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Fire is an important driver of change in most forest, savannah, and prairie ecosystems

and fire-altered organic matter, or pyrogenic carbon (PyC), conveys numerous functions

in soils of fire-maintained terrestrial ecosystems. Although an exceptional number of

recent review articles and books have addressed agricultural soil application of charcoal

or biochar, few reviews have addressed the functional role of naturally formed PyC in

fire-maintained ecosystems. Recent advances in molecular spectroscopic techniques

have helped strengthen our understanding of PyC as a ubiquitous, complex material that

is capable of altering soil chemical, physical, and biological properties and processes.

The uniquely recalcitrant nature of PyC in soils is partly a result of its stable C = C

double-bonded, graphene-like structure and C-rich, N-poor composition. This attribute

allows it to persist in soils for hundreds to thousands of years and represent net

ecosystem C sequestration in fire-maintained ecosystems. The rapid formation of PyC

during wildfire or anthropogenic fire events short-circuits the normally tortuous pathway

of recalcitrant soil C formation. Existing literature also suggests that PyC provides an

essential role in the cycling of certain nutrients, greatly extending the timeframe by

which fires influence soil processes and facilitating recovery in ecosystems where organic

matter inputs are low and post-fire surface soil bacterial and fungal activity is reduced.

The high surface area of PyC allows for the adsorption a broad spectrum of organic

compounds that directly or indirectly influence microbial processes after fire events.

Adsorption capacity and microsite conditions created by PyC yields a “charosphere”

effect in soil with heightened microbial activity in the vicinity of PyC. In this mini-review,

we explore the function of PyC in natural and semi-natural settings, provide a mechanistic

approach to understanding these functions, and examine examples of such mechanisms

in published literature.

Keywords: black carbon, charcoal, carbon sequestration, surface adsorption, sorption, nutrient cycling, soil

organic matter, bioactive zones

INTRODUCTION

In recent years, naturally occurring and anthropogenic pyrogenic carbon (PyC) in the environment
have become a prominent area of research across scientific disciplines (Zhu et al., 2005; Hammes
et al., 2007; Ding et al., 2014; Lehmann and Joseph, 2015; Alam et al., 2016), and yet, to date, there
has been little effort to provide a broad ranging synthesis of this unique material that transcends
individual disciplines and ecosystems (Sohi et al., 2010; Hart and Luckai, 2013). An increased
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emphasis on the importance of PyC in the global carbon (C)
cycle and as an amendment for agricultural soils has resulted
in a rapid increase in the number of studies across managed,
semi-natural, and natural environmental conditions affording
a multi-disciplinary framework for improving our mechanistic
understanding of PyC (Barrow, 2012; Santín et al., 2015; Dietrich
et al., 2017). Applications of molecular spectroscopic analyses to
PyC studies in natural environments complement the absolute
quantification of PyC and any known information on molecular
changes associated with wood pyrolysis (Nishimiya et al., 1998),
transport and oxidation of PyC particles (Hockaday et al.,
2006; Cheng et al., 2008; Inoue et al., 2017), change in soil
organic matter quality due to wildfires (Miesel et al., 2015),
and interactions of PyC surfaces with the surrounding soil
environment (Archanjo et al., 2017). In this review, we describe
these potential functions and explore the mechanisms underlying
PyC functionality in natural and semi-natural environments for
the advancement of multi-disciplinary research endeavors (see
Figure 1).

BELOWGROUND SEQUESTRATION OF
RECALCITRANT CARBON

Pyrogenic C is a high-C and low-nitrogen (N) byproduct of
organic matter pyrolysis or incomplete combustion. The residual

FIGURE 1 | Pyrogenic carbon (PyC) provides three primary mechanistic functions in forest soils after organic carbon (C) from aboveground vegetation is redistributed

as highly recalcitrant, belowground Pyrogenic C via fire-driven pyrolysis and combustion. The sequestration of C, in the form of PyC is largely driven by formation

temperature and subsequent weathering (mean annual temperature and precipitation) as PyC particles oxidize, increase in oxygen and hydrogen functional groups,

and are physically disintegrated and translocated over time. As a component of mineral soils, PyC can act as a sorbent of soluble and mobile organic C, nutrients,

polyphenolics, plant signaling compounds, and provide substrate for microorganisms. Lastly, PyC in soils may provide bioactive zones with various pores, cracks, and

physical refuge for organisms, as well as facilitate gas, water, and nutrient exchange with surrounding mineral soil.

material consists of aromatic C rings, aliphatic C chains, and a
variety of surface pores and cracks (Preston and Schmidt, 2006).
Generally, the PyC material found in nature is less graphitic
and more amorphous constituent of the black C continuum
model (Hedges et al., 2000) which lends physical and chemical
properties that convey unique functions in the soil environment.

