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Low precipitation enhances transmission of influenza viruses, which cause seasonal

epidemics during the winter in northern and southern hemispheres. El Niño southern

oscillation (ENSO) which modulates global precipitation is a multicomponent signal that

is composed of sub-annual to multi-decadal oscillations. The dynamics of oscillatory

components of ENSO and influenza are characterized, and causal relationship of

annual oscillatory components is determined. Seasonality of influenza was determined

in five geographical areas of north and south hemispheres. Monthly influenza time

series of these regions and of ENSO were decomposed to oscillatory components.

The oscillatory components were characterized in time-frequency and phase space

domains. Periodicities of the oscillatory components of ENSO and influenza range

from sub-annual to multidecadal. Time-dependent intrinsic correlations of instantaneous

amplitude and frequencies of annual oscillatory components of ENSO and influenza

are > 0.9. The dynamics of ENSO and influenza, which are dissipative with multifractal

chaotic attractors, transit from quasi-periodic to chaotic regimes. Five most severe

peaks of epidemic, which include 2009–2010 pandemic, occur during chaos. ENSO and

influenza dynamics are phase coherent, but there is unidirectional causal effect of ENSO

on influenza. Amplitude and frequency modulations of annual oscillatory components of

ENSO and influenza are strongly coupled. Chaotic dynamics of ENSO determines the

timing and severity of influenza epidemics. Monitoring of ENSO dynamics will aid public

health surveillance of influenza epidemics.
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INTRODUCTION

Influenza epidemics occur annually during the winter in northern and southern hemispheres
(Oluwole, 2015). Occurrence is attributed to seasonal changes in virulence, transmission, and
survival of influenza viruses, as well as seasonal changes in host immunity and behavior like
overcrowding (Furhmann, 2010). Spectra coherence of El Niño southern oscillation (ENSO) and
influenza time series (Oluwole, 2015) show, however, that climate is a major determinant of
seasonality. ENSO modulates global precipitation on multiple timescales which range from sub-
annual to multi-decadal (An and Wang, 2000), but it is the most dominant modulator of inter-
annual changes in precipitation (Liu et al., 2014). Transmission of influenza viruses in human
populations occurs via aerosols, droplets, and direct contact with infected secretions (Lindsley et al.,
2010), but aerosols is the most effective mode of transmission. Low precipitation, which increases
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the duration of suspension of aerosols in the air, has been
shown in epidemiological (Shaman et al., 2010) and experimental
(Lowen et al., 2007) studies to increase transmission of influenza
viruses.

ENSO is coupled ocean-atmosphere system in equatorial
Pacific ocean. Southern oscillation, the atmospheric component
of ENSO, is the alternating low and high sea level pressures
between the west and east equatorial Pacific ocean, which is
driven by the Walker circulation (Bjerknes, 1969). The oceanic
component is the alternating warming and cooling of sea
surface between the west and east equatorial Pacific ocean,
which is driven by easterly winds (Bjerknes, 1969). Sea surface
temperature anomaly in equatorial east Pacific Ocean ≥ 0.5 ◦C,
which lasts five consecutive overlapping 3-month periods in the
Niño 3.4 region (5◦N–5◦S, 120◦–170◦W) is defined as El Niño
(National Oceanic and Atmospheric Administration, 2015b),
while La Niña occurs when there is temperature anomaly of ≤
−0.5 ◦C for similar period. The ENSO is a non-linear, non-
stationary system that is composed of oscillatory components
with periodicities which range from less than a year to multiples
of decades (An and Jin, 2011). The annual oscillatory component
is phase-locked to seasons (Stuecker et al., 2015), just as El
Niño, which typically starts in spring and peaks in winter, is
also phase-locked to seasons (Rasmusson and Carpenter, 1982).
The quasi-periodicity or aperiodicity of El Niño events has been
attributed to chaos in ENSO dynamics (McPhaden, 1999). Chaos,
or turbulent flow (Packard et al., 1980), describes the irregular
behavior of dynamic systems that evolve in time without noise
or external stochasticity, but are sensitive to initial conditions
of the system. Study was done to characterize the dynamics
of the oscillatory components of ENSO and of influenza time
series in disparate regions of northern and southern hemispheres,
and determine if dynamic causal relationship exists between the
annual oscillatory components.

METHODS

Data
Monthly data of subjects from 15 countries, who had positive
specimens for influenza viruses from January 2000 to December
2015 were obtained from the database of the WHO Global
Influenza Programme (World Health Organization, 2015).
Monthly data of multivariate El Niño-southern Oscillation
Index (MEI) were downloaded from the website of National
Oceanic and Atmospheric Administration (National Oceanic
and Atmospheric Administration, 2015a). The MEI, which
was computed from sea-level pressure, zonal and meridional
components of the surface wind, sea surface temperature, surface
air temperature, and total cloudiness fraction of the sky of the
South Pacific Ocean (Wolter and Timlin, 1998), was used for
analysis because it provides a single index of both atmospheric
and oceanic components, rather than SouthernOscillation Index,
which measures the atmospheric component, or Sea Surface
Temperature, which measures the oceanic component.

Study Regions
Subjects were grouped into three regions in the north
hemisphere, but into two regions in the southern hemisphere.

