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Remote sensing by Unmanned Aerial Systems (UAS) is a dynamic evolving technology.

UAS are particularly useful in environmental monitoring and management because they

have the capability to provide data at high temporal and spatial resolutions. Moreover,

data acquisition costs are lower than those of conventional methods such as extensive

ground sampling, manned airplanes, or satellites. Small fixed-wing UAS in particular

offer further potential benefits as they extend the operational coverage of the area

under study at lower operator risks and accelerate data deployment times. Taking

these aspects into account, UAS might be an effective tool to support management

of invasive plant based on early detection and regular monitoring. A straightforward UAS

approach to map invasive plant species is presented in this study with the intention

of providing ready-to-use field maps essential for action-oriented management. Our

UAS utilizes low-cost sensors, free-of-charge software for mission planning and an

affordable, commercial aerial platform to reduce operational costs, reducing expenses

with personnel while increasing overall efficiency. We illustrate our approach using

a real example of invasion by Acacia mangium in a Brazilian Savanna ecosystem.

A. mangium was correctly identified with an overall accuracy of 82.7% from the analysis

of imagery. This approach provides land management authorities and practitioners with

new prospects for environmental restoration in areas where invasive plant species are

present.
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INTRODUCTION

Biological invasions by plant species increased rapidly since the past century, with major impacts
on nature, landscapes, and human health, which carries high economic and ecological costs
throughout the globe (Mack et al., 2000; Vilà et al., 2011). Invasive trees and shrubs have
been recognized to be among the most problematic invaders (Richardson and Rejmánek, 2011;
Richardson et al., 2014). They can alter ecosystem structure and functioning, and intensively
compete with native species for space, resources, and light. Nature conservation as well as land-
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based industries, such as agriculture and forestry, are negatively
affected by non-native tree and shrub invasions (Pimentel, 2002;
Bellard et al., 2016). Consequently, rapid and cost-efficient
management solutions are in high demand by land managers
across the world. Successful control or eradication depend on
the availability of precise distribution data (e.g., field maps) of
invasive plants in management areas. The earlier the populations
of an invasive plant are detected at initial stages of invasion, the
higher the cost-efficiency and probability of success (Rejmánek,
2000). However, fine-scale field maps requiring regular updates
generate high personnel, data, and software costs that often
hinder invasive species management efforts (Spring et al., 2017).

Several studies addressing the management of invasive plant
species demonstrate the great potential of remote sensing
techniques for detecting, mapping and predicting the spatial
spread of plant invaders, in particular when using multispectral
or hyperspectral sensors (Huang and Asner, 2009; He et al., 2011;
Bradley, 2014). Early detection and monitoring of invading plant
species using satellite or airborne imagery can provide a valuable
basis for control efforts at both the local and landscape level
(Bradley and Mustard, 2006; Vilà and Ibáñez, 2011). However,
the precise mapping of invasive trees and shrubs, especially
of small individuals such as seedling and saplings, is still a
challenge. For example, the spatial resolution of satellite-based
imagery is often not high enough to facilitate detection of
isolated individuals or even small populations. In contrast, the
spatial resolution of aerial images collected by conventional
aircrafts may well be sufficient, but customized aerial image
flights are expensive and, therefore, not economically viable for
most invasive species management practitioners, especially when
high repetition rates are required.

Unmanned Aerial Systems (UAS), popularly known as drones,
introduce a new remote sensing technique that may become an
applicable and affordable alternative to conventional approaches,
as they reduce costs and increase the spatial resolution of
aerial images (Wan et al., 2014; Dvořák et al., 2015; Chabot
et al., 2016; Hill et al., 2016; Müllerová et al., 2016, 2017).
The technical development, component miniaturization, and
increased sales in recent years resulted in the rapid growth of
UAS as an environmental remote-sensing platform. By contrast,
conventional acquisition of aerial images by airplanes is usually
more elaborate and expensive, requires more operating personnel
and detailed long-term scheduling. Consequently, its use is
mostly restricted to surveys that need to cover large areas (50–
100 km2) with low temporal repetition rates. However, for
environmental monitoring issues, especially focusing on small
or mid-sized areas with a certain need for higher coverage
rates, UAS technologies are far more economical, flexible, and
faster, while requiring only one or two persons to conduct the
survey, which involves image acquisition in the field following
set up of the particular mission according to specific needs
(Anderson and Gaston, 2013; Colomina and Molina, 2014).
Since the technical preparation and launch of a UAS mission
can usually be completed in less than 1 h, even small time
windows are enough for the acquisition of high-resolution image
data to detect invasive plants or monitor their spread over
time.

Small model aircrafts, also called fixed-wing UAS, as an
alternative to widely used multirotor drones, have proved
successful as an environmental remote sensing platform
(Laliberte et al., 2011; Anderson and Gaston, 2013; Colomina and
Molina, 2014; Müllerová et al., 2017). Due to the uplift generated
by airflow over the wings and more efficient aerodynamics,
these platforms provide the advantage of longer flight times
at higher speeds and greater payloads and, thus, can cover
larger survey areas per flight compared to multirotor UAS.
Moreover, the simple structure and control electronics are
less susceptible to daily usage, reducing maintenance efforts
and repair costs. Several companies (e.g., senseFly, QuestUAV,
Gatewing, Trimble) offer ready-to-fly fixed-wing UAS (including
full autopilot control and camera sensors) which fulfill the criteria
for practical applications in environmental management.

However, the number of known practical applications of UAS
by land managers is still relatively low. The main reasons for
this may be the high acquisition costs of professional fixed-
wing UAS, technical complexities, or missing skills in operating
such systems. Additionally, necessary expert knowledge in
image processing and analysis is often lacking, and commercial
Geographic Information Systems (GIS) and remote sensing
software are expensive. As a consequence, interpretation of aerial
photography within the field of invasive species management is
still often limited to time-consuming visual image interpretation.
These circumstances might discourage responsible managers
from using present UAS-based remote sensing methods in their
daily work routines.