The production of PyC by wildfires and anthropogenic fires
directly adds highly recalcitrant C into soils, sediments, and
aquatic systems in contrast to the tortuous pathway for formation
of soil humic materials (Figure 1). Estimates of PyC persistence
in soils and sediments range from hundreds to thousands of
years (Meyer et al., 1995; Gavin et al., 2003; Laird et al.,
2008; Liang et al., 2008), which provides evidence of wildfires
in fossilized PyC from pre-Quaternary periods in the Earth’s
history (Scott, 2000). Accounting for PyC after fire events is
an important aspect of quantifying the impact of fire on the
global C cycle in contrasting C storage as PyC versus C loss
as CO2, CO, and CH4 during combustion events (Ciais et al.,
2013). Empirical measurements of PyC in the surface and sub-
surface soils reported in over 500 studies suggest that PyC ranges
from 0 to 60% of soil organic matter across forests, agriculture
soils, grasslands, peat, and urban soils (Reisser et al., 2016) and
yet no standard method exists to quantify PyC in soils. There
are numerous PyC quantification methods commonly utilized in
soils and sediments that rely on physical separation, chemical and
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thermal oxidation, spectroscopy, and molecular identification
(Mikutta et al., 2005; Rovira and Ramón Vallejo, 2007; Koide
et al., 2011; Bird, 2015). While some methods use molecular
identification of the unique PyC structure to separate PyC from
humic compounds, others rely on comparisons between burned
and unburned soils and are limited to a broader definition of PyC
(Hedges et al., 2000).

Studies using the weak nitric acid-peroxide digestion method
(Kurth et al., 2006), which quantifies chemically recalcitrant C
in mineral soils, have reported PyC accounting for 3–25% (with
an average of 13%) of soil C (Kurth et al., 2006; Bélanger and
Pinno, 2008; MacKenzie et al., 2008; Licata and Sanford, 2012;
Pingree et al., 2012; Buma et al., 2014; Soucémarianadin et al.,
2014). Where unburned or pre-wildfire sites were measured in
concurrence with wildfire-burned sites, PyC fractions accounted
for 8% of total ecosystem C in a low fire frequency, high fire
intensity subalpine forest (Buma et al., 2014), and 25% of total
ecosystem C in a moderate fire frequency, moderate fire intensity
temperate forest (Pingree et al., 2012). The PyC on standing
boles represents an additional long-term input of PyC into soil as
charred bark sloughs onto the forest floor and standing snags fall
to the ground (Makoto et al., 2012; Buma et al., 2014). Wildfire-
burned standing snags in the Alaskan boreal, USA, accounted
for 65–248 kg charcoal ha−1 (if charcoal C is assumed 50% C,
33–124 kg C ha−1) in a beetle-killed Picea glauca forest (Makoto
et al., 2012). Most wildfire events are likely to increase PyC
storage and PyC as a component of total ecosystem C; however,
wildfires may consume PyC remaining on the forest floor from
prior wildfire events (Zackrisson et al., 1996; Tinkham et al.,
2016).

The resistance of PyC to chemical and biological oxidation can
largely be attributed to its stacked aromatic C structure (Pierson,
1993; Cohen-Ofri et al., 2006; Ascough et al., 2011). Short and
strong sigma (σ) bonds create one plane of hexagonal C while the
fourth valence electron (orthogonal to the σ bonds) forms longer
and weaker van der Waals bonds (π) with other hybridized
electrons above and below the hexagonal plane (Pierson, 1993;
Kleber et al., 2015). The result is a layered, alternating hexagonal
structure unique to C.

