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Over the last decade, engineered nanomaterials (NMs) brought a revolutionary

development in many sectors of human life including electronics, paints, textiles, food,

agriculture, and health care. However, the exponential growth in the number of NMs

applications resulted in uncertainties regarding their environmental impacts. Currently,

the common approach for assessing the toxicity of NMs such as, carbon—(fullerenes,

single- and multi-walled carbon nanotubes), mineral—(gold and silver nanoparticles,

cerium and zinc oxide, silicon and titanium dioxide), and organic-based NMs (dendrimers)

includes standard guidelines applied to all chemical compounds. Nevertheless, NMs

differ from traditional materials as their physicochemical and surface properties influence

the toxic rather than their composition alone. Considering such NMs specificities,

adaptations in some methods are necessary to ensure that environmental and human

health risks are accurately investigated. In this context, the focus of this mini-review is to

summarize the current knowledge in nanotoxicology regarding relevant organisms and

experimental assays for assessing the terrestrial toxicity of NMs.

Keywords: Enchytraeus albidus, Caenorhabditis elegans, nanoparticles, nanotoxicity, standard guidelines

INTRODUCTION

Engineered nanomaterials (NMs) are defined by the International Organization for
Standardization (ISO) as those intentionally produced to have specific purpose or function,
with at least one external dimension, or presenting an internal or surface structure in the nanoscale
(∼1 to 100 nm) (ISO/TS 80004-1, 2015). Due to their unique physicochemical properties, the
production and use of these NMs are increasing exponentially in all sectors of human life,
consequently, their amount released into the environment during all stages of their lifespan
(production, use, and disposal).

Ecotoxicity testing of NMs is a challenge considering the lack of information related
to fate, potential interactions, and behavior of the NMs in the surrounding environments.
Furthermore, abiotic factors can influence specific physicochemical properties of NMs affecting
their bioavailability and toxicity (El Badawy et al., 2010; Grillo et al., 2015). Thus, to ensure
the reliability and reproducibility of ecotoxicity tests, NMs should be accurately characterized in
multiple life cycle endpoints and the experimental parameters should be carefully chosen (Holden
et al., 2016).

The Organization for Economic Cooperation and Development (OECD) has published
several guidelines for assessing the potential effects of conventional chemicals on human health
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and environment1 Regarding NMs, the consensus in the
scientific and regulatory communities is that many current health
effects and ecotoxicology test guidelines (TG) for conventional
chemicals apply to NMs. However, these TG need revision
taking into account the specificities of the NMs and guidance
on NMs preparation, delivery, and metrology need development
for toxicity testing (OECD, 2009a; ECHA, 2014; Rasmussen et al.,
2016).

The in vivo studies are still the gold standard to predict human
toxicity. Nevertheless, following the 3R principle (Replacement,
Reduction, and Refinement), the use of lower organism in the
initial screening is recommended to replace and reduce the use of
vertebrates test species. The purpose of the present mini-review
is therefore to describe some of the more relevant organisms and
protocols that have been used for terrestrial toxicity testing of
NMs.

CURRENT TERRESTRIAL TOXICITY TESTS

Environmental hazard assessment in the terrestrial media can
be performed using a suite of tests as standardized by OECD
and ISO, an example update can be found in (Amorim et al.,
2016). These tests are performed on animals that may be
exposed directly or indirectly to the contaminated soil including
microorganisms, soil invertebrates, and vertebrates. Among these
models we, highlight the most often used models from lower
organism to higher mammal models.

Nematode Toxicity Studies: Caenorhabditis
elegans
Caenorhabditis elegans is abundant in ecosystems and plays a
major role in the decomposition of soil organic matter and
nutrient cycling. Many C. elegans characteristics are desirable
for toxicological studies, such as small size (1mm in length),
optically transparency, readily propagation (generation time
approximately 3 days), and simple anatomy (959 identified
somatic cells in the adult, in addition to programmed cell death
in others 131 cells during development; Brenner, 1974; Sulston
et al., 1983). Hence, C. elegans can be used in different types
of toxicological assays, including high-throughput screening,
which is limited in more complex animals. Additionally, the
complete sequence of C. elegans, finished in 2002, allows a full
characterization of new genes and proteins those are relevant in
mediating human diseases (C. elegans Sequencing Consortium,
1998). Many mutants have been generated, thus permitting
the search for mechanistic toxicity. Furthermore, proteins can
be tagged with green fluorescent protein (GFP), allowing the
visualization of dopaminergic neurons, for example (Chalfie
et al., 1994).

Several endpoints can be carried out to assess the toxic effects
of chemicals on C. elegans (Figure 1). Worms can be exposed
to NMs in different types of media such as, liquid (M9 buffer,
saline, K or S medium), solid (nematode growth medium or
OP50 medium), or directly in soil samples. The absorption of the
chemicals occurs mainly through the mouth, whereas the thick

1http://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.
htm.