The idea behind the work described in this paper is to
encourage land managers to use UAS to map and monitor
invasive plant species for eradication and control purposes. A
straightforward, low-cost UAS-based approach (total hardware
costs less than 2,000 US dollars) that provides field maps for
invasive species management based on easy to handle, affordable
equipment and open-source software is presented. Although
this approach does not take varying costs into account (such
as man/hour, perhaps depending on wage-level and skills), it
can be applied by personnel with only basic prior knowledge
of image processing and GIS. Besides data acquisition itself, we
present the steps of data processing and image analysis using
free, open-source image analysis and GIS software, and provide
a concise workflow scheme. Moreover, we highlight the vast
potential of UAS-acquired remote sensing products to support
environmental monitoring and mapping of invasive species.

An example of Acacia mangium (Willd.) invasion in a
savanna-type ecosystem, called Mussununga, in the Brazilian
Atlantic Forest domain is used to illustrate our approach.
A. mangium is one of the most aggressive invasive plant species
in open ecosystems in southeastern and northern Brazil, with
substantial negative effects on conservation, agriculture, forestry,
and land reclamation (Aguiar et al., 2014; The Horus Institute
National Database of Invasive Alien Species Brazil, 2017). In
this study, we operated a small fixed-wing UAS equipped with
two types of camera sensors, true-color RGB and Color-Infrared
(CIR), to investigate the potential of low-budget, easy to handle
remote sensing technology to map the distribution of invasive
A. mangium.
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MATERIALS AND METHODS

Study Site and Target Plant Species
The study area is located in the Atlantic Forest domain in
Brazil, at coordinates 17◦41′35′′ S and 39◦28′40′′ W, in the
municipality of Caravelas, southeastern Bahia State (Figure 1).

The climate is classified as Tropical with no dry season (Af)
in the Köppen classification system (Alvares et al., 2013), with

annual mean precipitation around 1750 mm (Saporetti-Junior
et al., 2012), and mean temperature around 26◦C. Vegetation in
the region is highly fragmented and predominantly composed

of Atlantic rainforest remnants, Mussununga, eucalyptus
plantations, pasture and crops. Mussununga is a heterogeneous
savanna-type formation of different physiognomies, from

grasslands, dominated by few species of monocots; savanna,
composed of one layer of herbaceous plants and another layer
of scattered woody plants; and woodland formed by a closed
canopy (Saporetti-Junior et al., 2012; Ferreira et al., 2014; Lima
et al., 2015). These vegetation patches are spread out in a matrix
of Eucalyptus plantation and Brazilian Atlantic Forest (IBGE,

2004) having rounded to amoeboid shapes which greatly vary
in size (less than one to hundreds of hectares). Mussununga
vegetation is strictly associated with nutrient-poor, acidic, sandy

soils formed through podzolization as a consequence of high
humidity and hydromorphism (Saporetti-Junior et al., 2012;

Ferreira et al., 2014). OurMussununga study area was dominated
by grasses and monocots with scattered patches of dwarf shrubs
and small trees (Figure 2A).

Acacia mangium is indigenous to Australia, Papua New
Guinea, and Indonesia. It is widely planted around the world,
mostly with the purpose of soil rehabilitation due to its fast
growth and nitrogen fixation (National Research Council, 1983).

In Brazil, the species is recorded from North (Roraima and
Amapa states) to South (Rio Grande do Sul state) (The Horus
Institute National Database of Invasive Alien Species Brazil,
2017). Introduced around the 1970s as an alternative for the
reclamation of degraded areas, it is still planted in forest stands
for firewood, timber, fence posts, and support for black pepper
crops (Halfeld-Vieira and Nechet, 2009). Acacia mangium is
adapted to climates with a short dry period, mean annual rainfall
between 1,000 and 4,500 mm, temperatures from 15 to 34◦C,
acidic soils with a low level of nutrients, and degraded areas
(National Research Council, 1983; Delnatte and Meyer, 2012).

Besides being well adapted to these environmental
conditions, A. mangium is a good competitor in high
lighting conditions (Osunkoya et al., 2005) and is widely
distributed in lowland Atlantic forest domains in the southeast
of Brazil, invading degraded areas, pastures, eucalyptus
plantations and Mussununga. In regenerating forest invaded
by A. mangium where the canopy closed in short time and
biomass increased in a few years, dominance by the invasive
species delayed colonization by native species and had an
adverse impact on biodiversity (Le Maitre et al., 2011).
Likewise, invasion by A. mangium in Mussununga formations
is expected to accelerate biodiversity loss and alter plant
communities.

Acacia mangium is characterized by some unique
physiognomies within the Mussununga formation making
this invader a good candidate for mapping through remote
sensing. Particularly, the bright green, large phyllodes (flattened
leaf stalks; Figure 2B) are helpful in distinguishing A. mangium
from the surrounding savanna-type vegetation. In addition,
it usually grows taller than most native plant species in this
formation (Figures 2C,D, 3).

FIGURE 1 | (A) The study was conducted in southeastern Brasil in the state of Bahia (BA). Additional displayed states are: Espirito Santo (ES), Minas Gerais (MG) and

Rio de Janeiro (RJ) (B) The mussununga study site is located between the cities of Caravelas, Nova Viçosa and Teixeira de Freitas along the federal road BR-418. The

minimum distance to the Atlantic Ocean coast is ∼35 km.
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FIGURE 2 | (A) Panoramic photograph of the studied mussununga formation dominated by heterogeneous savanna-type vegetation (B) Acacia mangium is

characterized by large, bright green phyllodes (C) The growth habit of A. mangium varied from many small (<4 m) up to (D) few tall (>8 m) trees.

FIGURE 3 | Box plot showing the statistics of vegetation height for Acacia

mangium and native plant species in Mussununga ecosystems. Horizontal

lines represent the arithmetic means (middle line) ± standard deviation (upper

and lower lines); outer horizontal lines represent the minimum and maximum

values; o, outliers; m, meters.

Unmanned Aerial System
A UAS consists of an aerial platform, associated sensors and
control equipment (Valavanis and Vachtsevanos, 2015). The
unmanned aerial platform, the autopilot control system and the
camera sensors used to match the specific requirements (Table 1)
of this remote sensing technique as an innovative invasive plant
management tool are described in the following sections.

Unmanned Aerial Platform
We used an easy-to-build fly fixed-wing platform with the
comparably low total cost of around 1,100 US dollars (SkyWalker

TABLE 1 | List of the specific requirements of an Unmanned Aerial System (UAS)

as an innovative invasive plant species remote sensing tool.