Oxidation of PyC has been attributed to both the intrinsic
structure of PyC material and environmental gradients.
Temperature-dependent recalcitrance has been indirectly
suggested by several laboratory incubation studies that showed
reduced C mineralization in the presence of PyC produced at
high temperatures (Baldock and Smernik, 2002; Bruun et al.,
2008; Zimmerman, 2010; Hanan et al., 2016). These studies
were unable to distinguish the effects of inherent recalcitrance
from adsorption to PyC surfaces, which may concurrently
reduce available C by adsorption (see next section). Long-term
storage of PyC in soils and PyC elemental composition was
shown to be influenced by climate variables (precipitation and
temperature), which had a greater influence compared to soil
characteristics (soil texture, cation exchange capacity, pH),
with mean annual temperature being the best predictor of PyC
oxidation (Glaser and Amelung, 2003; Cheng et al., 2008). Aged
PyC particles showed slightly lower aromaticity and released
larger and more aromatic clusters into solution or as colloids,

which suggests oxidation over a 10-year study period (Schneider
et al., 2010). Similarly, many studies showed aged PyC particles
decrease in C concentration and an increase in functional
groups relative to fresh PyC (Hockaday et al., 2007; Cheng et al.,
2008; Nguyen et al., 2008; Ascough et al., 2011; Singh et al.,
2012), which possibly resulted from environmental weathering,
microbial decomposition (Hockaday et al., 2006, 2007), or faunal
bioturbation (Domene, 2016). PyC particles have been shown
to decrease in specific surface area over time (Hockaday et al.,
2007), although the physical fragmentation of larger particles
may ultimately increase total surface areas in soil. Preferential
mobilization of PyC particles has received little attention, but a
recent study suggests that more highly condensed PyC may be
more readily physically degraded in soils due to its physically less
stable structure, leaving behind a more biologically available PyC
(Inoue et al., 2017).

SORPTION INTERACTIONS

The ability for PyC particles to adsorb non-polar organic
compounds lends to its function as a surface adsorption foci
in soils, sediments, and solutions (Figure 1). This mechanism
has wide ranging implications for how PyC influences myriad
soil processes (Cornelissen and Gustafsson, 2004; Keech et al.,
2005; Bornemann et al., 2007; Pingree et al., 2016). First, and
perhaps the most obvious, is that most all soluble and mobile
organic compounds in soil represent an energy source for
microbes. Surface adsorption to PyC particles would concentrate
organic compounds around PyC particles, thereby creating a
microsite for enhanced microbial activity (Lehmann et al.,
2011). Increased decomposition of C adsorbed to PyC may
partially account for observations including priming effects
(Hamer et al., 2004; Jones et al., 2011), an increase in the
nutrient release from mineral precipitates and cation exchange
sites, or increased immobilization of inorganic nutrients near
PyC particles. Contrasting findings of N mineralization and N
immobilization rates (see DeLuca et al., 2015) are likely related to
the capacity of PyC to adsorb nutrients and organic compounds.
Finally, adsorption of polyphenolic signaling compounds within
the rhizosphere could influence plant pathogenic or symbiotic
interactions, but to date there has been limited effort to evaluate
this in natural ecosystems (Hassan and Mathesius, 2012; Hall
et al., 2014; Kolton et al., 2017).

Adsorption capacity is predominantly driven by the specific
surface area and pore-size distribution of PyC particles, which
are determined by pyrolysis temperature and the innate chemical
nature of the feedstock. As formation temperature increases
and pyrolysis or combustion takes place, adsorption capacity
typically increases exponentially (Zhu et al., 2005; Brimmer,
2006; Bornemann et al., 2007; Pingree et al., 2016), while
pore sizes become dominated by micropores (<2 nm) (Braida
et al., 2003; Bornemann et al., 2007). Wood-based PyC contains
extensive porosity partly due to the partial pyrolysis of tracheid
cells associated with xylem, which contributes further to the
natural porosity of PyC made from wood (Keech et al., 2005).
Sorption behavior as a function of formation temperature is
well-documented in the laboratory (Bornemann et al., 2007),
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but is likely altered by exposure to environmental influences.
Direct measurements of adsorption capacity in soils show a
more complicated and less predictable relationship between PyC
as an adsorbent and naturally-occurring adsorbate compounds
(Cornelissen and Gustafsson, 2004; Pingree et al., 2016).
Terrestrial and aquatic ecosystems provide complex matrices
for sorption interactions that merit a better understanding of
sorption interactions in relation to surface properties of PyC.