Regional groupings, which were of contiguous countries as much
as possible are North America, which included United States
of America and Canada; Nordic/Europe, which included Spain,
Portugal, France, Germany, Denmark, Norway and Sweden; Asia,
which included China and Japan; South America, which included
Argentina and Chile; and Oceania, which included Australia
and New Zealand. Angular histograms of monthly distribution
of influenza cases were drawn to determine the seasonality of
influenza in each region of study. The Rayleigh’s test for non-
uniformity of circular distribution was performed to determine
significance.

Oscillatory Components of ENSO and
Influenza Time Series
ENSO time series has been shown to be non-linear and
(Elsner and Tsonis, 1993; Mukhin et al., 2015) and non-
stationary (Timmermann et al., 2003). Linear and stationary
methods are not appropriate to analyze time series with
non-linearities. Presence of non-linearities in atmospheric and
oceanic components was determined using the third order
moment method (Barnett, 2007). The highest p-value for
rejecting the null hypothesis of linearity and stationarity was
< 0.001. The synchrosqueezing transform (Daubechies et al.,
2011), a time-frequency reassignment algorithm, was applied to
determine the spectra of time-varying oscillatory components of
ENSO and influenza time series.

Non-linear, non-stationary signals which contain single time-
varying amplitude and phases can be modeled as s(t) =
A(t)cos

[

2πφ(t)
]

(Boashash, 1992), where A(t) is time varying
amplitudes, and φ(t) is time varying phases. Natural signals like
the ENSO, which have multiple oscillatory components, can be
modeled as sum of oscillatory components and noise, s(t) =
k

∑

k=1

A(k)cos
[

2πφ(k)
]

+ η(t). Such signals must, however, be

decomposed to monocomponents before physically meaningful
instantaneous phases (φi(t)), frequencies (Ai(t)), and amplitudes
(ωi(t)) can be generated. Empirical mode decomposition (Huang
et al., 1998) separates fast and slow oscillatory components
of non-linear and non-stationary signals into intrinsic mode
functions (IMFs), unlike harmonic analysis, which decomposes
signals into components that are integer multiples of the
fundamental frequency. To align the oscillatory components of
ENSO and influenza time series and reduce mode mixing, noise
assisted multivariate empirical mode decomposition (Rehman
and Mandic, 2010a) which applies multivariate empirical mode
decomposition algorithm (Rehman and Mandic, 2010a), was
used. The algorithm of multivariate EMD (Rehman and Mandic,
2010a) is as follows:

1. Generate pointset based on Hammersley sequence for
sampling on an (n− 1)− sphere

2. Calculate projection
{

pθk (t)
}T

t=1
, of the input signal

{

v(t)
}T

t=1

along the direction of vector xθk , for all k (the whole set of

direction vectors), giving
{

pθk (t)
}K

k=1
as the set of projections.

3. Find the time instants
{

tθk
}K

k=1
, which correspond to the

maxima of projected signals set.
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4. Interpolate
[

tθk , v(tθk )
]

for all values of k, to obtain

multivariate envelope curves
{

eθk (t)
}K

k=1
5. For a set of K direction vectors, calculate mean m(t) of the

envelope curves as

m(t) =
1

K

K
∑

k=1

eθk (t)

6. Extract detail d(t) using d(t) = x(t) − m(t). if the detail d(t)
fulfills the stoppage criterion for multivariate IMF, apply the
above procedure to d(t), otherwise apply it to x(t)− d(t).

The synchrosqueezing transform was applied to determine the
oscillatory components in each IMF. The IMFs with annual
oscillatory component were selected for further analyses to
determine time-dependent intrinsic correlations, phase space,
recurrence and joint recurrence plots, synchronization, and
direction of causality.

Time dependent intrinsic cross correlation measures the cross
correlation (TDIC) of oscillatory components of non-linear,
non-stationary time series (Chen and Huang, 2010). TDIC is a
three stage method of empirical mode decomposition, Hilbert
transform of IMFs to instantaneous amplitudes and frequencies,
and TDIC of instantaneous amplitudes and frequencies (Huang
and Schmitt, 2014). The Hilbert transform of IMF2 was done to
generate analytical signal from which instantaneous amplitude
(ωi(t)), phase (φi(t)), and frequencies (Ai(t)) were extracted
(Huang et al., 1998). TDIC of instantaneous frequencies and
amplitudes of ENSO and influenza for IMF2 were performed for
each region.

Phase Spaces of El Niño Southern
Oscillation and Influenza
The phase space of time series can be reconstructed from scalar
data using the method of delayed embedding vector coordinates,
which derives from the Taken’s theorem (Takens, 1981). Scalar
time series {xi, i = 1, 2, . . .} is converted to its vector form {Xi =
xi, xi+L, xi+2L, . . . , xi+(m−1)L}, wherem is embedding dimension,
and L is the delay or lag (Packard et al., 1980). Theoretically
the embedding dimension should be m ≥ 2⌈d⌉ + 1, where d
is the fractal dimension, and ⌈d⌉ is the lowest integer greater
than d to preserve the dynamical properties of the attractor. To
characterize the phase spaces of ENSO and of influenza in five
geographical regions, embedding dimensions m were calculated
for IMF2s using Cao’s algorithm (Cao, 1997), and lags τ were
estimated using mutual information algorithm (Martinerie et al.,
1992). The Lyapunov exponent, which measures the sensitivity
of dynamic systems to small changes in initial conditions (Wolf
et al., 1985), was used to detect the presence of chaotic attractors.