Low cost (<2.000 US $), robust and reliable

Good “payload to flight duration” ratio

Option to carry various types of sensor, e.g., camera systems

Economic pack size and weight

Easy handling, full security (fail-save, etc.)

Minimum pre-flight and post-flight procedures

Limited number of trained operators necessary (one or max. two)

Manageable field maintenance and reparability

Worldwide support for spare parts

Ability to map a site of at least several hectares in a single flight mission

Deployable in rugged terrain and a broad range of moderate weather conditions

Small take-off and landing area

Autonomous flight capacities and controls

Data upload and downlink (telemetry)

Interfaces for free or open source software

GIS-compatible data formats (sensors)

2014 with 1,900mmwingspan; Figure 4). It is easy to control and
has excellent crashing resistance, which is important to ensure
safe landings even in rugged terrain. Large wingspans enable
long flight times (>60 min) with a cruise speed of ∼40 km h−1

and a maximum payload of 800 g. The platform was equipped
with common electronic model aircraft components (Table 2) to
ensure a global spare part supply and proper maintenance. In
comparison to the standard version of the airframe, two slight
modifications were made. First, a small door (10 × 8 cm) was
cut on one side of the fuselage to improve the accessibility of the
camera sensor in the field. Second, a round hole (6 cm diameter)
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FIGURE 4 | (A) The fixed-wing Unmanned Aerial System (UAS) used, a

SkyWalker 2014 with a wingspan of 1,900 mm. The image shown is being

published with the consent of the subject (B) The UAS can be totally

disassembled in a few minutes for easy transportation with one single Allen

key (C) The downward pointing camera lens is protected against dust and

mechanical stress by a neutral glass filter glued to the fuselage.

TABLE 2 | Basic configuration list with respective costs of the used fixed-wing

Unmanned Aerial System components.

Component Manufacturer/Model Quantity Costs

Airframe SkyWalker 2014 (1.900 mm) 1 200 US $

Remote Control Graupner MX-16 HoTT (2.4 GHz) 1 200 US $

Remote Receiver Graupner GR-16 HoTT (2.4 GHz) 1 60 US $

Servos Graupner DES 427 BB 4 80 US $

Speed Controller Dymond Smart (60 A) 1 40 US $

Motor Dymond HQ-3550 (600 W) 1 30 US $

Propeller APC 12 × 6 (Thin Electric) 1 10 US $

Flight Batteries Turnigy LiPo 4S/1P (6,000 mAh) 1 60 US $

Charger Simprop Intelli-BiPower Nano 1 80 US $

Autopilot ArduPilot Mega 2.6 Kit 1 120 US $

Telemetry 3DR Telemetry Radio Set 1 40 US $

GPS 3DR UBlox NEO-6 1 50 US $

Airspeed Sensor 3DR Digital Airspeed Sensor 1 50 US $

Accessories Cables, Connectors, Glue, etc. – 60 US $

Total 1,080 US $

The costs are estimated based on prices available on the internet in July 2016. Total costs

do not include the cost of camera sensors and groundstation laptop.

was drilled in the bottom of the fuselage to enable a downward
view of the camera sensors. A neutral glass filter was glued into
the created fuselage hole to protect the camera lens against dust
and mechanical stress. Several parts of the UAS were painted in
bright orange to make it more visible from a distance.

Autopilot Control System (APM)
The fixed-wing platform was equipped with the open-source
autopilot system ArduPilot Mega 2.6 (APM 2.6; http://ardupilot.
com). This autopilot operates with an external GPS and compass
for navigation, a triple axis accelerometer, gyro for stabilization,
and a barometric pressure sensor for precise altitude control. The
airspeed can be controlled with the GPS. However, we used an

external digital airspeed sensor (pitot-static probe connected to
a differential pressure sensor) to assist the UAS to fly at constant
airspeed, especially under windy or unstable weather conditions.
By using the autopilot system, both semi-autonomous (automatic
waypoint flight including manual take-off and landing) and
full autonomous (automatic waypoint flight including automatic
take-off and landing) missions can be performed. Due to
the restricted space of the study area and because the
APM 2.6 does not include any automatic obstacle detection
technique, we preferred to use manual take-off and landing
procedures.

All relevant parameters (e.g., battery status, position in space,
flight altitude, airspeed) were transmitted by the long-range
telemetry system to a ground station in real-time during flight.
The ground station itself consisted of a regular laptop (around
250 US dollars) with installed APM Mission Planner software
and a receiver antenna system connected to a standard USB port.
To ensure continuous signal reception, the receiver antenna was
attached to a telescopic fishing rod with Velcro, which allowed it
to be extended up to three meters in height using a USB extension
cable.

Camera Sensors
To generate a broad range of meaningful digital aerial images,
both a true color (RGB) camera (Canon PowerShot SX230 HS)
and a modified color-infrared (CIR) camera (Canon PowerShot
SD780 IS) were used. Both cameras offer a reasonably good image
quality at affordable prices (less than 350 US dollars per camera),
are widely available, and comparatively small and lightweight.
Thus, they ensure an appropriate ratio of payload capacity to
flight duration. The main technical features of these cameras are
presented in Table 3. The Canon PowerShot SX230 HS included
a built-in GPS, enabling direct storage of coordinates, altitude,
camera orientation and corresponding date/time in the resulting
image-EXIF metadata.

The internal “hot mirror filter” of the Canon PowerShot
SD780 IS located in front of the Charge Coupled Device
(CCD) was removed to enable recording of near infrared (NIR)
reflection of objects, next to green and blue. This option is
offered by some specialized companies, but it can also be done
on one’s own if the technical know-how is available. For this
study, the internal hotmirror was replaced by a neutral glass filter,
which created the additional advantage of fitting conventional
external filters on the lenses, generating various spectral modes
of photography such as true or false-color (near) infrared images
(Ritchie et al., 2008; Zhang et al., 2008). For instance, an external
cyan color filter blocks the visible red light but let through
NIR radiation (up to about 830 nm) that is recorded by the
red CCD-band. As a result, color-infrared (CIR) imagery was
created.

Camera settings were adjusted to compensate for the constant
movement of the fixed-wing UAS during flight. We set the
camera for shutter priority mode (normally called “Tv”) at high
speed of over 1/1,000 s at an appropriate high ISO setting (>400).
Under this setting, most of the motion blur effects can be
effectively avoided. Furthermore, a free software script (Canon
Hack Development Kit; CHDK) was installed on the SDmemory
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TABLE 3 | Main features of the digital cameras used for image data acquisition.