The adsorption capacity of PyC as charcoal particles may
have a significant effect on N cycling in post-fire forest soils.
Previous studies of temperate and boreal forest soils have shown
an increase net mineralization of N and in net nitrification with
the addition of charcoal through the production of nitrate (NO−

3 -
N), which otherwise show minimal net nitrification (DeLuca
et al., 2002, 2006; MacKenzie and DeLuca, 2006; Ball et al.,
2010; Kurth et al., 2014; Michelotti and Miesel, 2015). There are
multiple mechanisms that may be responsible for this observed
increase in NO−

3 -N after the addition of charcoal to soil. The
presence of PyC may release nitrifier activity by adsorption of
allelopathic C compounds which results in a total reduction
of nitrification potential (Paavolainen et al., 1998; MacKenzie
and DeLuca, 2006; Uusitalo et al., 2008). The presence of
heterocyclic C compounds may provide a source of organic
C that results in net immobilization of NH+

4 (Bremner and
McCarty, 1988). In addition, the presence of charcoal may reduce
the complexation of high molecular weight compounds and
indirectly alter the N and C cycles of soils via complexation
of NH+

4 and amines by polyphenolics that may eliminate NH+

4
availability for nitrification (Hättenschwiler and Vitousek, 2000).
In wildfire-burned chaparral forest soils, the addition of PyC had
no significant effect on N dynamics after an incubation study,
but instead may have promoted N immobilization by enhancing
microbial biomass (Hanan et al., 2016). Alternatively, the surface
adsorption of NH+

4 by PyC could also reduce availability for
autotrophic oxidation by nitrifying bacteria—amechanism yet to
be evaluated in PyC and soil N dynamics.

The release and reception of molecular signaling compounds
is known to directly influence both symbiotic and pathogenic
relationships in soils. Both mycorrhizal infection of host plants
and nodule establishment in legumes is thought to be dependent
upon the release and reception of signaling compounds, which
are generally flavonoids or related polyphenolic compounds
(Hassan and Mathesius, 2012). It is well-understood that PyC
has the capacity to adsorb such compounds (Zackrisson et al.,
1996; DeLuca et al., 2002; Keech et al., 2005), but the direct
connection between PyC and signaling effectiveness has, to date,
been largely ignored. Biochar-induced ethylene production, a
plant hormone and soil microbial inhibitor, has been found in
some PyC materials although most notably from non-woody
sources (Spokas et al., 2010). Legume nodulation has been
observed to both increase and decrease in the presence of biochar
applications to surface soils, but more often wood charcoal has
increased nodulation or N2 fixation in legumes (see DeLuca et al.,
2015). Further, numerous studies have demonstrated an increase
inmycorrhizal infection rates in the presence of wood char (Thies
et al., 2015). However, there has been no strenuous effort to date
to evaluate the influence of PyC on signaling-mediated processes
in natural forest or prairie ecosystems.

MICROSITE EFFECTS

The presence of PyC in soils may also serve an important
function by creating bioactive zones through the addition
of a heterogeneous environment facilitated by the particulate
and porous nature of PyC particles, which provides nutrients,
organic matter, water availability, and refuge for some organisms
(Figure 1). Pyrogenic C particles have been cited as creating
a novel substrate for microbial growth and as physical habitat
for microbes (Pietikäinen et al., 2000; Quilliam et al., 2013;
Thies et al., 2015), which may aid in the recovery of
surface soils exposed to wildfires or intense prescribed fires.
PyC microsites are likely to elicit diverse interactions with
surrounding biotic and abiotic constituents in soils as they
are most likely to affect plant-microbe-soil interactions in the
“charosphere,” the soil immediately surrounding a PyC particle
(Quilliam et al., 2013).

