for strategic

landscape planning using Bayesian networks across two urban-rural gradients

in Maine, USA. Ecol. Model. 291, 42–57. doi: 10.1016/j.ecolmodel.2014.

06.023

Murphy, K. P. (2013). Machine Learning: A Probabilistic Perspective. Adaptive

Computation and Machine Learning Series, 4th Edn. Cambridge, MA: MIT

Press.

Murray, M. G. (2016). Partitioning ecosystems for sustainability. Ecol. Appl. 26,

624–636. doi: 10.1890/14-1156

Newlands, N. K. (2016). Future Sustainable Ecosystems: Complexity, Risk,

Uncertainty. Boca Raton, FL: Taylor & Francis (Chapman & Hall/CRC).

Applied Environmental Statistics Series.

Rozanov, J. A. (1977). Markov random fields and stochastic partial differential

equations. Math. USSR Sbornik 32, 515–534. doi: 10.1070/SM1977v032n

04ABEH002404

Simpson, D., Lindgren, F., and Rue, H. (2012). Think continuous:

Markovian Gaussian models in spatial statistics. Spatial Stat. 1, 16–29.

doi: 10.1016/j.spasta.2012.02.003

White, H., Sabarwal, S., and de Hoop, T. (2014). Randomized Controlled Trials

(RCTs). Methodological Briefs, Impact Evaluation No. 7. Florence: United

Nations Children’s Fund (UNICEF) Office of Research.

Zhang, N. L., and Poole, D. (1994). “A simple approach to Bayesian network

computations,” in Proceedings of the 10th Canadian Artificial Intelligence

Conference (AI-94) (Banff), 171–178.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Her Majesty the Queen in Right of Canada. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org 6 January 2017 | Volume 4 | Article 84

https://doi.org/10.5194/nhess-6-911-2006
https://doi.org/10.1007/s11042-012-1007-2
https://doi.org/10.1016/j.envsoft.2007.10.007
https://doi.org/10.1016/j.sbspro.2014.07.259
https://doi.org/10.1016/j.artint.2010.05.007
https://doi.org/10.1016/j.ecolmodel.2014.06.023
https://doi.org/10.1890/14-1156
https://doi.org/10.1070/SM1977v032n04ABEH002404
https://doi.org/10.1016/j.spasta.2012.02.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive

	Encoding Dependence in Bayesian Causal Networks
	Environmental Informatics
	Bayesian Causal Networks
	The Need to Encode Spatial and Temporal Dependence
	Extending the Capability and Real-World Applicability of BNs
	Temporal Dependence
	Spatial Dependence

	Concluding Remarks
	Author Contributions
	Acknowledgments
	References