Technical features Canon powershot

SX230 HS

Canon powershot

SD780 IS

Weight 223 g 155 g

Body size 106 × 62 × 33 mm 87 × 56 × 18 mm

Sensor size 6.17 × 4.55 mm 6.17 × 4.55 mm

Resolution 12.1 Megapixel 12.1 Megapixel

Max. shutter speed 1/3,200 s 1/1,500 s

Light sensibility (ISO) 100–3,200 80–1,600

GPS Yes No

Wavelength 400–700 nm (RGB) 400–830 nm (CIR, modified)

Shutter released Executable SD card script Executable SD card script

Cost <350 US $ <300 US $

card of both camera sensors to enable a fixed focus mode, a
defined control shutter speed/lens aperture combination, and
shutter release in suitable time intervals. Images taken during one
mission were stored in the camera’s internal memory card. Simple
framesmade of soft EPO foamwere constructed for both cameras
to minimize vibration blur in photographs and to protect the
cameras in the case of rough landings. The system was mounted
with Velcro tape in the fixed-wing aerial platform fuselage for
easy, quick changes of cameras during field work.

Image Data Acquisition
Flight Mission Planning
The open-source software APM Mission Planner was used for
planning, saving and loading an autonomous survey mission
into the UAS. This specialized software includes a fully-featured
ground station application for the APM 2.6 autopilot system
used in this study. Also, the UAS platform can be configured
and customized for optimum performance, while mission logs
created by the autopilot can be downloaded and analyzed
immediately after the flight. Turning points were therefore
defined outside the Area of Interest (AOI) at some distance from
its borders to ensure proper coverage, generating a larger total
flight area. The waypoints calculated by the AutoWaypoint (WP)
function automatically took into account all relevant selected
parameters, such as flight altitude, flight angle and photo overlap
according to the selected camera sensor. The Return to Launch
(RTL) feature was chosen to ensure an automatic “homecoming”
of the UAS once data acquisition was completed. From this
point, we disarmed the autopilot and took over all rudder
functions to land the UAS manually in the pre-defined landing
zone.

Flight altitude above ground level was set to 100m in this
study, generating a ground footprint of 123.2 × 92.4m with a
pixel resolution of 3.08 cm for each RGB image and 104.4 ×

78.3m with a pixel resolution of 2.61 cm for each CIR image. The
forward photo overlap was programmed to 80% and the sideward
overlap to 60%, respectively. The ground speed of the UASwas set
to 8m s−1 (∼30 km h−1). The camera trigger interval between
both surveys was adjusted based on values calculated using the
APMMission Planner.

Ground Survey
Once in the field, we verified the flight plans regarding the
actual geographical and environmental conditions by doing
a pre-flight field survey before the UAS was launched. The
survey included ground and weather observations, topographic
information to identify or adjust launch/recovery sites and
other important characteristics of the terrain. We set the flight
paths against the wind, as flying parallel to the wind leads to
constant course corrections by the UAS and results in angled
imagery. The background maps for mission planning were
stored offline beforehand to support such adjustments. This
was important because internet access was not available in
the field. The pre-programmed mission was then uploaded to
the drone before take-off. Furthermore, 15 Ground Control
Points (GCP) marked by Compact Discs each 12 cm in
diameter that were sprayed with white paint to increase
visibility from the air were placed randomly throughout the
AOI. Their respective locations were registered with a Garmin
GPSMap 60CSx (∼4m accuracy). Additionally, GPS ground
truth data for A. mangium and other dominating species or
plant forms (e.g., grasses) were collected. Maximum height and
number of individuals (when grouped) were registered for each
A. mangium ground truth point, complemented by one field
photograph.

Aerial Survey
The Mussununga site in this study was mapped in two single
flights, one for RGB and one for CIR imagery. An additional
person assisted the operating pilot during the flights, monitoring
all parameters transmitted to the ground station which were
relevant to the mission and the UAS. Each flight lasted ∼45
min, including manual take-off and manual landing. Due to the
occurrence of strong winds and thermal activities ±3 h around
solar noon, the flights were performed in early morning hours.
Light conditions were influenced by partial cloud cover and a low
elevation angle of the sun during the period of image acquisition.
Short heavy rains left some flooded spots in the northern part
of the AOI just before the CIR sensor flight was launched.
Significant variations of illumination, sun position, cloud cover
and haze might have an impact on the spectral authenticity of the
data and should, therefore, be adjusted in the image processing
phase.

Image Data Processing
Figure 5 gives an overview of software modules and the steps
of image processing and analysis used in this study. Before
processing, we removed five images (out of 212) in the original
RGB data set and eight images (out of 193) in the CIR
data set due to their very poor overall quality caused by
strong motion-blurring, high-angle obliqueness and under or
overexposure effects. Images with further minimal quality issues
were not removed to avoid potential gaps in the final, aligned
orthoimagery. Furthermore, we preselected images with a specific
focus in the AOI to optimize the subsequent processes by
minimizing the total amount of images. These remaining images
underwent an optional image equalization process (stretching) to
reduce illumination differences.
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FIGURE 5 | Workflow diagram for UAS imagery processing and analysis using free open-source software programs. The software used for single processing steps in

this study are presented in vertical boxes. Final products are displayed in gray boxes.

Image Feature Detection and Matching
Freely available VisualSfM software (Wu, 2013) was used for
image feature detection and matching. The matching of the
image features was based on an algorithm that identifies the
corresponding feature in the rest of the available image data set.
Since this calculation is quite complex and time-consuming for
a full data frame, we used the option to execute a preemptive
version of the matching approach. As a result, it was possible
to calculate a matrix showing the matching correlation between
the images. During this feature matching process, the MaxSIFT
parameter determined the number of features per image used for
matching. We lowered the default value (8,192) of the MaxSIFT
parameter by half which provided a good balance between
calculation time and accuracy of results.