FIGURE 1 | Biological and molecular endpoints that can be assessed in

C. elegans following exposure to nanomaterials.

cuticle absorbs very little. Regarding exposure time, worms can be
exposed acutely (30min, for example) or throughout their whole
life.

Regarding NMs, the evaluation of their potential toxic effects
has become necessary, as there is a growing concern on the
short and long-terms effects following exposure. Among the
available models, C. elegans characteristics advise for using this
nematode as a living system for the primary screening of NMs
toxicity (Gonzalez-Moragas et al., 2015). One of the most tested
NMs is silver nanoparticles (AgNPs). In worms, treatment using
sublethal concentrations of AgNPs could lead to neurotoxicity.
Exposure to 100mg AgNPs/L reduced the velocity, flex,
amplitude, and wavelength of the body bend of exposed worms,
which was worsened in the progeny (Contreras et al., 2014). Of
note, worms locomotion is regulated by gamma-aminobutyric
acid-ergic (GABAergic), cholinergic and dopaminergic neurons,
then alteration in these parameters may indicate neuronal
damage (Jorgensen, 2005; Rand, 2007). Additionally, AgNP is
reported to reduce survival and reproductivity in C. elegans,
and also to cause severe edema after being in contact with the
biological surfaces of the worm (Kim et al., 2012).
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The toxicity of titanium dioxide (TiO2), zinc oxide, and
silicon dioxide (SiO2) nanoparticles (NPs) has been compared
using different approaches such as, lethality, locomotion, growth,
reproduction, and the production of reactive oxygen species (Wu
et al., 2013). Particularly, TiO2 NPs led to a substantial decrease in
both head thrash or body bend in superoxide dismutase (SOD)-2,
SOD-3, metallothionein-2, and heat shock protein-16.48mutants
compared to the wild-type (Wu et al., 2014). These findings
suggest that the lack of SOD isoforms, metallothioneins, and
heat shock proteins, which are proteins involved in oxidative
stress protection and metal elimination, render worms more
susceptible to these NPs. In an attempt to reduce NPs toxicity,
polymeric coatings have been used to increase water solubility, to
reduce toxicity and to direct site-specific metal delivery (Subbiah
et al., 2010; Thanh and Green, 2010).

Long-term early onset exposure to Cadmium Telluride
quantum dots (CdTe QD-0.1 and 1 µg/L) caused abnormal
foraging behavior, which is related to the altered function of
the motor neurons (Zhao et al., 2015). In accordance, there
was a decreased fluorescence of motor neurons cell bodies,
indicating an alteration in their development. Furthermore,
authors demonstrated that these CdTeQDs crossed the intestinal
barrier and reached RME neurons, which are GABAergic motor
neurons.

Regarding organic based NMs, hydroxylated fullerene NPs
were reported being able to induce apoptosis in C. elegans (Cha
et al., 2012). In fact, organic polymeric NPs toxicity assessment
is still scarce in the literature. It has been demonstrated
that melatonin-loaded-lipid core nanocapsules showed better
antioxidant activity than free melatonin (Charão et al., 2015).
Besides, a study with acute exposure to polysorbate coated
polymeric nanocapsules loaded with clozapine showed that the
nanoencapsulation reduced the toxicity of the antipsychotic
(Sanches Moraes et al., 2016). However, this study demonstrated
an acute toxicity of the formulation without the drug, which was
not observed in a long-termmanner. Notably, a recent study with
nanopesticides showed that unloaded formulations have a strong
toxic effect in worms, reducing survival, brood size, and delaying
worms development (Jacques et al., 2017). By using fluorescent
formulations, it was observed that they remained in the intestine
of the worms, which may be the cause of the toxic effects.

Enchytraeid Toxicity Studies: Enchytraeus
crypticus/Enchytraeus albidus
Enchytraeids are abundant soil organisms with worldwide
distribution. They often live in the actual soil layer and provide
important functions to the soil ecosystem, mostly indirectly,
facilitating the organic matter turnover. They are sensitive to
chemicals and stressors; hence the enchytraeid reproduction test
(ERT), a chronic laboratory test for the testing of chemicals and
soil quality assessment, was developed for E. albidus (Römbke
and Moser, 2002). It has standard guidelines by ISO (ISO 16387,
2014) and OECD (OECD, 2016) where several test species can be
used. E. crypticus has a shorter life cycle and is among the test
species of choice in recent years. It has been given considerable
focus and has currently an extensive suite of tools available

