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Model optimization using data assimilation is an effective tool for reliable projections of

environmental changes. To date, however, data assimilation has not been widely applied

for terrestrial ecosystem models, especially in large-scale studies, owing to specific

difficulties including heterogeneity and abruptness in terrestrial processes. To overcome

the difficulties arising from the complex and abrupt behavior of the terrestrial ecosystem

model, the data assimilation by particle filter, a non-parametric and computationally

intensive parameter optimization method, was applied in this study. We simultaneously

optimized nine model parameters of a terrestrial ecosystem model with a satellite-based

leaf area index. The optimized model successfully reproduced the leaf onset and offset

phenology of temperate deciduous forests in mainland Japan. We formulated the

relationship between local climate and leaf onset and offset timings which indicates that

warmer temperatures were required for leaf onset in the warmer southern parts of Japan,

and the northern forests retained their leaves under much colder temperatures, relative

to southern forests. Unlike the findings of conventional phenology models using crude

estimation with limited local data, the results of this study were based on regional big

data and objective optimization. This research thus shows that data assimilation can be

used to optimize complex terrestrial ecosystem models.

Keywords: data assimilation, terrestrial ecosystem model, remote sensing, leaf phenology, leaf area index

INTRODUCTION

Terrestrial ecosystems play an important role in the earth system and thus influence the
global climate (Heimann and Reichstein, 2008; Arneth et al., 2010). The terrestrial biosphere is
characterized by a two-way feedback process with climate: climatic conditions affect the biosphere,
and the biosphere in turn affects the climate by way of biogeochemical and biophysical changes on
land surfaces (Arneth et al., 2010). This feedback process is believed to be significant because of
terrestrial surface sizes and biogeochemical budgets.
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In deciduous forests, in particular, leaf phenological cycles
(i.e., leaf onset and offset) delimit the plant growing season and
thus have a large impact on terrestrial ecosystems (Richardson
et al., 2013). In addition, changes in land surface albedo due to
leaf phenology affect the regional climate through biophysical
changes (Peñuelas et al., 2009). The annual cycle of spring
leaf onset and fall senescence in temperate deciduous forests
is controlled by plant traits, in addition to climatic conditions
such as air temperature (White et al., 1997). Phenology also
varies from species to species with large inter-annual and spatial
variations (Richardson et al., 2010). Variation in leaf phenology
reflect an evolutionary strategy that maximizes the long-term
ecological fitness of a phenotype under a given climate (Bennie
et al., 2010). Thus, understanding how phenological cycles react
to climate change is important for decreasing the uncertainty
in projections of the terrestrial carbon cycle (Richardson et al.,
2012) and elucidating the behaviors of ecosystem dynamics under
climate change.

Although simulation of terrestrial ecosystems is critical for
making projections on the future climate, the uncertainties
in terrestrial ecosystem models remain considerable, especially
in phenology (Richardson et al., 2012; Murray-Tortarolo
et al., 2013). Since phenological cycles have high inter-annual
variability, phenological parameters obtained by short-term
geographically limited data have limited utility in predicting
future phenological cycles (Richardson et al., 2012). Thus,
accurate prediction of phenology requires a method that
effectively summarizes observations in large scales in both space
and time.

Various phenology models (e.g., Cannell and Smith, 1983;
Murray et al., 1989; Hanninen, 1990; Kramer, 1994; Chuine,
2000; reviewed by Chuine et al., 2003), have been proposed and
incorporated into terrestrial ecosystemmodels (Botta et al., 2000;
Sitch et al., 2003; Arora and Boer, 2005; Krinner et al., 2005).
However, direct measurements of phenological parameters are
rarely possible (Chuine et al., 2003), and a recent study
reported that current models of vegetation phenology contain
considerable uncertainties and consequently caused large biases
in the estimation of ecosystem carbon balances (Richardson et al.,
2012).

To this end, data assimilation (DA), which incorporates
observation data into models in a systematic manner, has been
applied to phenology model in the terrestrial ecosystem models,
and uncertainties in the state variables and model parameters
have been partially reduced (Viskari et al., 2015; Arakida et al.,
2017). In recent years, DA has been used in many fields of
ecological research (reviewed by Luo et al., 2011), including
palaeology (Peng et al., 2011), ecosystem ecology (Xiao and
Friedrichs, 2014; Arakida et al., 2017) and community ecology
(Massoud et al., 2018).