Differentiable graphs have topological dimension d, while
non-differentiable graphs have fractal dimension, which have
values between the topological dimension d and d + 1 (Gneiting
et al., 2012). Fractal time series, which are not differentiable,
can be characterized using the Hurst exponent (H), which
measures long range dependence or memory. Hurst exponent,
which is expressed as x(t) = aHx(at), is related to fractal
dimension D as D = 2 − H (Mandelbroit and van Ness,

1968). While the Hurst exponent of monofractal time series is
independent of time and space, multifractal time series have time
varying Hurst exponents (Ihlen, 2012). Detrended fluctuation
analysis (DFA) algorithm estimates Hurst exponent of long-range
temporal correlations, while multifractal detrended fluctuation
analysis (Kantelhardt et al., 2002) detects multiple scaling of
fractal time series. To characterize the geometry of ENSO and
influenza attractors, multifractal detrended fluctuation analysis
(Ihlen, 2012) of annual oscillatory components of ENSO and
influenza in five geographical regions were performed.

Recurrence of ENSO and Influenza
Trajectories
The recurrence plot of dynamic systems is generated from
recurrence matrix, which is defined as Ri,j(ǫ) = 2(ǫ − ‖Exi −
Exj‖), i, j = 1, . . . ,N, where N is the number of measured points
Exi, ǫ is the threshold distance, 2(.) is the Heaviside function,
and ‖·‖ is the norm (Marwan et al., 2007). When a trajectory in
phase space, Exi

N
i=1, visits a state Exi ≈ Exj the recurrence Ri,j is 1,

but when the trajectory visits a state Exi 6≈ Exj the recurrence Ri,j

is 0. Since trajectories do not return to exact regions of phase
space Exi Exj, the threshold ǫ defines the region of phase that is
the neighborhood (Marwan et al., 2007). Recurrence plots were
produced to characterize the recurrence of annual oscillatory
components of ENSO and influenza.

Chaos-periodic and periodic-chaos transitions of non-linear
dynamics systems have been detected using metrics of recurrence
quantification analysis, which are computed for windows or sub-
matrices along the line of identity of recurrence plots (Marwan,
2011). These metrics, which complement visual interpretation
of recurrence plots, are measures of complexities that are
derived from diagonal and vertical structures of recurrence
plots (Marwan et al., 2002, 2007). Determinism (DET), which
is the ratio of recurrence points that form diagonal lines of
at least lmin and all recurrence plots, and divergence (DIV),
which is the inverse of the longest diagonal line Lmax (Marwan,
2011) are metrics of diagonal structures, which show maximal
values at periodic-chaos and chaos-periodic transitions (Marwan
et al., 2007; Marwan, 2011). To characterize the regimes in
ENSO and influenza dynamics, divergence and determinism
were calculated for window sizes of 36 months, which is
approximately the median period of recurrence of El Niño
events. To determine the statistical significance of the metrics,
the distributions of determinism and divergence for 5,000
surrogate time series of influenza and ENSO were determined
and compared with the distribution of 5,000 bootstrap samples
of determinism and divergence of annual oscillatory components
of influenza and ENSO. Each geographical region was tested
separately.

Joint recurrence plots were computed to compared
recurrences of ENSO and influenza in phase space. Metrics
of network analysis, which maps time series to networks
with distinct topological characteristics (Campanharo et al.,
2011), have been used to detect the presence of regimes in
dynamic systems. These metrics are computed from adjacency
matrix, which is defined as Apq(ǫ) = Rpq(ǫ) − δpq, and has
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correspondence to the recurrence matrix. Global clustering
coefficient (C), which is the mean of the local clustering
coefficient of all vertices, and average path length (L), which is
the mean geodesic distance between all pairs of vertices where
paths exist (Donner et al., 2011; Zou et al., 2012), are network
metrics that have been used to detect the presence of regimes
and transitions from periodic to chaotic regimes and vice versa.
To characterize the regimes in joint recurrence of ENSO and
influenza using geometrical properties, global clustering and
average path lengths were calculated for 36 months windows
of joint recurrence networks of annual oscillatory components
of ENSO and influenza. To determine statistical significance
of the network metrics, the distribution of average path length
and global clustering of joint recurrence network of 5,000
surrogate time series of ENSO and influenza were compared
with 5,000 bootstrap samples of joint recurrence network of
annual oscillatory components of ENSO and influenza. To
determine the effect of chaos on severity of influenza epidemics,
the five most severe peaks of influenza epidemics between
2000 and 2015 were mapped to joint recurrence network
of annual oscillatory components of ENSO and influenza,
Figure 4.

Synchronization of ENSO and Influenza
Trajectories
The phase space of periodic trajectories increases by 2π for each
rotation, or ‖x(t+T)−x(t)‖ = 0, where T is the period (Romano
et al., 2005). Although chaotic trajectories shift between unstable
periodic orbits, recurrence occurs when each unstable periodic
orbit is completed, which is an increment of 2π (Boccaletti et al.,
2002). The unstable periodic orbits of chaotic trajectories are
locked when they are in phase synchrony, which implies ni : mi

relationship of their recurrence plot phases, where i is time index
(Romano et al., 2005). The statistical measure is how often φ1

and φ2 increase by 2π or its multiples within time interval
τ (Romano et al., 2005). Phases of recurrence plot of chaotic
trajectories, therefore, increase by 2πk within time interval τ .
Phase synchrony is measured by comparing the probability
P(ǫ)(τ ) that the trajectory returns to ǫ-neighborhood of a
previous point on the trajectory. The cross correlation between
P1(τ ) and P2(τ ) is defined as CPR = 〈P̄1(τ )P̄2(τ )〉/(σ1σ2).
When the trajectories are in phase synchrony the probability
of recurrence are maximal at the same time, and CPR ≈
1. To determine if the trajectories of ENSO and influenza
are synchronized, the CPR index was calculated for the five
regions.

