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Introduction: Heart Rate Variability (HRV) reflects the adaptability of the heart to

internal and external stimuli. Reduced HRV is a predictor of post-infarction mortality.

We previously found in road maintenance workers HRV-increases several hours after

exposure to fine particulate matter (PM2.5). This seemed to conflict with studies where

PM-exposure acutely reduced HRV. We therefore assessed whether time from exposure

to HRV-assessment could explain the differences observed.

Methods: On five non-consecutive days, workers carried nephelometers providing

1-min-interval PM2.5-exposure. Five-min HRV-intervals of SDNN (Standard Deviation of

Normal to Normal beat intervals) and pNN50 (Percentage of the interval differences

exceeding 50ms) were extracted from 24-h electrocardiograms (ECGs). Following 60min

PM2.5-exposure, changes in HRV-parameters were assessed during 120-min visually

and by regression analysis with control for time at work, at home, and during the

night using autoregressive integrating moving average (ARIMA) models to account

for autocorrelation of the time-series. Additional controls included changing the time

windows and including body mass index (BMI) and age in the models.

Result: Pattern analysis of 12,669 data points showed high modulation of mean,

standard deviation (SD), and time trend of HRV (SDNN and pNN50) at low, and much

reduced modulation at high PM2.5-exposures. The time trend following exposure was

highly symmetrical, resembling a funnel plot. Regression analysis showed significant

associations of decreasing SDNN and pNN50 (average, SD, and absolute value of

time trend) with increasing PM2.5-exposure, which remained significant when controlling

for activity phases. Changing time windows did not change the pattern of response.

Including BMI and age did not change the results.

Conclusions: The reduced modulation of HRV following PM2.5-exposure is striking.

It suggests strong interference with homeostatic controls. Such an interference would

represent a serious bodily burden, and could help explain acute cardiac events. In this

model, the increase of HRV several hours later would reflect a recovery response.

Keywords: heart rate variability, fine particulate matter, acute exposure, homeostatic interference, ARIMA

methodology
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INTRODUCTION

Heart Rate Variability (HRV) describes the variation of the timing
between individual heart beats. It is a consequence of the heart’s
response to a series of internal and external stimuli such as
respiration, baroreceptor feedback loop, and parasympathetic
and sympathetic nervous system activity (Billman, 2011; Shaffer
et al., 2014). Elevated HRV is a sign for a healthy cardiovascular
system, while reduced HRV is a predictor of post-infarct
mortality (Billman, 2011), cardiac events in healthy individuals
(Tsuji et al., 1996), and incident heart failure in older at-
risk adults (Patel et al., 2017). Most commonly assessed are
the time- or the frequency-domain of HRV, though a large
number of mathematical and statistical approaches are available
(Electrophysiology Taskforce Guidelines, 1996; Sassi et al., 2015).
Amongst the frequently used time domain parameters are SDNN
(Standard Deviation of Normal to Normal beat intervals) and
pNN50 (Percentage of the interval differences exceeding 50ms):
SDNN was found to reflect overall autonomic activity and
cardiovascular fitness (Electrophysiology Taskforce Guidelines,
1996; Tsuji et al., 1996; Da Silva et al., 2015), While PNN50 is
frequently used to assess parasympathetic activity (Ewing et al.,
1984; Electrophysiology Taskforce Guidelines, 1996; Tsuji et al.,
1996; Mietus et al., 2002).