Nevertheless, DA applications for terrestrial ecosystem
models are not currently sufficient because of characteristics
of terrestrial ecosystems. Terrestrial ecosystem models are
highly nonlinear and driven by abrupt events, such as leaf
onset/offset, mortality, and reproduction, which are difficult
to mathematically handle in conventional DA methods. For
instance, using the ensemble Kalman filter, Williams et al. (2005)

applied DA to a terrestrial ecosystem model. However, the
model is a so-called “big leaf model” that does not account
for abrupt behavior. Moreover, to date, DA applications to
terrestrial ecosystem models are mainly limited to specific
sites because large-scale DA applications require a considerable
amount of computational resources. In addition, despite the
increasing abundance of remotely sensed data, significant
uncertainties remain that are associated with predicting changing
leaf phenology and the resulting ecological consequences under
future climate changes (Polgar and Primack, 2011).

In this study, we applied DA to a terrestrial ecosystem model
for a large spatial scale using a particle filter (PF). Unlike
conventional DA methods such as the Kalman filter, PF is
a non-parametric approach with the flexibility of optimizing
models with abrupt ecological behaviors. Using DA and satellite
observations of the leaf area index (LAI), we formulated a new
phenology model in an objective manner. Our study is the first
DA approach for a regional-scale terrestrial ecosystem model
with abrupt behavior.

The following aspects have been discussed in this paper: (1)
optimizing the phenology parameters in the terrestrial ecosystem
model using DA, (2) investigating the geographic variation of
phenology parameters on a regional scale, and (3) revealing
intra- and interspecific variations of the regional phenological
differences. Because this approach using DA is novel, we
intentionally utilized a simple model optimization system in
order to highlight the performance and robustness of DA.

METHODS

Study Area
This regional simulation study was conducted on the four main
islands of Japan (approximately 30–50N; 125–150 E). In this
region, there are 600 × 750 grids (ca. 3-km spatial resolution).
Among them, our target grids, covered by >30% deciduous
forests, were 13,739.

The Target Model for Optimization
In this study, we employed the Super-Simple Stochastic
Ecosystem Model (SSSEM) framework (Dietze, 2017), a simple
terrestrial ecosystem model (Figure 1). SSSEM was chosen for
this study because it has a built-in DA system using a particle
filter, and its simplicity was desirable for this computer-intensive
experiment on a regional scale. SSSEM simulates the basic
carbon stock and flow of the terrestrial ecosystem and estimates
the related amount of gross primary production, autotrophic
respiration, and net primary production. The amount of net
primary production (NPP) is partitioned into plant active and
structural tissue pools with specific turnover rates. The model
thereby calculates the basic C stock and flow of an ecosystem.
These ecophysiological dynamics are calculated every 30min.

However, the original SSSEM is unable to reproduce
deciduousness. We thus added a leaf onset and offset phenology
to the model. For leaf onset, we used the relationship between the
growing degree day (GDD) and the leaf flush progress (Murray
et al., 1989). The leaf onset coefficient (Conset) is calculated by the
following relationship:
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FIGURE 1 | Schematic diagram of SSSEM. Parameters for optimization were

listed in Table 1.



















Conset =

∑

{

Tday − Tonset , Tday > Tonset

0,Tday ≤ Tonset
GDDmax

0 < Conset < 1

(1)

where Tday is the daily mean temperature, Tonset represents the
base temperature for GDD summation for leaf onset. This is
a threshold value for GDD summation. GDDmax denotes the
accumulated temperature required for the complete leaf onset.
Following a previous study (Sitch et al., 2003), we set GDDmax to
200 in our target area.