Two dynamic systems are topologically equivalent or
homeomorphic, if there is a function that maps every point on
one trajectory with the other. If time series x(t) and y(t) are from
the same n-dimensional manifold, there will be correspondence
between their reconstructed manifold Mx and My (Deyle and
Sugihara, 2011). Causal relationship can be unidirectional x(t) →
y(t) or bidirectional x(t) ↔ y(t). To determine if there
is causal relationship between the dynamics of ENSO and
influenza, annual oscillatory components of influenza in five
geographical areas were cross mapped with annual oscillatory
components of ENSO using convergent cross mapping algorithm
(Sugihara et al., 2012).

Scripts, Programming and Statistical
Packages
Matlab scripts, which contained relevant algorithms, were used
to test for non-linearities in time series (Barnett, 2007), for noise
assisted multivariate empirical mode decomposition (Rehman
and Mandic, 2010b), for time-dependent intrinsic correlation
(Chen and Huang, 2010), to generate surrogate time series
(Leontitsis, 2004), and for multifractal detrended fluctuation
analysis (Ihlen, 2012). All Matlab scripts were implemented in
Matlab-Octave programming language.

Lyapunov spectrum, lag, embedding dimension, Takens, and
phase space plots were implemented in the non-linearTseries
package of R Statistical Programming and Environment, Austria,
version 3.2.2, 2015 (R Core Team, 2016). Embedding dimensions
m were calculated for IMF2s using Cao’s algorithm (Cao, 1997),
and lags τ were estimated using mutual information algorithm
(Martinerie et al., 1992), both implemented in non-linearTseries
package of R Statistical Programming and Environment, Austria,
version 3.2.2, 2015 (R Core Team, 2016). Python programming
language pyunicorn package was used to generate matrices of
recurrence plots and networks, while its astropy package was
used for bootstrap statistics. Python seaborn and matplotlib
packages were used to produce distributions, time series, and
angular histogram plots. Calculations of CPR index to determine
synchronization of dynamics were performed as described in
publication (Romano et al., 2005).

RESULTS

Seasonality of Influenza Epidemics and El
Niños
Regions of northern and southern hemispheres in the study
are shown in Figure 1. Monthly time series of influenza
in the five regions show consistent seasonal peaks, but
multiple peaks occurred during the 2009–2010 pandemic
in northern hemisphere regions (Figures 2A–E). Seasonal
epidemics occurred from October to March in North America,
October to April in Nordic/Europe, December to March in Asia,
which range from middle of fall to middle of spring of northern
hemisphere, but from May to November in South America,
and June to October in Oceania, which range from late fall
to middle of spring of southern hemisphere (Figures 3A–D).
Seasonal epidemics peaked in January in North America and
Asia, February in Nordic/Europe, July in South America, and
August in Oceania, during the winter of both hemispheres
(Figures 3A–D). The Rayleigh’s test for non-uniformity of
circular distribution was statistically significant at p < 0.0001
for all the regions. Of five El Niños which occurred in 2002–
2003, 2004–2005, 2006–2007, 2009–2010, and 2015–2016, onsets
of three were in summer, one in spring, and one in fall. The peaks
of three were in winter (December), and two in fall (October and
November).

Oscillatory Components of ENSO and
Influenza Time Series
The time series of ENSO and influenza of all regions
show statistically significant non-linearities, p < 0.001.
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FIGURE 1 | Map of study regions.

FIGURE 2 | Time series of influenza and ENSO. (A) North America. (B) Nordic/Europe. (C) Asia. (D) South America. (E) Oceania.

Synchrosqueezing transform of ENSO shows that time-varying
oscillatory components with periodicities from less than a year
to multi-decadal are present in the spectra, (Figures 4A–F).
Influenza time series in North America, Nordic/Europe,
Asia, South America, and Oceania also shows spectra of
time-varying oscillations with periodicities from less than a

year to multidecadal. Time-varying spectral of influenza time
series showed concentration of power predominantly at 1.0
year periodicity in all regions except Asia, which has power
concentrated at multiple periodicities.

Figures 5A–I shows intrinsic mode functions 2–4 for
Asia, Oceania, and South America regions. Synchrosqueezing
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transform of intrinsic mode functions showed that the second
intrinsic mode function (IMF2) is the annual oscillatory
component. TDIC of instantaneous frequencies of ENSO and
influenza in five regions show correlations > 0.9 for all windows,
(Figures 6A–D). Similarly, time dependent intrinsic correlation
of instantaneous amplitudes of ENSO and influenza show
correlations > 0.9 for all windows, (Figures 7A–D)

FIGURE 3 | Angular histograms of monthly influenza occurrence. (A,B)

Northern hemisphere. (C,D) Southern hemisphere.