Fine particulate matter (PM) on roads originates to an
important part from traffic and combustion engines which
release particles and precursors of secondary aerosols into the
air (Riediker et al., 2003; Putaud et al., 2010; Meier et al., 2013).
High concentrations occur in particular along busy roads such
as highways, which are depending on factors such as traffic
counts but also weather and wind (Imhof et al., 2005; Zwack
et al., 2011). Workers maintaining the highways will experience
exposure to PM2.5 that originates from the general background,
from the passing traffic and also the different work tasks (Meier
et al., 2013). Exposure to airborne PM is a well-established
risk for human health (Brook et al., 2010; Landrigan et al.,
2017), in particular fine (PM2.5) and ultrafine PM increases both
short- and long-term cardiovascular risk. PM negatively affects
cardiovascular risk factors (reviewed by Brook et al., 2010) such
as inflammation (Tsai et al., 2012a), sodium regulation by the
kidney (Tsai et al., 2012b), pulse pressure (Tsai et al., 2015), and
metabolic syndrome (Brook et al., 2013; Devlin et al., 2014).
PM is associated with cardiac arrhythmias (Kowalska and Kocot,
2016; Mordukhovich et al., 2016; Song et al., 2016), arrhythmic
events are more frequently detected and treated by implanted
cardioverter-defibrillators (Dockery et al., 2005; Metzger et al.,
2007; Link et al., 2013), and people spending time in traffic
are more likely to suffer a heart attack within the hour (Peters
et al., 2004). In line with these ill-health effects of PM was
the observation that PM2.5 exposure is associated with reduced
HRV: in controlled exposure of rats to PM2.5, HRV was reduced
during ongoing exposure (Wagner et al., 2014). In a series of
epidemiological (Pope et al., 2003; Wu et al., 2010; Huang et al.,
2014; Nyhan et al., 2014; Mordukhovich et al., 2015; Lee et al.,
2016) as well as controlled PM-exposure (Devlin et al., 2003;
Weichenthal et al., 2014; Cole-Hunter et al., 2015; Hemmingsen
et al., 2015) studies, small reductions in HRVwithin an hour after

PM exposure were observed. However, a recent meta-analysis
of panel studies investigating HRV effects of PM2.5 (Buteau
and Goldberg, 2016) questioned the association between PM2.5

and frequently used indices of HRV. Indeed, in our own two
studies in healthy workers, we had found increased HRV (SDNN
and PNN50) in the morning after exposure to traffic particles
(Riediker et al., 2004a,b; Riediker, 2007; Meier et al., 2014). In
the study with highway patrol troopers, we had also assessed an
intermediary point at the end of the working day, which was
well after peak rush hour exposure (Riediker et al., 2004a). At
that intermediary point, no associations between PM2.5 and HRV
were observed. The time from exposure to HRV analysis varies
strongly between studies, an aspect that was not further assessed
in the aforementioned review (Buteau and Goldberg, 2016). In
this study, we aimed to understand if differences in time from
exposure until the HRV-response assessment could explain the
differences in HRV-association with PM2.5. For this purpose, we
assessed the immediate HRV response to particles by analyzing
the time-series of electrocardiograms (ECGs) and PM2.5 obtained
in the highway maintenance workers study (Meier et al., 2014)
where we had found increases of HRV in the morning after
exposure. In addition, we aimed to better understand the way
HRV was acutely changed and thus assessed (in addition to
changes in average HRV) also the modulation of HRV over a 2-h
time window following exposure and the time-trend of the series
of 5-min averages of HRV during this time window.

METHODS

We analyzed PM2.5-exposure and ECG data collected from a
panel of 18 healthy male Swiss highway maintenance workers
from 10 different maintenance centers in western Switzerland.
The study was approved by the Ethics Committee of the
University of Lausanne. All subjects gave written informed
consent prior to participation in the study. The here presented
analysis focused on the effects of continuously measured PM2.5

onHRV. Themethodology to collect exposure (Meier et al., 2013)
and health (Meier et al., 2014) data was previously described in
detail. Briefly, subjects were equipped in the morning before the
start of their work with small devices to record ECG and personal
PM2.5-exposure for 24-h. Twelve ECG leads were attached by
a trained researcher, then connected to a. digital ECG Holter
monitor recorder (H12+ Digital, Mortara Instrument, Inc.,
Milwaukee, WI, USA).The high-resolution ECG records were
afterwards processed with H-Scribe+ software, and inspected
manually by an experienced cardiologist (Wayne E. Cascio,
U.S. EPA, Chapel Hill, NC, USA) to remove artifacts and non-
normal beats. Processed ECG-derived HRV data was recorded
at 5-min resolution. PM2.5 was measured at 1-min resolution
by light scattering nephelometers (DataRam pDR1000, Thermo
Scientific, Waltham, MA, USA). This averaging time gives a
precision of ±0.2% of reading or ±0.005 mg/m3, whichever is
larger (manufacturer specification). We further improved the
readout by correcting if for humidity (Richards, 1999). The
monitor was attached to the body near the breathing zone while
the worker was awake; and placed on the bed side table during
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sleep. The 1-min recordings were condensed into 5-min average
intervals so that they matched the time intervals of the ECGs.
Logbooks were used to identify activity phases at work, at home
and at night, defined as the time between 22:00 and 06:00.
Subjects participated up to five times on non-consecutive days.