Then, the leaf area index (LAI) is calculated by the following
relationship:

LAI = Bleaf · SLA · Conset (2)

where Bleaf is the leaf biomass (kg m−2), SLA is the specific
leaf area (m2 kg−1) and Conset is the leaf onset coefficient
(dimensionless). In this model, LAI represents canopy level green
leaf area per unit ground surface area (a 3-km spatial resolution).
To illustrate the leaf fall phenology, we assume that leaf fall starts
when the 7-day mean temperature falls below a threshold, and
leaf fall is completed after 14 days from the start. In this model,
we set the leaf fall coefficient (Cfall), defined by the following
equations.

Cfall =











1 if Tweek ≥ Toffset

1 − Dayschilling
Daysoffset

if Tweek < Toffset

0 < Cfall < 1

(3)

LAI = Bleaf · SLA · Cfall (4)

where Dayschilling represents the number of days that have passed
after the 7-day running mean temperature (Tweek) falls below the
threshold (Toffset). Daysoffset denotes the days required for the

leaves to completely fall from the tree after experiencing a low
temperature below Toffset . In this model, we assume Daysoffset is
14.

In this DA experiment, we identified and analyzed phenology
parameters Tonset and Toffset , which are simultaneously optimized
with other parameters (Table 1). Historically, these parameters
have often been set based on local observations without
quantitative validation in large scale (Richardson et al., 2012).
Our aim was to determine objective values that can be widely
applied.

Model Input Data
The mean daily temperature data of this resolution were
obtained from the Japanese Automated Meteorological Data
Acquisition System (AMeDAS) climate data network based on
linear interpolation with elevation correction that assumes a
lapse rate of 0.0065 km−1 (Ichii et al., 2010). Photosynthetically
active radiation (PAR) is estimated from surface shortwave
radiation data (Ichii et al., 2010). Extraterrestrial solar radiation
is geometrically calculated from the latitude of the given grid.
We estimated the attenuation rate from cloudiness data and then
converted the shortwave radiation into PAR (Sato et al., 2007).

We used both Aqua and Terra Moderate Resolution Imaging
Spectroradiometer (MODIS; MCD15A2) global LAI (Myneni
et al., 2002) from 2003 to 2006, which were provided by the
United States Geological Survey (Land Processes Distributed
Active Archive Center) in a 1-km spatial resolution and 8-
day composite frequency. The LAI data were re-projected onto
the geographic coordinate system and converted into a 3-km
spatial grid. Despite application of a quality check; somewhat
questionable data remained (see Figure 2).

To extract the broadleaf deciduous forests from the Japanese
main islands, we used the vector data of a Japanese vegetation
map obtained from the National Surveys on the Natural
Environment (Biodiversity Centre of Japan, 1999). We converted

TABLE 1 | List of parameters used in SSSEM.

Name Description Distribution Units

SLA Specific leaf area per weight Gaussian m2 kg−1

alpha light use efficiency Gaussian –

tau The uncertainty in

photosynthetic process

Gamma –

litter1 Turnover rate of leaf

biomass

Beta m−2 yr−1

litter2 Standard deviation of

turnover rate of leaf biomass

Gamma m−2 yr−1

CWD1 Turnover rate of biomass

except leaf

Beta m−2 yr−1

CWD2 Standard deviation of

turnover rate of biomass

except leaf

Beta m−2 yr−1

Tonset Base temperature for leaf

onset

Gaussian ◦C

Toffset Threshold temperature for

leaf offset

Gaussian ◦C
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FIGURE 2 | Point simulation for LAI dynamics from 2003 to 2006 in mid-eastern Japan (36.933N; 139.066 E). Simulated LAI shows the 5th to 95th percentile range

of the 5,000 simulation particles.

the vegetation map vector data into raster data of a 100-
m spatial resolution. Then, we calculated the percentages of
deciduous tree areas in each grid and extracted grid cells
having a broadleaf deciduous tree coverage of more than
30%.

Data Assimilation
We adopted the particle filter approach known as sequential
importance resampling (Gordon et al., 1993). This approach
runs numerous independent parallel simulations, or particles, to
optimize the target parameter set. Each particle has a likelihood
weight assigned to it that represents the probability of that
particle being sampled from the probability density function.

These particles are propagated through the system dynamics, and
their weights are sequentially updated based on the likelihood
of the observed data. By using this method, we were able
to optimize nine parameters of this model simultaneously
(Table 1).