Digital Surface Model (DSM) Generation
After the matching process, an image bundle adjustment
resulting in estimated image positions and sparse point cloud
reconstruction was performed. Before the necessary cloud
densification, we used VisualSfM integrated manual tools to align

the images without estimated parameters. Pairs of images with
weak linkages were detected and additional feature detection and
matching were performed for the given pairs using the Spanning
Forest and Spanning Tree tools. In this manner, a model was
manually defined to generate sufficient numbers of adjusted
images. The image parameters estimated were saved in ∗.OUT
format and used for the image orthorectification process (see
chapter 2.4.4). The final point densification was performed using
the CMVS/PMVS2 package. In VisualSfM both packages are used
concurrently, although it can be divided into two parts. First,
CMVS determined the number of clusters in which the input
data are divided. These were then passed to the PMVS2 for point
densification and finally stored in a ∗.PLY format.

Since VisualSfM does not support the direct calculation of
digital surfacemodels (DSM), the 3D surface was calculated using
CloudCompare and Quantum GIS (QGIS), two free software
packages which can calculate DSM from dense point cloud
data sets (∗.PLY format). Georeferencing was performed with
the point picking tool in CloudCompare by manually picking
the white GCPs and assigning their corresponding coordinates
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to the dense point cloud. The resulting georeferenced dense
point cloud was imported and interpolated in QGIS with an
Inverse Distance Weighted (IDW) algorithm to create the final
georeferencedDSM. For validation, a linear regressionmodel was
calculated to assess the relationship between predicted (DSM)
and measured (field survey) canopy heights for 60 randomly
selected A. mangium ground truth points.

Orthomosaic Export and Georeferencing
Due to the lack of an orthophoto export feature in VisualSfM, a
combination of CloudCompare and Microsoft Image Composite
Editor (ICE) was utilized. CloudCompare has options for
importing output files of VisualSfM containing estimations of
camera parameters (∗.OUT format). As part of importation,
CloudCompare provides an option for imagery corrections
based on parameters included in the file. The imagery was
corrected with CloudCompare and loaded in Microsoft ICE for
orthomosaic creation. We selected the Planar Motion mode as
these methods minimize possible perspective distortions in the
images during the mosaicking process. Please note, if Microsoft
ICE auto selects the Rotating Motion mode, this may be an
indication of remaining oblique or blurred images in the set
processed by CloudCompare. Deleting these interfering images
may facilitate the mosaicking process. As the image output
from CloudCompare and Microsoft ICE is not georeferenced,
final georeferencing of the orthomosaics was done with QGIS
using the integrated Georeferencer GDAL plugin and the
corresponding coordinates of visible white GCPs.

Image Data Analysis
VIS-NIR-Based Vegetation Indices
To test the capabilities of VIS-NIR-based vegetation indices (VI),
we focused on the Green Normalized Difference Vegetation
Index (GNDVI) and the Green Difference Vegetation Index
(GDVI)—both are popular and frequently used chlorophyll
indices—using the Raster Calculator in QGIS. Additionally,
we calculated a modified Triangular Vegetation Index (mTVI)
which originally belongs to so-called narrowband VI (Broge and
Leblanc, 2001). Formulae of the applied VI are presented in
Table 4. The discrimination capability of each VI was analyzed
by ANOVA and Tukey’s post-hoc test.

Semi-Automatic Classification
Image data classification was conducted with the open-
source software Semi-Automatic Classification Plugin for QGIS
developed by Congedo (2016). We selected the orthorectified

TABLE 4 | Set of tested spectral vegetation indices calculated with the Raster

Calculator in QGIS in the present study.

Index Full name Formula

GNDVI Green Normalized Difference Vegetation

Index

NIR−Green
NIR+Green

GDVI Green Difference Vegetation Index NIR−Green

mTVI modified Triangular Vegetation Index 0.5 * (120 * (NIR − Green) −

200 * (Blue − Green))

RGBmosaic for semi-automatic classification. At first, we created
three non-vegetation classes, namely shadow, bare soil and
road, and three vegetation classes, namely A. mangium, grasses
and other vegetation. A minimum number of 100 samples
was collected for each class, so called Regions Of Interest
(ROI), using the plugin Integrated ROI Pointer. All ROIs were
previously validated visually by field-collected ground truth
data. Subsequently, we used a minimum distance classification
algorithm that applies Euclidean spectral distances between
spectral signatures of image pixels and training signatures to
classify the image.

Classification accuracy was evaluated by defining more than
500 random points which were manually classified through on-
screen interpretation of the available RGB image information
together with collected field data. Based on the class assignments,
a confusion matrix was calculated to assess the classification
accuracy including overall, user’s, and producer’s classification
accuracy, as well as Kappa Index of Agreement (KIA) statistics.

Multilayer Visual Image Interpretation
Taking superimposed boundaries of the previously generated
image layers in a combined QGIS project (Figure 6) as a basis,
we pinpointed A. mangium trees through a hierarchical visual
image interpretation strategy. The workflow was initialized by
grid calculation (50× 50mmesh size) using the Vector Grid tool
of QGIS to systematize and facilitate spatial image interpretation.
Subsequently, only unequivocally identifiable A. mangium areas
were transformed into polygon features and map layers of
vegetation indices were loaded to search for further Acacia plants
that had not been previously identified in the grid cells. Again,
only clearly detectible A. mangium trees or small groups were
mapped to optimize processing time. This step was repeated for
the obtained classification and DSM layer.

To assess the quality of the multilayer-based visual image
interpretation, we applied a buffer zone (in this case 4m) around
each A. mangium ground truth point to offset GPS errors or
other inaccuracies and checked whether the manually digitized
A. mangium polygons fit in this tolerance radius. For this
purpose, A. mangium ground truth data was separated into five
tree-height classes (1)<3m, (2) 3–5m, (3) 5–7m, (4) 7–10m, (5)
0–10m, thus enabling a height-specific accuracy assessment.

RESULTS

Orthomosaics
A total area of ∼25 ha was covered by aerial RGB and CIR
imagery with ground pixel resolution of less than 4 cm. However,
to reduce image data processing and analysis time, the imagery
outside of the AOI (i.e., the Mussununga under study) was
discarded. Hence, the final stitched orthomosaics covered an
area of ∼13 ha (Figure 7). A visual inspection of the two entire
orthomosaics revealed some blur and distortion effects (<5% of
total area), as well as light fluctuations (<10% of total area). RGB
orthoimagery was affected by strong cast shadows resulting in
partial loss of image details. CIR orthoimagery, in contrast, was
less affected by cast shadows but includes some underexposed
areas due to the presence of clouds. Since partially the same GCP
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FIGURE 6 | To map the distribution of invasive tree species we digitally

superimposed the boundaries of differently calculated image layers (raster and

vector data) and conducted an advanced visual image interpretation. The

resulting coordinates of identified single invasive trees can be used for the

application of control measures in the field.

positions were used during acquisition of RGB and CIR images,
spatial shifts could be detected between the two orthorectified
mosaics. As a consequence, one-to-one pixel co-registration
of both data sets failed due to glaring perspective distortions.
Nevertheless, both aerial images showed no significant pixel
gaps or missing parts. To illustrate image processing results and
methods of analysis in more detail we selected an one-hectare
subscene intensely invaded by A. mangium.