Statistical Analyses
From the time-series of PM2.5 recordings, moving average
concentrations were calculated for 60-min time-windows. From
the HRV-recordings (5-min interval SDNN and pNN50), the
following summary variables were calculated for moving time-
windows of 120 min: mean HRV-value, Standard Deviation (SD)
of the HRV, the time-trend (expressed as the slope over time)
of HRV during this time window and the absolute value of
the time trend. These HRV summary-variables were compared
to the preceding PM2.5-exposure (example shown in Figure 1).
The time intervals were defined based on the hypothesis that
effects would occur already within the first 2-h after exposure,
and the attempt to have a sufficiently large number of data-
points per interval to allow for a robust assessment. The
consequences of changing the averaging intervals were tested
in a sensitivity analysis. The influence of activity phase at the
moment of exposure (at work, home, or night) was assessed
both, by stratification and calculation of the effect estimates
for each strata, and by including activity phase as a co-factor
in the models. The ARIMA methodology was used to account
for second-order autocorrelation of the time-series. The models
were computed individually for each person and the resulting
coefficients were combined using a meta-analysis approach to
obtain the population coefficients and variances. To account for
the skewed distribution, PM2.5 was log-transformed (in basis 2)
when fitting the models. To enable a comparison among results
involving different cardiac parameters, all these parameters were
standardized for each individual by subtracting the mean from
the individual observations and dividing the difference by the
parameter’s SD. The potential influence of age and body mass
index (BMI) on the individuals’ effect estimates was assessed by
using Spearman rank test. Calculations were performed using
the basic functions of the R statistical software package Forecast
version 7.3.

RESULTS

Data were collected on 50 days from 18 workers, resulting in
88 personal observation-days. On 77 of these days both, valid
PM2.5 and HRV data were available to calculate HRV and PM2.5

parameters. The resulting 12,669 ECG data points and matching
exposure data were used for analysis (summarized in Table 1).
Mean PM2.5-exposure at work was about double than that at
home and about four times the night values. SDNN during wake
phases was slightly smaller than during the night, pNN50 was
lowest at work and highest during the night.

Plotting mean and SD of 120min of SDNN and pNN50
against 60min of preceding PM2.5-exposure (Figure 2) showed
a wide range of values at low concentrations and a smaller
range at higher concentrations, while visually, there was no clear
difference in mean value for different exposure levels. The SD of

5-min HRV over the 2-h following exposure showed a similar
pattern as the mean (Figure 2). However, plotting the time trend
of SDNN and pNN50 following the different exposure levels
(Figure 2) revealed a very symmetrical pattern of time trend-
values being highly variable at low exposure and close to zero at
elevated exposures, yielding a typical appearance of a funnel plot.
This pattern was highly significant, as revealed in the regression
analysis below. A similar pattern was observed for all activity
phases (work, home, night).

Regression analysis of SDNN and pNN50 parameters (mean,
SD and absolute value of the time trend) against exposure
(Table 2) showed significant negative PM2.5 effect estimates for
all three parameters of SDNN and pNN50. Control for activity
phases at work, at home and during the night reduced the effect
estimates but all remained significant at the 5% significance
level. Neither age nor BMI were statistically significantly related
to the individual effect estimates. Stratified analyses also show
significant effect estimates in most strata (Table 3).

In a sensitivity analysis, the influence of the averaging times
was tested by shortening and increasing the intervals. The
visual pattern remained similar at all tested interval lengths and
combinations (examples of tested variants shown in Figure 3).
The effect estimates (all tested combinations shown in Table 4)
for mean and SD of SDNN and pNN50 remained significant in
most tested variants, while the absolute value of the time trends
of SDNN and pNN50 were significant only for the longer time
windows after control for activity (at least 40min of exposure, at
least 80min of HRV).