In this study, the number of particles was set to 5,000.
For each particle, a randomly generated value was set
from the probability density distribution of each SSSEM
parameter. After setting the initial value, a simulation was
executed every 0.5 h for each particle. Then, at the point
when the observation value of LAI was produced (every 8
days), the likelihood of each particle with respect to the
observation value was calculated using the Gaussian likelihood
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function:

Lit = p
(

yt| x(i)
t|t−1

)

=
1

√
2π σ 2

exp

{

−
1

2σ 2

(

yt − x
(i)
t|t−1

)2
}

for i = 1 · · · ·n (5)

where Lit is a likelihood of the ith particle at time t, x
(i)
t|t−1

denotes the simulated LAI of the ith particle at time t from the
previous time step t−1, yt represents the observed LAI at time
t, and σ is the standard deviation of the observed LAI. Random
sampling based on the value of Lit as the extraction probability
was performed 5,000 times. The particles with a high likelihood
(i.e., large Lit) were selected for resampling, and those with a low
probability (i.e., small Lit) were removed.

Statistical Analysis
To investigate dependencies of Tonset and Toffset on local
climatic conditions, we conducted linear regression analysis.
Additionally, we analyzed the optimized phenology parameters
separating several broadleaf deciduous species to address whether
the temperature dependency of phenology parameters reflects
(1) a difference in the distribution range among the species,
or (2) intraspecific phenological differences. First, we selected
four dominant deciduous tree species (Fagus crenata, Quercus
crispula, Quercus serrata, and Quercus acutissima) from the
Japanese Archipelago. We extracted the grid dominated by more
than 90% of these tree species using data of the National Surveys
on the Natural Environment (Biodiversity Centre of Japan, 1999).
Second, we conducted regression analysis for each species to
investigate the relationship between Tonset or Toffset and the mean
annual temperature. Third, we performed analyses of covariance
(ANCOVA) to compare regression slopes between species with
the mean annual temperature for Tonset or Toffset . Analyses were
conducted using R 3.2.4 (R Development Core Team, 2015).

RESULTS

To verify the system performance, we applied DA to a grid
in the mid-eastern region of Japan with 100% coverage of
broadleaf deciduous forests. In this point experiment, the
DA system effectively incorporated the satellite observation
and the resultant state variable, LAI, which well matched
the observation (Figure 2). While the estimated LAI without
DA had broad ranges (gray shades), the LAI optimized by
DA was converged (green shades), and the range became
narrower gradually throughout the 4 years. The optimized model
effectively reproduced the timings of leaf onset and offset.
The simulated dynamics of LAI were robust against somewhat
questionable data (e.g., near-zero LAI in mid-summer likely due
to cloud coverage and an ineffective quality check). Robustness
is a desirable characteristic of a mechanistic model and DA.
If “normal” observations occurred after an irregular one, the
DA system effectively penalized unrealistic observations, such as
near-zero LAI in mid-summer.

In this local experiment, nine model parameters were
simultaneously optimized by DA. For parameters of the
phenology control (Tonset and Toffset) after DA, the distributions

of parameters became narrower, showing that parameters were
adjusted for optimal estimations (Figure 3).

The parameter distributions showed gradual convergence
during the simulation years of 2003 to 2006, showing the
effectiveness of DA. For full parameter estimations, see
Supplementary Figure 1.

Next, for regional simulation, we estimated the optimal
phenological parameters Tonset and Toffset for each grid cell
spanning the main islands of Japan. The results showed a
general pattern of the phenological parameters (Figure 4). In
the southern region, warmer temperature is generally required
for leaf onset compared to the northern forests. Similarly, in
the southern region, forests tend to drop leaves with mildly
cold temperatures, whereas northern forests tend to retain leaves
despite the cold. These general patterns are statistically significant
(Figure 5: two-dimensional plots of (a) Tonset , and (b) Toffset

against the mean annual temperature). We constructed the
following new model:

Tonset = 0.525 · Tyear − 1.45 (6)

Toffset = 0.808 · Tyear + 0.383 (7)

where Tyear is the mean annual temperature. With DA, we
found a significant temperature dependency of phenology
parameters, which suggests plant physiological adaptations to
the environmental gradient (i.e., temperature). This finding
overrides conventional phenological models (e.g., reviewed by
Chuine et al., 2003) that are based on limited data.