for hazard assessment, far beyond the standard ecotoxicity test
battery of many other species. The tools cover bioaccumulation
(Amorim et al., 2011), avoidance (Bicho et al., 2015a), full life
cycle test (Bicho et al., 2015b, 2016, 2017a; Santos et al., 2017),
embryotoxicity (Gonçalves et al., 2015), full life span (Gonçalves
et al., 2017), multigenerational (Bicho et al., 2017b), multispecies
(mesocosm) system (SMS) (Menezes-Oliveira et al., 2013), full
transcriptome and microarray tool (Castro-Ferreira et al., 2014;
Gomes et al., 2017), oxidative stress biomarkers (Ribeiro et al.,
2015), energy metabolism and cellular energy allocation (Gomes
et al., 2015a), genotoxicity via the comet assay (Maria et al., 2017),
and metabolomics and proteomics. This species has further
potential as it can be exposed via water for a short period and
hence allows the assessment of other routes of exposure (Gomes
et al., 2015b).

An essential element of a systems toxicology approach is
to have a broad combination of tools and endpoints being
able to cover many levels of biological organization; therefore
E. crypticus is an exquisite model at the moment. With
this species, effects can be assessed by the transcriptome
and metabolome, which can underpin mechanisms but also
generate hypothesis for further testing. This is very important
in an intelligent testing strategy context where efforts must be
dedicated and prioritized. At the cellular level, various tools
are optimized covering oxidative stress biomarkers, histology,
embryo development, or cellular energy allocation. Organism
level effects are broadly populated with results for avoidance
behavior, survival, reproduction, and kinetics (bioaccumulation).
More recently, a full life cycle test is also available, including
hatching success, growth, and maturity besides survival and
reproduction endpoints. This species has also an established
procedure for a full life span test andmultigenerational. The latter
allows the assessment of epigenetic potential.

E. crypticus has been successfully used for assessing the
effects of several NMs including silver, copper, nickel, TiO2,
silica, iron oxide, tungsten carbide cobalt, multi-wall carbon
nanotubes (MWCNTs), organic pigments, and nanopesticides.
Adaptations to existing guidelines or developments of novel tools
have been made. For example, the full life cycle test (46 days),
an extension of the standard reproduction test (21 days), where
effects could be discriminated between nano and non-nano form
materials such as silver. Bicho and co-workers observed that
embryo development, hatching, and survival of juveniles were
less affected by silver nitrate than AgNPs (Ag NM300K) (Bicho
et al., 2016). In this case study, it was clear that the standard
guideline was too limited compared to the full life cycle test.

Concerning novel tools, the full life span test was developed
considering the issues of long term testing and NMs persistency.
As shown, exposure to copper oxide nanomaterials at the
reproduction EC50 caused shorter longevity than exposure
to copper-salt, bringing a novel concept to ecotoxicology
(Gonçalves et al., 2017).

In sum, the tools are available and the potential for in-depth
studies should be explored. Although, E. crypticus will not cover
the effects of all terrestrial ecosystem and the use of different
species is always recommended, preferably including differing life
traits and taxonomic groups.
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Mammalian Toxicity (Rodents)
The ecological soil screening levels for mammals considered two
potential exposure pathways to chemicals: incidental ingestion
of contaminated soil, and ingestion of contaminated food items
(EPA, 2007). Regarding NMs occupational safety, the importance
of gastrointestinal tract is nil in comparison to respiratory
airways. However, if the NMs are applied on food items the
evaluation of oral toxicity become essential (Pachapur et al.,
2015).

Oral and inhalation toxicity studies should be performed
in at least one mammalian species. Following OECD TG,
rats are the preferred rodent species for the studies unless
a species more representative of human toxicity is known.
Rodents have been preferred due to their extensive use
in pharmacological and toxicological studies, relatively short
life cycle, susceptibility to tumor induction, and availability
of characterized strains. Consequently, their physiology and
pathology characteristics have been well-documented in several
studies.

To test acute oral and inhalation toxicity, there are four
OECD TG (420, 423, 425, and 403) and two US Environmental
Protection Agency (EPA) TG (OPPTS 870.1100, 870.1300). In
these guidelines, female rats are normally used as their Lethal
dose (LD50)-value is slightly lower than in males indicating a
higher sensitivity. However, if males could be more susceptible
to the test compound, then males or both sexes should be
used. Following the single treatment using the test compound,

animals should be observed daily for mortality, body weight
changes, and clinical signs of toxicity including alterations in
behavior patterns and physiological functions that indicated an
abnormal function of circulatory, respiratory, autonomic, and
central nervous systems. After 14 days, the animals should be
sacrificed, and pathological changes evaluated (EPA, 1998a, 2002;
OECD, 2002a,b; OECD, 2008b, 2009b).