Phase Spaces of El Niño Southern
Oscillation and Influenza
Phase spaces of all oscillatory components of ENSO and
influenza time series show dissipative dynamics, (Figures 8A–I).
The trajectories of oscillatory components of ENSO and
influenza graphically appear to run in the same manifold.
The maximum Lyapunov exponents of annual oscillatory
components of ENSO, and of influenza in all five regions
are positive. Hurst spectra of multifractal detrended
fluctuation analysis show that annual oscillatory components
of ENSO and influenza in five regions of the study are
multifractals.

Short diagonal lines in the recurrence plots of ENSO is typical
of chaotic dynamics (Figure 9E). Recurrence plots of influenza
in the five regions also show line structures typical of chaotic
dynamics, (Figures 9A–D). The line structure of both dynamics,
however, suggest presence of quasi-periodic and chaotic regimes.
Peaks and troughs of divergence and determinism confirm
the presence of regimes and transitions in both dynamics
(Figures 9F–J). The bootstrap distributions of determinism and
divergence for surrogate time series, influenza, and ENSO show
that determinism and divergence of ENSO and influenza are
highly statistically significantly different from surrogate data, p<

0.0001.
Joint recurrence plot of ENSO and influenza show line

structures similar to the recurrence plots of ENSO and influenza,
(Figures 10A–E). Global clustering coefficient, and average path
length confirm the presence of quasi-periodic and chaotic
regimes (Figures 11F–J). Bootstrap statistics shows statistically
significant difference in global clustering coefficient and average
path length of quasi-periodic and chaotic regimes, p < 0.0001.

FIGURE 4 | Spectra of ENSO and influenza oscillatory components. (A) El Niño Southern Oscillation. (B) North America Influenza. (C) Nordic/Europe Influenza.

(D) Asia Influenza. (E) South America Influenza. (F) Oceania Influenza.
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FIGURE 5 | Intrinsic mode functions. (A–C) Asia. (D–F) Oceania. (G–I) South America.

Synchronization of ENSO and Influenza
Trajectories
CPR index peaked during the quasi-periodic regime in all five
regions, but reached lowest values before 2012 in northern
and southern America, but after 2012 in Europe, Asia, and
Oceania, (Figures 11A–E). There is highly statistical significance
difference of CPR index of ENSO and influenza compared
with 5,000 samples of their surrogate time series (p < 0.0001),
(Figures 11F–J).

The signature of annual oscillatory component of ENSO on
influenza in North America is statistically significant, but not
vice versa (Figure 12A). Convergence, which is improvement of
cross-mapped estimates as the length of time series increases is
present. Statistically significant signature of annual oscillatory
component of ENSO in influenza is also present in South
America, Europe, Asia, and Oceania (Figures 12B–E).

Chaos and Severity of Epidemics
The five highest peaks of influenza epidemics occurred during
chaotic regimes in all regions of the study. Of the five highest
peaks two occurred during the 2009–2010 influenza pandemic in
North America, South America, and Oceania, but one in Europe

and four in Asia, (Figures 10A–E). There is highly statistical
significant difference between the bootstrap distributions of 5,000
bootstrap samples of average path length and global clustering
of windows, which contained the five highest influenza peaks
compared with the remaining windows, (p < 0.0001).

DISCUSSION

Circular statistics of monthly distribution of influenza cases,
which show strong seasonality of influenza epidemics in
five disparate regions of northern and southern hemispheres,
indicate coupling of the epidemics to climate (Figures 1,
3A–D). Although influenza epidemics peak during the winter,
the period of increase occurrence of influenza range from
October to April in northern hemisphere and from May to
November in the southern hemisphere, which is fall to spring
in both hemispheres. This indicates that influenza epidemics
occur during the same phases of seasons in both hemispheres.
Monthly time series of influenza in disparate regions of northern
and southern hemispheres, which show time-varying peaks,
indicate inter-annual changes in severity of seasonal influenza
epidemics (Figures 1, 2A–E). Multiple peaks which occur during
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FIGURE 6 | Time dependent intrinsic correlations of ENSO and influenza frequencies. (A,B) Northern hemisphere. (C,D) Southern hemisphere.

the pandemic of 2009–2010 in northern hemisphere regions,
however, indicate frequency modulation during pandemics
(Figures 2A–E). Multiple seasonal peaks of influenza occurrence,
which correlated with the waveforms of ENSO, have been
observed during all influenza pandemics since 1918 (Oluwole,
2016). El Niño typically starts in spring (Philander, 1985) and
peaks in winter (Sheinbaum, 2003; Caviedes, 2007). Occurrence
of El Niños from 2000 to 2015, with onsets in spring or summer
and peaks in fall or winter, is also strongly coupled to seasons.
Thus, El Niño events and influenza epidemics are coupled to
similar phases of season cycles.

Oscillatory Components of ENSO and
Influenza Time Series
The power spectra of ENSO of the past 21,000 years, which was
derived from paleoclimate data, showed presence of oscillatory
components from sub-annual to 64 years periodicities (Liu
et al., 2014). The synchrosqeezing spectra show that ENSO
is composed of time-varying sub-annual, annual, decadal, and
multidecadal oscillations (Figures 4A–F). The periodicities of
the oscillatory components are consistent with the multiple
timescales that ENSO modulates the climate. Influenza time
series of northern and southern hemisphere regions, which
also show sub-annual, annual, decadal, and multi-decadal
oscillations, indicate that influenza time series have oscillatory

components of similar periodicities to ENSO (Figures 4A–F).
Although the power of ENSO spectra is strong in multiple
bandwidths from sub-annual to multi-decadal periodicities,
that of influenza is strong in the bandwidth about 1 year
periodicity except for Asia region, which has strong sub-annual
to multi-decadal oscillatory components (Figures 4A–F). Thus,
both ENSO and influenza are multicomponent systems with
oscillations of similar periodicities.