DISCUSSION

Acute exposure to PM2.5 was followed by reduced HRV, which
is in agreement with previous studies (Pope et al., 2003; Wu
et al., 2010; Huang et al., 2014; Nyhan et al., 2014; Mordukhovich
et al., 2015; Lee et al., 2016). Different from those studies, we also
assessed whether HRV shows a time-trend to increase or decrease
after high exposures. The scatterplots showing the time trends
of SDNN and pNN50 vs. PM2.5 have a remarkable appearance
of a “funnel plot”: whereas we had approximately as many
increasing and decreasing time trends, compensating each other
and averaging zero, whatever the value of PM2.5, the values of the
time trends (whether increasing or decreasing) were consistently
distributed over a wide range for low exposures and distributed
in a very narrow range for high exposures (Figure 2).

The pattern of reduced modulation of HRV at elevated
PM2.5-levels exists for all three activity phases assessed (work,
home, at night), though the pattern is easiest to be recognized
visually for the working hours. This is remarkable because the
exposure at home and at night is representing what the normal
(Swiss) population experiences, which is quite low. In contrast,
the working exposure is reflective of the workplace along the
highways with occasionally very high exposure levels (Riediker
et al., 2003; Meier et al., 2013). In many major cities in low-
income countries around the globe similar. Concentrations are at
similar or even higher levels than those found at the workplace of
these Swiss highway maintenance teams (Landrigan et al., 2017).
The here observed striking work-time effects can be expected in
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FIGURE 1 | Example of a time series of PM2.5 and HRV of one 24-h recording of one subject. Upper: PM2.5, Lower: SDNN. The mean exposure over 1-h was

compared to mean, standard deviation (SD), and slope of HRV in the 2-h following the exposure.

TABLE 1 | Summary statistics of assessed data.

Parameter All activity phases mean (range) Work only mean (range) Home only mean (range) Night only mean (range)

n 1,1941 3,887 3,605 4,449

PM2.5 (60min mean) (µg/m3) 51.35 (0.026–3333) 88.48 (0.368–3333) 48.17 (0.026–2129) 21.5 (0.026–148.1)

SDNN (120min mean) (ms) 72.44 (14.91–240.2) 63.28 (22.52–158.30) 63.4 (17.74–205.3) 87.75 (14.91–240.2)

pNN50 (120min mean) (%) 13.32 (0–86.67) 5.63 (0–56.38) 11.04 (0–77) 21.89 (0–86.67)

FIGURE 2 | Comparison of HRV parameters SDNN (top) and pNN50 (bottom) after PM2.5-exposure: Average HRV (Left), the standard deviation of HRV (Middle),

and the time trend of HRV following exposure (Right). A dotted line shows the arithmetic average of the HRV variable, colors code the different activity phases.
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FIGURE 3 | Examples of the scatterplots comparing exposure and time trend (slope over time) for other averaging time windows for the absolute values of the time

trend of SDNN, created as part of the sensitivity analysis.

Frontiers in Environmental Science | www.frontiersin.org 5 January 2018 | Volume 6 | Article 2

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Riediker et al. PM2.5 Modulates Heart Rate Variability

TABLE 2 | Association of 1-h exposure to PM2.5 with mean, SD, and absolute value of the time trend of SDNN and pNN50 (controlled for activity phase) in the following

2-h.

Model Standardized SDNN effect

estimates per log2(PM2.5)

p-value Standardized pNN50 effect

estimates per log2(PM2.5)

p-value

Crude: mean ∼ PM2.5 −1.449 <0.001 −0.997 0.008

Controlled: mean ∼ PM2.5 −1.026 <0.001 −0.829 0.012

Crude: SD ∼ PM2.5 −1.158 <0.001 −0.977 <0.001

Controlled: SD ∼ PM2.5 −0.685 <0.001 −0.800 <0.001

Crude: abs(time trend) ∼ PM2.5 −0.279 0.003 −0.347 0.001

Controlled: abs(time trend) ∼ PM2.5 −0.149 0.047 −0.284 0.002

Coefficients are standardized effect estimates per log2 (PM2.5 ).

TABLE 3 | Stratification by activity phase of the analysis of the association of short-term exposure to PM2.5 for mean, SD, and absolute value of the slope of SDNN and

pNN50.