Digital Surface Model
The interpolated DSM proved to be a valuable representation of
surface elevation over the study area. As a result, elevated objects,
in this case, larger trees or shrubs, were clearly recognizable
visually (Figure 8). The linear regression model indicated a
strong correlation (R2 > 0.89 withN = 60) between the predicted
DSM and field measurements of A. mangium heights (Figure 9).

VIS-NIR-Based Vegetation Indices
The resulting grayscale maps of the calculated VIS-NIR-based
vegetation indices are presented in Figure 10. The associated
boxplots are shown in Figure 11. The GNDVI showed high
aptitude to differentiate photosynthetic active vegetation (i.e.,
plant biomass) from other surface types such as bare soils
(P < 0.001). However, the application of the GNDVI revealed

FIGURE 7 | (A) Final orthorectified RGB and (B) Color-infrared (CIR) mosaic of

the investigated mussununga study site (C,D) Detailed views of a highly

invaded 100 × 100m plot by Acacia mangium (see white transparent box in

(A,B) for RGB and CIR imagery, respectively. This section is used to illustrate

additional results.

some limitations in the distinction between different plant
species or vegetation types. Particularly, A. mangium and
grasses had similar pixel values (P = 0.776). In this case,
the calculated GDVI was favorable. The applied Tukey post-
hoc test showed significant pixel value differences between all
classes (P < 0.001). The modified TVI was most promising in
detecting A. mangium since pixel values for this distinct species
differ significantly from the pixel values related to surrounding
native grasses and herbaceous/woody vegetation (particularly
if applied to A. mangium individuals with new, bright green
phyllodes).

Semi-automatic Classification
The resulting classification map is presented in Figure 12. The
semi-automatic pixel-based classification revealed an overall
accuracy level of 85.4% and overall KIA of 0.82 using all six classes
(Table 5). Producer’s accuracy achieved best results for shadow
(98.6%), followed by bare soil (97.4%), road (97.1%), other
vegetation (84.3%), grasses (74.5%), and A. mangium (73.1%).
User’s accuracy performed best for road (100%) and bare soil
(99.3%) classes. The A. mangium class reached a user’s accuracy
of 95.9%, followed by shadow (83.6%), grasses (81.4%), and other
vegetation (69.5%).
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FIGURE 8 | (A) Digital Surface Model (DSM) of a highly invaded 100 × 100m mussununga plot. Ground truth points of Acacia mangium are displayed as black stars.

(B) Zoom into image showing detailed DSM of small A. mangium group (N = 3) and (C) the corresponding RGB orthophoto. The maximum height of the A. mangium

group was estimated at 5.7m in the field.

FIGURE 9 | Linear regression fit between predicted heights for Acacia

mangium (N = 60) based on Digital Surface Model (DSM) and heights

measured in the field (in meters).

Multilayer Visual Image Interpretation
The final A. mangium distribution map obtained frommultilayer
visual image interpretation is shown in Figure 13. The image
interpretation revealed an overall accuracy rate of 82.7% for the
correct identification of A. mangium (Table 6). Using aggregated
tree heights of A. mangium, the height classes 3–5m and 5–7m
were detected with higher accuracy, 91.8 and 88.2%, respectively.

FIGURE 10 | (A) Color-infrared (CIR) Orthomosaic image section with Acacia

mangium ground truth points and (B) corresponding Green Normalized

Difference Vegetation Index (GNDVI) (C) Green Difference Vegetation Index

(GDVI) and (D) modified Triangular Vegetation Index (mTVI). The mTVI is

particularly promising for the detection of invasive A. mangium trees in

mussununga formation.

In comparison, A. mangium trees lower than 3m or between
7 and 10m were more difficult to detect, with 77.1 and 66.7%
accuracy, respectively.

Frontiers in Environmental Science | www.frontiersin.org 10 July 2017 | Volume 5 | Article 44

http://www.frontiersin.org/Environmental_Science
http://www.frontiersin.org
http://www.frontiersin.org/Environmental_Science/archive


Lehmann et al. Drones Support Invasive Plant Management

FIGURE 11 | Box plots showing the statistics of the calculated vegetation indices. Box plots represent (A) Green Normalized Difference Vegetation Index (GNDVI), (B)

Green Difference Vegetation Index (GDVI) and (C) modified Triangular Vegetation Index (mTVI). Horizontal lines represent the arithmetic means (middle line) ± standard

deviation (upper and lower lines); outer horizontal lines represent the minimum and maximum values; o, outliers; m, meters.

DISCUSSION

Applicability of Low-Cost UAS
In this study, we present an innovative, integrated remote
sensing approach which combines low-cost UAS techniques
with open-source GIS and freely available image processing
software. The methodology described allowed us to map invasive
A. mangium trees with high accuracy with a reasonable effort.
The classification algorithm based on the training data can be
applied to image data collected by the same camera sensor at
new sites, and the resulting maps can improve the information
base for invasive plant management. In general, this approach
can allow environmental managers to monitor the distribution
and spread of invasive plants in similar situations once the
classification models are adjusted to the respective species.
Environmental managers should be strongly encouraged to
use low-cost UAS approaches to avoid high costs and time-
consuming field surveys, especially in sites of low accessibility
(Wan et al., 2014; Chabot et al., 2016; Hill et al., 2016; Müllerová
et al., 2017). Minimizing in situ mapping and control operations
is also an added advantage for using UAS, because reduction in
habitat disturbance can encourage the recovery of native plants
that are threatened by biological invasion (Mack and D’Antonio,
1998; Huston, 2004).