Annual warming of equatorial east Pacific ocean during
Christmas was documented in a lecture in 1895 (Cane, 1986),
but references to this phenomenon, which lasts about 2 months,
were made by Peruvian fishermen in the 18th century (Julian
and Chervin, 1978). The annual oscillatory cycle of ENSO, which
is tightly coupled to season cycles, has strong impact on global
precipitation (Kessler et al., 1998; Stuecker et al., 2015). Very
strong time dependent intrinsic correlations of instantaneous
frequencies and amplitudes of annual oscillatory cycles of ENSO
and influenza indicate that frequencies and amplitudes of both
oscillations are coupled (Figures 6A–D, 7A–D). The ENSO,
which is amplitude and frequency modulated (An and Wang,
2000; An and Jin, 2011), had periodicity of 3–4 years for El
Niño events between 1872 and 1910, 5–7 years between 1911 and
1960, and 5 years between 1970 and 1972 (Torrence and Compo,
1998; Torrence and Webster, 1999). Thus, strong coupling of
amplitude and frequency modulations of irregular ENSO with
influenza indicate functional relationship.
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FIGURE 7 | Time dependent intrinsic correlations of ENSO and influenza amplitudes. (A,B) Northern hemisphere. (C,D) Southern hemisphere.

Phase Spaces of El Niño Southern
Oscillation and Influenza
Models of ENSO dynamics which predicted chaos include
discharge-recharge oscillator (Jin, 1997), delayed oscillator
(Battisti and Hirst, 1989), and linear annual subharmonic steps
to chaos (Jin et al., 1994). In this study, however, ENSO dynamics
was reconstructed from phase space embedding, which is derived
from Taken’s theorem (Takens, 1981), (Figures 8A–I). The phase
space, state or vector space, of deterministic dynamic systems are
usually defined by a set of first-order differential equations, which
ensures uniqueness of the trajectories (Kantz and Schreiber,
2003). Every point in the phase space, which recovers the
topology and preserves the properties or behavior of the dynamic
system (Packard et al., 1980), specifies the state of the system
(Kantz and Schreiber, 2003). Differential equations are, however,
not available for ENSO and influenza, which are time series
of scalar values. While the phase space volume of conservative
dynamics system is preserved as time evolves, that of dissipative
dynamic system contracts as time evolves t → ∞ (Grebogi et al.,
1987). Figures 8A–I, which show that the phase space volumes
of all oscillatory components of ENSO and influenza contract,
indicate dissipative dynamics of both systems.

Trajectories of dissipative systems return to a region of phase
space called attractor as time t → ∞. The geometry of phase
space attractors characterizes dynamic systems. Phase space
attractors with Euclidean geometry like fixed point, limit cycle,
or torus are simple, while phase space attractors with fractal

geometry are chaotic (Ruelle and Takens, 1971). Fractals are
geometrical objects that have non-integer dimensions, which
exceed their topological dimensions. This implies they are not
locally linear when dilated or contracted, nor differentiable at
all scales (Mandelbroit, 1989). The Lyapunov exponent, which
measures the sensitivity of dynamic systems to small changes
in initial conditions or the average rate of divergence of close
trajectories (Wolf et al., 1985), is an indicator of the presence of
chaos. A dynamic system is chaotic if the maximum Lyapunov
exponent (λ) is > 0. Since the maximum Lyapunov exponents
of annual oscillatory components of ENSO and influenza are
positive, the attractors of both dynamics have fractal dimensions,
which indicate chaos. Thus, the dynamics of annual oscillatory
components of ENSO and influenza are chaotic as predicted by
theoretical models (Vallis, 1986; Thornley and France, 2012).

Correlation dimension of 3.5 for sea surface temperature

(SST) of east Pacific ocean (Tziperman et al., 1994) showed
that ENSO has fractal geometry. Scale invariance of multivariate

El Niño Index (MEI) between 1950 and 2008 (Mazzarella and
Giuliacci, 2009), and detrended fluctuation analysis of southern

oscillation index (SOI) between 1866 and 2000 also showed that

ENSO is fractal (Ausloos and Ivanova, 2001). Similarity of ENSO
waveforms during five influenza pandemics from 1876 to 2015,

which suggests scale invariance (Oluwole, 2016), is indicative
of fractal time series (van Rooij et al., 2013). While chaotic

trajectories have fractal geometry, not all fractals are self-similar

under magnification (Mandelbroit, 1989). Fractal time series,

Frontiers in Environmental Science | www.frontiersin.org 9 March 2017 | Volume 5 | Article 8

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Oluwole Chaos, Enso, Seasonal Influenza

FIGURE 8 | Phase space portraits of oscillatory components. (A–C) South America. (D–F) Asia. (G–I) Oceania.

which do not have the same reduction ratio of shape at all

scales (Mandelbroit, 1989), are multifractals. Multifractality of
the annual oscillatory components of ENSO and influenza of five

regions of the study indicate statistical self-similarity, which is

typical of natural fractals.