Additionally, sub-chronic and chronic toxicity studies should
be performed to determine the toxicological profile of the new
compound after repeated oral (OECD TG 407, 408; OPPTS
870.3050, 870.3100) or inhalation exposure (OECD TG 412, 413;
OPPTS 870.3465). These studies provide detailed information
about the potential target organs of toxicity, the exposure-
response relationships, as well as the potential reversibility of the
toxic effects (EPA, 1998b,c, 2000; OECD, 1998, 2008a, 2009c,d).
Furthermore, significant data on nervous, immune, endocrine,
and reproductive systems can also be obtained even specific
guidelines are available to investigate these endpoints. Table 1
summarizes the OECD guidelines for acute and repeated dose
toxicity studies.

In a 28-day rat oral toxicity study, the effects of 1,000 mg/kg
bw/day of barium sulfate, two surface-functionalized zirconium
dioxide, and four amorphous SiO2 NPs with or without surface
functionalization were evaluated according to OECD TG 407.
None of the tested nanomaterials cause local or systemic effects
(Buesen et al., 2014). Similarly, studies performed by Matsumoto
and co-workers did not reveal toxic effects after acute and

TABLE 1 | OECD guidelines for acute and repeated toxicity studies.

Guideline n◦ Guideline title Duration Species/Sex Principal endpoints

OECD 220 Enchytraeid reproduction test 42 days Enchytraeus albidus Mortality; Reproduction; Median Lethal

Concentration (LC50); Median Effective

Concentration (EC50); No Observed Effect

Concentration (NOEC) and/or Effective

Concentration (ECx)

OECD 420

OECD 423

OECD 425

Acute oral toxicity—fixed dose procedure

Acute oral toxicity—acute toxic class method

Acute oral toxicity: up-and-down procedure

14 days

(single dose)

Rats/Normally females Clinical signs of toxicity; body weight

changes; gross necropsy; histopathological

examination*; LD50

OECD 407

OECD 408

Repeated dose 28-day oral toxicity study in rodents

Repeated dose 90-day oral toxicity study in rodents

28 days (daily dose)

90 days (daily dose)

Rodents (rat

preferably)/Males and

females

Clinical signs of toxicity; body weight and

food/water consumption; hematology and

clinical biochemistry; gross necropsy/organs

weight; full histopathological examination.

OECD 403 Acute inhalation toxicity 14 days (One exposure

session) Traditional: fixed

period of time (up to 6 h);

Nose- or whole body-only

C x t: multiple time

durations; Nose-only

Rat

preferably/Susceptible

sex.

Clinical signs of toxicity; body weight

changes; gross necropsy; lung weight;

microscopic examination of the entire

respiratory tract; histopathological

examination*

OECD 412 Subacute inhalation toxicity: 28-day study 28 days (6 h/daily exposure

session)

Rodents/Males and

females

Clinical signs of toxicity; body weight

changes; hematology and clinical

biochemistry; gross necropsy/organs

weight; full histopathological examination.

OECD 413 Subchronic inhalation toxicity: 90-day Study 90 days (6 h/daily exposure

session)

Preferred species are

rats/Males and females

Clinical signs of toxicity; body weight

changes; hematology and clinical

biochemistry; gross necropsy/organs

weight; full histopathological examination.

*Microscopic examination of organs showing evidence of gross pathology in animals surviving 24 or more hours, and organs known or expected to be affected.C × t, Concentration ×

Time protocol.
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repeated oral doses of single- or multi-wall carbon nanotubes
(Matsumoto et al., 2012).

The toxicity of MWCNTs is more adverse in the case of
inhalation as compared to oral exposure. Rats exposed to 2.5
mg/m3 MWCNTs for 6 h/day during 5 consecutive days using a
head-nose system demonstrated signs of pulmonary toxicity such
as, microgranulomas and diffuse alveolar histiocytosis (Ma-Hock
et al., 2013). After a 13-week exposure period, the inhalation
of 2.5 mg/m3 MWCNTs induced systemic inflammation and
histopathological abnormalities in the lungs, lymph nodes, nasal
cavity, larynx, and trachea (Ma-Hock et al., 2009).

The inhalation models performed in rats have some
limitations, and it is important to consider the interspecies
differences in physiology. Animal models exhibited differences in
the breathing pattern when compared to humans however they
can provide evidence on the fate of inhaled nanomaterials and
their biological interactions (Fröhlich and Salar-behzadi, 2014).

CONCLUSIONS

The exponential growth of nanomaterials has broad
ecotoxicological implications because of their potential impacts
on the environment. The use of internationally accepted test
guidelines helps to improve the reproducibility, reliability,

and data quality of the studies and contribute to support a
common regulatory framework. Herein, we summarize some
of the current test guidelines and the understanding of NMs
toxicity to terrestrial representative species of various trophic
levels, including E. crypticus/E. albidus, C. elegans, and rodents.
Combining observations assessed on organisms from different
phyla and using different methodologies allows for more accurate
environmental monitoring and is recommended.
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