Surface heterogeneity in naturally-produced PyC particles
can further increase soil microorganism activity and abundance
via adsorption of compounds utilized as substrate and physical
microsites for the exchange of water and gas that may
influence redox conditions. While these mechanisms have
been evaluated in biochar studies wherein strict pyrolysis
conditions and a narrow selection of feedstock were applied
to agriculture soils, they have rarely been investigated in
natural soils (Briones, 2012; Joseph et al., 2013). Evidence
of microbial substrate utilization of adsorbed compounds on
PyC surfaces is limited outside of biochar applications, but
suggests that surface sorption may play an important role in
providing microorganisms with nutrients and C compounds for
metabolic oxidation as well as altering the microbial community
(Zackrisson et al., 1996; Singh et al., 2014; Kolton et al.,
2017). Negative C mineralization priming in high-temperature-
produced biochar treatments may be related to the adsorption of
C substrate (Zimmerman et al., 2011). Additionally, the similarity
of dissolved organic matter released by aged PyC particles
to products of polycyclic aromatic hydrocarbon biological
decomposition suggests microbial oxidation of PyC (Hockaday
et al., 2006, 2007). Enzymatic oxidation of aromatic C structures
in lignin, humic acids, and coal are documented and utilized in
the bioenergy industry (see review by Fakoussa and Hofrichter,
1999), but have yet to be explored in microbial decomposition
of naturally-produced PyC in soils where regular fire events are
likely to sustain the activity of microbial populations responsible
for such processes. Studies of 14C labeled biochar mineralization
clearly show that PyC is not resistant tomicrobial decomposition,
however, the interactions between adsorbed substrate utilization
and enzymatic oxidation of PyC remain poorly understood
(Hamer et al., 2004; Bruun et al., 2008; Kuzyakov et al.,
2009; Jones et al., 2011; Quilliam et al., 2013; Maestrini et al.,
2014).

There are numerous examples of microbial hyphae habitation
of internal and external PyC surfaces via pore infiltration.
Wildfire-produced PyC exposed to weathering in forest soils
over many decades is often physically inhabited by fine roots,
filamentous microorganisms, and coated by minerals compared
to recently formed PyC (Zackrisson et al., 1996; Hockaday
et al., 2007). Internal and external pores on PyC particles
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have often been cited as providing the potential for microbial
habitation as refuge from predators, increasing water holding
capacity, providing gas exchange, and increasing redox potential
(Lehmann et al., 2011; Thies et al., 2015). However, no
quantitative efforts have been undertaken to directly connect
microbial abundance, activity, or composition with pore size
and distribution of wildfire-deposited PyC particles. Further, PyC
and its pore distribution is not a static entity, but an attribute
that changes with the numerous physical disturbances presented
in terrestrial environment. Subsequent wildfires may further
pyrolyze PyC and physical processes of freezing and thawing,
wetting and drying, wind abrasion, or bioturbation all may lead
to partial disintegration of PyC thereby exposing internal surfaces
or degrading small pores (Gao et al., 2017). Additionally, the
incorporation of PyC bark from tree boles can provide a delayed
input of PyC onto soil surfaces that may exhibit larger pore sizes
after prolonged physical weathering (Makoto et al., 2012; Gao
et al., 2017).

FUTURE RESEARCH DIRECTIONS

The historical occurrence of wildfires and anthropogenic fires
has yielded a rich ex post facto experimental design of varied
length that allows us to evaluate both the recalcitrance of
PyC as well as the functional properties of PyC in terrestrial

ecosystems. Knowledge gained from these studies can be used
to help elucidate the long-term fate and function of biochar
in agricultural soils, which is otherwise limited to “long-term”
studies of 10 years or less. Interest in PyC for its role in C storage
has also created a foundation for C accounting in isolated studies;
however, studies lack the use of systematic, consistent approaches
to PyC quantification in post-fire surveys that could provide
vital information in a thorough understanding the global C cycle
(Parson et al., 2010; Santín et al., 2015). Combining fire ecology,
fire science, and PyC research has the potential to directly link
wildfire and prescribed fire conditions (such as temperature,
duration, fuel load, etc.) to PyC production and characteristics
to achieve a better understanding of how fires alter C dynamics
and plant-soil-microbe relationships through the deposition of
PyC. Studies of PyC occupy a unique place in science as a focal
point in paleobotany, paleoecology, archeology, agriculture, and
ecological research for decades, which collectively lend to amulti-
disciplinary research potential that may lead to a broadened
understanding of fire ecology and the role of PyC in ecosystem
diversity and function.
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