Recurrence of ENSO and Influenza
Trajectories
Recurrence, which describes the return of trajectories to
regions of phase space that have been previously visited,

is characteristic of dynamic systems (Kantz and Schreiber,
2003). Poincaré recurrence theorem states that trajectories of
dynamic systems return to states that are close to the initial
state as time evolves sufficiently long (Kantz and Schreiber,
2003). The recurrence plot is a graphical tool to display
the pattern of recurrence of dynamic systems (Eckmann
et al., 1987). Its line structures reveal the dynamics of
trajectories in phase space (Eckmann et al., 1987). Periodic
dynamics show long uninterrupted diagonal lines in recurrence
plots, while chaotic dynamics like the Lorenz system show
short diagonal lines (Gao and Cai, 2000). There are no
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FIGURE 9 | Recurrence plots of influenza and ENSO annual oscillatory components. (A) North America. Arrow heads indicate time of occurrence of five

highest peaks of influenza occurrence. Red arrow heads indicate high peaks during influenza pandemic of 2009–2010, while brown arrow head indicate seasonal

influenza epidemics. (B) South America. (C) Asia. (D) Oceania. (E) ENSO. (F–J) DET is determinism, and DIV is divergence.

FIGURE 10 | Joint recurrence of ENSO and influenza. (A) North America. Arrow heads indicate time of occurrence of five highest peaks of influenza occurrence.

Red arrow heads indicate high peaks during influenza pandemic of 2009–2010, while brown arrow head indicate seasonal influenza epidemics. (B) South America.

(C) Nordic/Europe. (D) Asia. (E) Oceania. (F–J) Clust is global clustering, and Path is average path length.

uninterrupted diagonal lines in the recurrence plot of annual
oscillatory component of ENSO, but periods of relatively
long and short diagonal lines which resemble recurrence
plots of theoretical chaotic dynamics like Lorenz and Rössler
systems (Figure 9E). The recurrence plots of annual oscillatory
components of influenza in five regions of the study have
line structures similar to that of ENSO (Figures 9A–D).
Thus, recurrence of annual oscillatory components of ENSO

and influenza show chaotic dynamics, but regimes are not
homogeneous.

Chaotic regimes of dynamic system can be preceded by

period doubling, intermittency, crisis, and Ruelle-Takens, which
describe changes of attractors from simple to chaotic (Argyris
et al., 1993). The dynamics of climate data has been shown
to have periodic, quasi-periodic, and chaotic regimes (Donges

et al., 2011). Periodic or quasi-periodic regimes that have long

diagonal lines, which are described as unstable periodic orbits,
are present in chaotic systems like the Lorenz and Rössler system

(Marwan et al., 2007). Quasi-periodic regimes preceded chaos

in theoretical models of ENSO which included season cycles
(Tziperman et al., 1994). Determinism (DET), which is the ratio
of recurrence points that form diagonal lines of at least lmin

and all recurrence plots, and divergence (DIV), which is the
inverse of the longest diagonal line Lmax (Marwan, 2011) are
metrics of diagonal structures, which show maximal values at
periodic-chaos and chaos-periodic transitions (Marwan et al.,
2007; Marwan, 2011). Peaks of divergence and determinism
confirm the presence of regimes and transitions in the dynamics
of ENSO and influenza (Figures 9F–J). The highly statistically
significant difference between the distributions of determinism
and divergence of ENSO and influenza and their surrogate time
series indicate these observations are not random. Thus, the
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FIGURE 11 | Phase synchronization of ENSO and influenza. (A) North America. (B) South America. (C) Nordic/Europe. (D) Asia. (E) Oceania. (F–J) Distributions

of CPR index of ENSO and influenza with Null data in.

FIGURE 12 | Convergent cross mapping of influenza and ENSO annual oscillatory components. (A) North America. (B) Nordic/Europe. (C) Asia. (D) South

America. (E) Oceania.

annual oscillatory components of ENSO and influenza follow

quasi-periodic route to chaos.
Joint recurrence plot assesses the probability that similar

points in phase space are visited by two chaotic dynamics, which
are from physically different time series (Marwan et al., 2007).

Figures 10A–E, which shows that joint recurrence plots of ENSO

and influenza in five regions have similar line structures as
recurrence plots of ENSO and influenza, indicate that the phase
spaces of both systems are similar. Global clustering and average

path length, which are metrics of network analysis, have been
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used to detect transitions in chaotic dynamics (Donner et al.,
2011; Zou et al., 2012). Global clustering coefficient (C) is the
mean of the local clustering coefficient of all vertices, while

average path length (L) is the mean geodesic distance between
all pairs of vertices where paths exist (Donner et al., 2011; Zou
et al., 2012). Global clustering coefficient is high during unstable
periodic orbits, while the average path length is high during

chaotic regimes. These metrics indicate that quasi-periodic and
chaotic transitions are also present in joint recurrence of ENSO
and influenza (Figures 10F–J). The highly statistically significant
differences between the distributions of global clustering and
average path length metrics of ENSO and influenza compared
with surrogate time series indicate that the observations are not
random. Thus, the trajectories of annual oscillatory components
of ENSO and influenza run in similar geometrical phase space.