Intra- and Inter-specific Variations of
Phenology Parameters
We identified a difference in the species distribution range
according to the temperature gradient. In the cool temperate
area, cold temperate species, such as F. crenata and Q. crispula,
dominated the ecosystem, whereas Q. serrata and Q. acutissima
were predominantly distributed in the warm temperate area
(Figure 4). In general, cold temperate species had lower Tonset

and Toffset. This indicated that the temperature dependency in
phenology reflected the species distribution difference. Thus,
the relationships in Equations (6) and (7) are partly due to the
interspecific variation in phenology.

For each species, we performed regression analysis to find
intraspecific variations in the environmental gradient (i.e., mean
annual temperature). Significant correlations between the mean
annual temperature and both Tonset and Toffset for most of
the species were identified (Figure 5, Supplementary Table 1).
This result indicates that the variation in phenology is partly
intraspecific; that is, individuals growing in a cold environment
tend to show lower Tonset and Toffset than individuals of the same
species growing in a warm environment. This is likely due to
adaptation to the environment. Interestingly, for Q. crispula, the
temperature dependency of the phenology parameter was weak,
especially for the leaf offset parameter (Supplementary Table 2),
suggesting that the phenological adaptation is different among
species. In summary, we found both intra- and interspecific
variations in phenology.
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FIGURE 3 | Probability distribution of default (black) and optimized (red) phenology parameters: base temperature for leaf onset (Tonset) and threshold temperature for

leaf offset (Toffset).

DISCUSSION

In this study, we clearly showed that data assimilation (DA)

using a particle filter (PF) can be applied to terrestrial ecosystem

models with abrupt changes. By means of this computational and
statistical breakthrough concerning DA and PF, better phenology

models based on satellite-based big data are now possible. In
our model, simulated LAI successfully converged to reasonable
ranges according to observation, and uncertainties in estimated
parameters were reduced over four simulation years. Our results
suggest that DA is useful to understand and reproduce the
ecological dynamics such as phenology. This is particularly
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FIGURE 4 | Results of data assimilation using the particle filter for Japanese

broadleaf deciduous forests. (A) Optimized base temperature (◦C) for leaf
onset (Tonset ), and (B) Optimized threshold temperature (◦C) for leaf offset
(Toffset ). The maps were created by R 3.2.4 software.

meaningful because, during the past few decades, increasingly
large number of ecological data have become available thanks to
advances in measurement techniques.

To date, numerous phenology models have been
proposed (Cannell and Smith, 1983; Murray et al., 1989;
Hanninen, 1990; Kramer, 1994; Chuine, 2000), and some
studies calibrated phenology models using ground-based
phenological records and then extended the model to
regional scale (Schwartz et al., 2006; Yang et al., 2012; Jeong
et al., 2013). However, unclear mechanisms underlying
the leaf-out process still exists, and thus, linking species
level physiological responses to an ecosystem process is
still difficult (Liu et al., 2018). DA would be a promising
tool to overcome such difficulties because this method can
objectively optimize model parameters using satellite-based big
data.

Improvements in phenology models can help terrestrial
ecosystem models project effects of climate change, because it

is anticipated that the climate change will disrupt phenological
dynamics (Richardson et al., 2012). The change in phenology
will have immense impacts on ecosystem dynamics. It can
change carbon balances of vegetation and soil organic matter.
These biogeochemical changes can in turn affect the atmospheric
carbon balance (Peñuelas et al., 2009; Richardson et al.,
2013). We employed PF as the method for DA because this
computational technique can explicitly optimize a model
with abrupt changes. This can particularly informative
when the model is concerning global changes because,
other than phenological changes, terrestrial ecosystems can
experience abrupt changes in gap dynamics, succession, and
species composition under the climate change (Luo et al.,
2011).