Several studies have already used UAS acquired image
data successfully for detecting and monitoring invasive plants.
However, these studies used either expensive high-end UAS (e.g.,
Michez et al., 2016) or commercial image processing and analysis
software. For example, Müllerová et al. (2017) used a self-built,
low-cost fixed-wing UAS to detect invasive Robinia pseudoacacia
in a recently published study, but applied commercial stitching
software. Such sophisticated software products are usually
expensive, often exceeding 3,000 US dollars for a single license.
Our results show that open source software may provide sound
alternatives, from image data pre-processing to image analysis.

Technical Considerations
There are also drawbacks related to low-cost software and
techniques. Compared to commercial photogrammetric
processing software, Microsoft ICE image processing may lead to
poorer geometric accuracy. However, it is the best free-of-charge
option for UAS photogrammetric application and suitable for
UAS applications unless high geometric accuracy (<2 m) is
required (Gross and Heumann, 2016). Consumer-grade camera
sensors have spectral limitations and provide poorer image
quality compared to commercial-grade camera sensors: in
RGB and CIR orthomosaics, both imagery blurring and partial
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FIGURE 12 | Classification map obtained from the Semi-Automatic

Classification Plugin developed by Congedo (2016). The class other vegetation

included native herbaceous and woody plants. Strong cast shadow effects are

generated by low-angled sunlight during image acquisition.

TABLE 5 | Confusion matrix and accuracy results of semi-automatic classification

using the Semi-Automatic Classification Plugin (Congedo, 2016) in open-source

Quantum GIS.

Shadow Bare

soil

Road Acacia

mangium

Grasses Other

vegetation

Shadow 2,154 0 19 0 361 42

Bare soil 0 1,238 0 0 9 0

Road 0 0 715 0 0 0

Acacia mangium 0 4 0 1,846 16 58

Grasses 8 29 0 64 1,310 198

Other vegetation 23 0 0 617 62 1,603

Producer’s accuracy 98.6 97.4 97.1 73.1 74.5 84.3

User’s accuracy 83.6 99.3 100 95.9 81.4 69.5

Overall accuracy 85.4

KIA 0.82

Producer’s accuracy (%): the ratio between correctly classified objects and reference

samples within a class. User’s accuracy (%): the ratio between correctly classified objects

and the total number of samples assigned to a class. Overall accuracy (%): the ratio

between the number of all correctly classified objects and the total number of samples.

Kappa Index of Agreement (KIA): a measure of the proportion of agreement after removing

random effects.

distortion effects are noticeable. Blurring can be caused by fast
movements of the aerial platform during image acquisition,
e.g., due to wind or turbulence, as well as by faulty images used
in the mosaicking. This can generate errors in the visual or

FIGURE 13 | Final map showing potential location points of invasive Acacia

mangium trees in the studied mussununga formation obtained through

multilayer visual image interpretation.

TABLE 6 | Accuracy assessment of the multilayer visual image interpretation.

Acacia mangium ground truth data was separated in different height classes.

<3 m 3–5 m 5–7 m 7–10 m 0–10 m

Observed in field 213 146 51 24 434

Correctly predicted 164 134 45 16 359

Overall Accuracy (%) 77.0 91.8 88.2 66.7 82.7

automatic analysis of the image data and reduce the accuracy
of automatic photogrammetric processing algorithms. In this
study, only a few photos had to be removed because of their poor
quality. Some of the remaining images, however, also showed
some quality loss. Thus, using such Do-it-Yourself approaches
always includes a tradeoff between removing low quality images
and avoiding potential gaps in the final orthoimagery. A high
overlap of individual images is necessary to provide flexibility in
the use or removal of single low-quality images. The detection
and removal of blurred images are currently done manually,
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and is a time-consuming, error-prone process, particularly with
large image sets. Further, the removal of low quality images
can negatively influence subsequent post-processing steps since
less data are available. Fortunately, new studies dealing with
automatic detection of blurred images in UAV image sets have
been published recently (Ribeiro-Gomes et al., 2016; Sieberth
et al., 2016).

Some spectral limitations of the CIR imagery are a
consequence of the camera sensor modification. Since we used
a cyan filter (which blocks the visible red light), the sensor
recorded only in the NIR, green and blue channels. Most
traditional vegetation indices, however, include the red band.
As a consequence, we used the green band instead in order
to calculate modified VIs. This limits comparability of indices
based on images from modified low-cost cameras and from
professional sensors (or literature values). Nevertheless, UAS-
based application of modified low-cost cameras are promising for
detecting and mapping invasive plants, although the results may
vary among species of interest because vegetation is characterized
by strong reflectance in the NIR.

Remote-Sensing Approaches
Remotely-sensed vegetation indices (VI) have been extensively
used for monitoring and detecting invasive tree species (Huang
and Asner, 2009; Huang et al., 2010; He et al., 2011; Bradley,
2014). VI related to physical leaf features like greenness,
chlorophyll or water/ moisture content, richness in lignin,
nitrogen, and cellulose have especially proved to be highly
effective in differentiating Acacia species from surrounding
vegetation (Larsson, 1993; Oldeland et al., 2010; Große-
Stoltenberg et al., 2016). The vegetation indices applied in this
study were highly efficient in distinguishing invasive A. mangium
trees from surrounding native Mussununga vegetation. In
particular, the modified Triangular Vegetation Index (mTVI)
separated A. mangium well. This index originally belongs to
narrowband VI (Broge and Leblanc, 2001). Nevertheless, prior
applications of themTVI in a remote sensing study by the authors
(Lehmann et al., 2016) also revealed high potential to distinguish
plant species using imagery acquired with a self-modified CIR
camera sensor.

In addition to spectral features, the DSM computed from
the UAS-based aerial RGB images provided clues for the
recognition of invasive A. mangium because it grows taller
than the surrounding vegetation. We found a strong correlation
between predicted andmeasured tree heights. This was facilitated
by the flat terrain in the study area. However, in areas with
substantial elevation differences, an underlying terrain model
must be considered. Similar studies showed the potential of
canopy-height models generated from UAS image data. Zarco-
Tejada et al. (2014) used high-resolution image data to generate
a precise DSM and a Digital Terrain Model (DTM) of their study
site. By subtracting the DSM from the DTM, an informative
canopy height model of the forest in the study was created.
They concluded that surface models derived from UAS-acquired
high-resolution image data can be as accurate as those generated
with expensive, computationally more complex light detection
and ranging (LIDAR) systems currently used in agricultural and

environmental applications. Still, the Structure from Motion-
based generation of canopy-height models that we applied
in this study can be challenging to non-experts in remote
sensing. The use of open-source software for this purpose also
involves some obstacles as it requires a stepwise combination of
various software modules, in contrast to expensive commercial
software in which all required functions are combined in one
product.