Severity of seasonal influenza epidemics vary interannually
frommild to severe (Doshi, 2008; Frieden et al., 2010) even when
the circulating influenza virus strains are unchanged. Seasonal
influenza epidemics in the USA was moderately severe in 2003–
2004 and 2007–2008, moderate in 2002–2003, but mild in 2011–
2012 (Bresee and Hayden, 2013). The virulent H3N2 influenza
virus, which circulated during the moderately severe seasons
of 2007–2008 and the mild season of 2011–2012 (Bresee and
Hayden, 2013), show that virulence is not the only determinant
of severity. Five most severe peaks of influenza epidemics which
map to chaotic regime of ENSO and influenza joint recurrence
indicate that the most severe influenza epidemics occur during
chaos (Figures 10A–E). Thus, chaotic regime has greater
impact on seasonal influenza epidemics than quasi-periodic
regimes.

Synchronization of ENSO and Influenza
Dynamics
Synchronization occurs when oscillating systems adjust to
a common rhythm due to coupling (Pikovsky et al., 2001).
Although two chaotic oscillators with similar initial conditions
diverge exponentially and become uncorrelated, chaotic
dynamics like Lorenz and Rössler systems have been shown
to adjust to common rhythm. Synchronization of chaotic
oscillators occurs when a property of their motion, like phase
or amplitude, adjusts to common behavior due to coupling
or forcing such that their trajectories evolve in a common
phase (Boccaletti et al., 2002). The cross correlation index
(CPR), which compares the probability P(ǫ)(τ ) that the
trajectory returns to ǫ-neighborhood of a previous point on
the trajectory, shows that the annual oscillatory components
of ENSO and influenza are phase coherent during quasi-
periodic and chaotic regimes in five regions in northern
and southern hemispheres (Figures 11F–J). The highly
statistically significant differences between the distributions
CPR index compared with null values indicate that the
observations are not random . Thus, ENSO and influenza
dynamics are phase coherent in northern and southern
hemispheres.

Synchronization is unidirectional, when one oscillator drives
the other, but bidirectional when both oscillators adjust to

a common manifold (Pikovsky et al., 2001). The concept of
temporal precedence of time series was developed by Wiener,
who proposed in 1956 that if prediction of a time series X
by its past values is improved by the past values of another
time series Y , then time series Y has causal influence on
time series X (Wiener, 1956). Granger’s formulation of this
concept as autoregression models led to the Wiener-Granger
causality (Granger, 1969). The trajectories of causally related
dynamic systems share the same attractor manifold (Deyle
and Sugihara, 2011). If time series x(t) causally influences
time series y(t), the signature of x(t) exists in y(t) (Sugihara
et al., 2012). Historical values of y(t) can, therefore, be
used to estimate x(t). Convergent cross mapping compares
the coordinates of reconstructed manifolds Mx and My for
correspondence to determine if signature of x(t) exists in
y(t) (Sugihara et al., 2012). If the average correlation between
x(t) and its estimated values x(t) is high, it is concluded
that there is sufficient information of x(t) in y(t) (Sugihara
et al., 2012). Wiener-Granger causality, which is applicable
to dynamic systems that are separable and have non-zero
entropy rate is, therefore, not applicable to coupled non-
linear dynamic systems, which contain information about each
other and are not separable. Comparison of the reconstructed
manifolds of annual oscillatory components of ENSO and
influenza in North America region, which show statistically
significant signature of ENSO in influenza but not vice versa,
indicate unidirectional causal effect of ENSO on influenza
(Figure 12A). Convergence, a necessary condition for causation
(Sugihara et al., 2012), is fulfilled by the improved cross-mapped
estimates as the length of time series increased (Figure 12A).
Statistically significant signature of annual oscillatory component
of ENSO in influenza, which is also present in South America,
Europe, Asia, and Oceania regions, indicate that ENSO
has unidirectional dynamic causal relationship with influenza
in disparate regions of northern and southern hemispheres
(Figures 12B–E). Thus, seasonality of influenza epidemics
is driven by the dynamics of ENSO, although biological
causation is due to viruses, while impaired immunity and
overcrowding, which are contributory causes, are also induced
by climate.

CONCLUSIONS

Influenza epidemics, which occur from fall to spring, but peak
during the winter in disparate regions of northern and southern
hemispheres, indicate strong coupling of occurrence to season
cycles. The periodicities of fast and slow oscillatory components
of ENSO is in keeping with the multiple timescales that ENSO
modulates climate. Similarity of the periodicities of oscillatory
components of ENSO and influenza oscillatory components
indicate comparable dynamics of both systems. Strong coupling
of instantaneous amplitudes and frequencies of ENSO and
influenza annual oscillatory components indicate coherence of
amplitude and frequency modulations.

Dissipative dynamics of ENSO and influenza, which have
multifractal chaotic attractors, explain the irregularity of El
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Niño events and inter-annual variations of severity of influenza
epidemics. Line structures of ENSO and influenza recurrence is
similar to those of chaos models. There is phase coherence of
ENSO and influenza trajectories, but ENSO has unidirectional
dynamic causality relationship with influenza. Severity of
influenza epidemic is higher during chaotic than quasi-periodic
regimes. Currently surveillance for novel strains of influenza
viruses is the main paradigm of public health strategy to
control seasonal epidemics. Since circulating virulent strains
do not always cause severe seasonal epidemics, monitoring
the dynamics of ENSO, the main environmental determinant
of seasonal changes in occurrence, should increase accuracy
forecasts.
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