Model SDNN coefficient Variance p-value pNN50 coefficient Variance p-value

WORK ONLY

Mean—PM2.5 −0.592 0.440 0.028 0.139 0.015 0.356

SD—PM2.5 −0.438 0.083 0.013 −0.478 0.010 0.002

Absolute slope—PM2.5 −0.089 0.001 0.370 −0.167 0.000 0.007

HOME ONLY

Mean—PM2.5 −0.410 0.914 0.095 −0.940 0.511 0.009

SD—PM2.5 −0.625 0.120 0.000 −0.601 0.037 0.003

Absolute slope—PM2.5 −0.060 0.002 0.606 −0.267 0.001 0.046

NIGHT ONLY

Mean—PM2.5 −0.795 1.858 0.032 0.347 0.228 0.344

SD—PM2.5 −1.143 0.547 0.001 −1.095 0.081 0.002

Absolute slope—PM2.5 −0.171 0.005 0.163 −0.699 0.001 0.000

Coefficients are standardized effect estimates per log2 (PM2.5 ).

those city dwellers. Our findings raise serious questions about
the long-term health of the populations of such cities, who
are continuously exposed to such levels. However, note that
our study was limited to a small sample of healthy male Swiss
adults of good socioeconomic status. It would seem necessary to
assess whether other population groups such as females, children,
other ethnicities, unhealthy, and lower socioeconomic status may
respond differently to the same level of exposure.

The decrease of both, average SDNN and PNN50 can be
interpreted as a reduced autonomic activity (Ewing et al., 1984;
Electrophysiology Taskforce Guidelines, 1996; Mietus et al.,
2002). This type of acute response was reported by other groups
before (Devlin et al., 2003; Pope et al., 2003; Wu et al., 2010;
Huang et al., 2014; Nyhan et al., 2014; Wagner et al., 2014;
Weichenthal et al., 2014; Cole-Hunter et al., 2015; Hemmingsen
et al., 2015; Mordukhovich et al., 2015; Lee et al., 2016).
Interestingly, SDNN at high exposure levels is just slightly below
the average SDNN, while PNN50 drops to near zero, which is
suggestive of mostly parasympathetic withdrawal. Our analysis
also shows that the random modulation of HRV (SD and time
trend of SDNN and PNN50) is strongly reduced following
elevated PM2.5-exposure, suggesting that this interference with
regulatory autonomic mechanisms lasts for a while. PM2.5

was previously reported to interfere with salt regulation (Tsai
et al., 2012b), vascular function (Hemmingsen et al., 2015),
and blood pressure (Tsai et al., 2015). It would be interesting
to experimentally study if this could be a possible explanation
for the observed reduced modulation of HRV over the 2-h
window. Acutely altered HRV often represents a disturbance of
normal homeostatic processes (Billman, 2011), which can pose
a serious health concern especially for people having elevated
cardiovascular risk factors such as those with previous infarction
or existing arrhythmic disorders (Tsuji et al., 1996; Clyne et al.,
2016; Patel et al., 2017).

The acute decrease of HRV following exposure identified in
the regression analysis confirms our hypothesis that changing
the time from exposure to HRV-response assessment explains
the difference in direction observed in our previous analyses in
the same road maintenance workers (Meier et al., 2014) and
also other healthy individuals (Riediker et al., 2004a), where we
observed an increase in mean HRV associated with exposure
to PM2.5 in the morning after exposure. Taken together, the
previous analyses (Riediker et al., 2004a; Meier et al., 2014)
and this one are in support of the idea that immediately after
exposure, air pollutants disturb cardiac function, which will fade
after a few hours and be followed later on by a recovery response.
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TABLE 4 | Analysis of the sensitivity of the effect estimates to changing the averaging times of PM2.5-exposure and HRV-values, with and without control for activity

phases.

Control for activity Time-interval:Exposure_HRV Coefficient variance p-values Coefficient Variance p-values