The classification strategies used in this study denote a further
problem: only partial tree crown areas were recognized and
correctly classified as A. mangium. This is possibly due to the
low illumination angle of the morning hours when the UAS was
flown. In general, pixel-based clustering algorithms only use the
spectral values of each pixel, but neglect texture and, hence, often
result in image speckle and overall inaccuracies when applied
to fine-resolution imagery. Object based image analysis (OBIA)
can be suitable to improve classification results and reduce these
speckle (“salt-and-pepper”) effects (Blaschke, 2010). In contrast
to pixel-based analysis, OBIA includes the geometric properties
of the target plant species, such as dimension or texture. Open-
source software already shows high potential in using this
method (ORFEO Toolbox for Grass GIS), but the application is
still complex and availability of algorithms is limited compared
with commercial software (e.g., eCognition). In this study, visual
image interpretation, in addition to the pixel-based classification,
improved the identification of A. mangium, even in large
areas.

Integration of UAS-Based Remote Sensing
Into Management of Invasive Plant Species
Evidently UAS offer capabilities for mapping the occurrence,
dynamic or extent of invasive plant species in an area.
Furthermore, UAS acquired remote sensing data generate
additional valuable geospatial information for management. Bare
soil cover, for example, can be quantified from vegetation
index maps. We were able to map bare soil areas with
high accuracy using simple semi-automatic classification. As
mentioned before, disturbance increases opportunities for the
spread of invasive plants (Lorenzo et al., 2010; Le Maitre et al.,
2011) in open areas, on bare soil and other modified sites
such as roadsides, trails, and degraded vegetation. These areas
should, therefore, be a priority for preventative monitoring and
early detection of invasive species followed by eradication or
control.

There are three major approaches for managing invasive
alien species. The first one refers to the prevention of species
introductions to countries. Despite recent efforts to discriminate
species for deliberate introductions and improve control of
involuntary introductions, the rate of species introductions has
not declined at the global level (Seebens et al., 2017). The
second approach refers to early detection and rapid response
for eradication or containment, and the third to sustained
control over time once populations have grown too large or
too widespread to be eradicated (Wittenberg and Cock, 2001).
Species that invade forests can unfortunately not be mapped
from the air, but most invasive plants thrive in open ecosystems,
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belonging to the group of pioneer species. The UAS technology
can strongly contribute to improve current methods of inventory
and prioritization for the eradication or control of these plants,
as covering large areas on foot, often in difficult or inaccessible
terrain, can be counterproductive or simply not viable in terms
of cost, safety or practicability. Detection at early stages of
invasion provides the best chance for successful eradication
or control, as both cost and effort are still low and more
feasible. UAS can greatly increase the opportunities for early
detection in open ecosystems such as Mussununga, coastal
scrub (“restingas” in Brazil), wetlands, grasslands, savannas and
degraded areas, especially when the invasive plants are taller or
somehow stand out in the native vegetation matrix—as acacias in
Mussununga.

In any given area the control of invasive plants is initially
easier, as there tend to be more individuals to locate and remove.
As work progresses, finding isolated or few remaining plants
becomes more challenging, leading to increased costs and work
hours to locate them. It is often relevant to locate and remove
mature plants first to prevent the seed production and renew
the seed bank in the soil. Finding these plants is often difficult,
especially in sloping terrain, coastal dunes or in patches of high
and low vegetation where visibility on the ground is limited. UAS
have high potential in facilitating the location of such plants.
Even if not 100% precise, excluding areas where invasive plants
clearly do not occur can still save much time and effort in the
field.

Open areas of high susceptibility to invasion can be identified
in UAS-based imagery, then surveyed by targeted field sampling.
Further, aerial imagery can be processed into geo-referenced
orthomosaics right after the completion of UAS flights for
immediate control. Such UAS-based aerial image maps are more
up-to-date and offer higher spatial resolution compared to freely
available products, such as imagery from Google Earth. UAS can,
thus, be used to support immediate management actions in the
field as well as monitor the results of control efforts, especially
when the ideal time to revisit specific sites to repeat control
operations on remaining plants or on new plants grown from the
seed bank is not clear, which is often the case. Revisiting control
sites is crucial to prevent new plants from reaching maturity,
replenishing the seed bank in the soil and renewing the invasion
process.

CONCLUSION

Potential uses of UAS will rapidly increase as the technology
and related software is steadily developed further. However,
some relevant elements will remain important. The key to
success in UAS-based aerial photography is thorough pre-
flight preparation, including careful flight planning. Part
of the planning process should always involve defining
specifications for the desired digital (photographic) end-
product before going into the field. The main mission
requirements need to be defined and analyzed to determine
all relevant flight parameters. For instance, legal regulations
and site accessibility are important aspects of the practical

application of UAS technology. Authorization from national
companies and landowners may be necessary to conduct UAS
research. It may also be important to acquire an insurance
policy. In view of all the possible requirements, a review
of local laws and regulations is always vital. Careful pre-
flight planning and logistical preparations tend to eliminate
the majority of potential mission problems. Still, mishaps
cannot be avoided completely and should, therefore, be
taken into account. Accordingly, spare parts and backup
equipment are often essential for completing a mission
successfully.

Despite some aforementioned limitations regarding sensor
technology, image processing and analysis software used in
this study, the results demonstrate significant potential for
practical application of UAS in the management of invasive
species. Managers can use this new approach to effectively
carry out ground surveys and, then, implement eradication
or control actions as well as monitor reinvasion and define
the best time to revisit sites under control. Not only the
rapid development in the area of drone technology in recent
years, but also the growing development of new, open-source
software products for increasingly more complex and detailed
image processing and analyses, have high potential for applied
natural-area management. The authors of this study believe that
drones, in combination with open-source software, will play
an important role in invasive plant management in the future.
Organizations working on natural area management around the
world already have access to new, easy to use remote sensing
UAS technologies that can increase management effectiveness
and reduce planning as well as operational costs and field
efforts.
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