Our result also suggests that DA contributes to optimize the
model parameters with considerations for spatial and temporal
heterogeneity. A major difficulty encountered in phenology
models is that the parameters often have several local optima
and identifying a global optimum is non-trivial. Our regional
DA optimization reasonable estimations of base temperature
for leaf onset (Tonset), and threshold temperature for leaf offset
(Toffset) and reveal the existence of the latitudinal gradients in
Tonset and Toffset. We formulated new relationships between
local climatic conditions vs. phenological parameters. It was
determined that, in a cold climate, deciduous trees tend to
have lower temperature thresholds for both leaf onset (Tonset)
and offset (Toffset), which is likely due to adaptation to the
environment. A recent empirical study (Zohner and Renner,
2014) reports that species that are adapted to warmer climate
flushed significantly later than natives at cool temperate region.
This is consistent with our result and supports validity of our
estimation and indicates that our results may represents adaptive
strategy of trees. Our findings might reflect evolutionary strategy
of tree species underling latitudinal gradient of leaf phenology.
In future, we will estimate the leaf onset and offset date from our
simulation result and plan to reveal the geographical trends and
inter- specific differences.

One of the innovative points of this study is that phenological
parameters successfully converged through the DA process
although the MODIS LAI data sometimes contained
considerable uncertainties. Prior researches pointed out
that the MODIS LAI contains some anomalous data owing
to a limitation of atmospheric correction (Yang et al., 2006)
and it is difficult to eliminate these using a quality control
process. Phenological dynamics of MODIS LAI were not
fully synchronized with field observation (Viskari et al.,
2015). Despite such imperfect data quality, our DA process
using PF robustly simulated reasonable dynamics of LAI
(Figure 2). This is one of advantages of DA because, in
contrast to statistical optimizations, DA explicitly incorporates
biological processes to penalize anomalous data that provoke
biologically incorrect results. Recently, integration of multiple
techniques (field observation, experiment, and modeling) to
understand phenological responses under global change is
mentioned (Cleland et al., 2007), and our study suggests that
DA would promotes the integration of data from various
sources.
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FIGURE 5 | Relationship between mean annual temperature and phenology parameters. The color of dots and lines corresponds to each species. Regression

statistics are shown in Supplementary Table 1.

Furthermore, the temperature dependency of phenology
parameters differed among species (Figure 5). Interestingly, the
temperature dependency of Q. crispula was lower than the
other species. This result indicates that intraspecific adaptation
is weak for Q. crispula and the response of leaf onset and
offset phenology to global warming may differ. Some prior
studies report a considerable relationship between interspecific
variation in leaf-out phenology and phylogenetic relatedness,
whereas leaf offset timing was not phylogenetically conserved
(Panchen et al., 2014, 2015). In the present study, despite
three of four target species belonging to the same genus,
intraspecific adaptation was significantly different among the
species. Our results infer that phenological timing in response
to global climate change may differ among closely related
species. Our findings may be important in predicting changes
in phenological timing in response to global climate change. To
elucidate biological mechanisms of the adaptation, the further
research will be needed. At this point we can suggest that
DA is a powerful tool to provide important study questions
because it is able to summarize the spatiotemporally big data
into simple quantitative relationships such as Equations (6,
7).

In this study, we only optimized model parameters, and the
phenology models themselves were the same as those used in
conventional studies. In future work, we will strive to find a
better model itself. Moreover, in this study, we assumed GDDmax

was 200. Because values of Tonset converged to reasonable
value, GDDmax is also considered to be reasonable but GDDmax

should also be optimized using DA simultaneously with other
parameters. However, GDDmax is not independent to Tonset. For
this reason, it is difficult to optimize GDDmax simultaneously
with Tonset and this is limitation of DA. How to optimize
the not independent parameters in the model is a future
task.

CONCLUSION

In this paper, we proposed an effective model optimization
system combining satellite-based big data, high performance
computing, and advancements in computer and statistical
sciences. Our model reveals temperature dependencies of
phenology. This capability may provide novel quantitative
insights into ecological studies. We successfully optimized the
parameters of a terrestrial ecosystem model for a large spatial
scale and successfully modeled abrupt behavior of leaf phenology.
The results highlight the performance of data assimilation to
optimize parameters of a terrestrial ecosystem model and better
future forecasting; in addition, they can provide a valuable
contribution to both basic and applied science.
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