Mean SDNN Mean pNN50

Crude 30_60 −0.277 0.106 0.001 −0.301 0.017 0.004

Crude 40_40 −0.245 0.137 0.000 −0.195 0.020 0.031

Crude 40_80 −0.652 0.285 0.000 −0.479 0.033 0.010

Crude 50_100 −0.907 0.582 0.001 −0.551 0.056 0.037

Crude 60_120 –1.449 0.800 0.000 −0.997 0.106 0.008

Crude 60_60 −0.555 0.362 0.000 −0.437 0.050 0.020

Crude 80_80 −1.115 0.887 0.000 −0.732 0.102 0.029

Crude 120_120 −2.664 1.505 0.000 −2.435 0.209 0.000

Controlled 30_60 −0.109 0.074 0.128 −0.155 0.008 0.042

Controlled 40_40 −0.149 0.114 0.020 −0.101 0.013 0.201

Controlled 40_80 −0.385 0.177 0.006 −0.245 0.015 0.066

Controlled 50_100 −0.575 0.364 0.013 −0.245 0.015 0.066

Controlled 60_120 −1.026 0.471 0.000 −0.829 0.057 0.012

Controlled 60_60 −0.209 0.296 0.150 −0.175 0.032 0.270

Controlled 80_80 −0.714 0.753 0.014 −0.386 0.064 0.171

Controlled 120_120 −2.025 1.140 0.000 −1.915 0.128 0.000

SD SDNN SD pNN50

Crude 30_60 −0.259 0.035 0.000 −0.263 0.007 0.001

Crude 40_40 −0.210 0.032 0.000 −0.170 0.005 0.001

Crude 40_80 −0.492 0.107 0.000 −0.494 0.011 0.000

Crude 50_100 −0.758 0.140 0.000 −0.699 0.018 0.000

Crude 60_120 −1.158 0.174 0.000 −0.977 0.028 0.000

Crude 60_60 −0.378 0.159 0.002 −0.377 0.018 0.004

Crude 80_80 −0.739 0.208 0.000 −0.798 0.032 0.000

Crude 120_120 −2.111 0.365 0.000 −2.168 0.065 0.000

Controlled 30_60 −0.136 0.030 0.011 −0.142 0.004 0.018

Controlled 40_40 −0.099 0.030 0.007 −0.064 0.002 0.055

Controlled 40_80 −0.260 0.068 0.013 −0.307 0.005 0.000

Controlled 50_100 −0.434 0.072 0.001 −0.533 0.012 0.000

Controlled 60_120 −0.685 0.095 0.000 −0.800 0.017 0.000

Controlled 60_60 −0.183 0.129 0.097 −0.250 0.012 0.023

Controlled 80_80 −0.417 0.147 0.007 −0.611 0.023 0.001

Controlled 120_120 −1.365 0.264 0.000 −1.738 0.050 0.000

abs(slope SDNN) abs(slope pNN50)

Crude 30_60 −0.103 0.002 0.000 −0.071 0.000 0.027

Crude 40_40 −0.090 0.003 0.000 −0.088 0.000 0.000

Crude 40_80 −0.159 0.002 0.001 −0.133 0.000 0.011

Crude 50_100 −0.240 0.002 0.000 −0.258 0.000 0.001

Crude 60_120 −0.279 0.002 0.003 −0.347 0.000 0.001

Crude 60_60 −0.129 0.003 0.000 −0.097 0.000 0.017

Crude 80_80 −0.205 0.002 0.000 −0.237 0.001 0.005

Crude 120_120 −0.329 0.003 0.003 −0.693 0.001 0.000

Controlled 30_60 −0.036 0.001 0.059 −0.011 0.000 0.635

Controlled 40_40 −0.018 0.002 0.259 −0.023 0.000 0.173

Controlled 40_80 −0.067 0.001 0.070 −0.059 0.000 0.149

Controlled 50_100 −0.147 0.001 0.004 −0.197 0.000 0.004

Controlled 60_120 −0.149 0.001 0.047 −0.284 0.000 0.002

Controlled 60_60 −0.036 0.001 0.140 −0.029 0.000 0.354

Controlled 80_80 −0.084 0.001 0.032 −0.122 0.000 0.054

Controlled 120_120 −0.192 0.001 0.025 −0.553 0.001 0.001

The main model is highlighted in bold-italic. Coefficients are standardized effect estimates per log2 (PM2.5 ).
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Another novel, and possibly troubling new insight of our
analysis is the observed funnel plot-like reduced modulation of
HRV following exposure. It supports the idea of an interference
with homeostatic control mechanisms. It seems to pose a serious
health risk if such a strong response was observed in people
with already partly derailed control mechanisms, such as those
having pre-existing cardiovascular disease, previous infarction,
heart failure, or arrhythmic disorders. The acute impairment
of homeostatic control would also explain the later occurring
increase of HRV observed in the sameworkers (Meier et al., 2014)
and also in an independent populations of healthy highway patrol
men (Riediker et al., 2004a), which would represent the period of
homeostatic recovery.
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