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Structure formation and self organization in soils determine soil functions and regulate soil

processes. Mathematically based modeling can facilitate the understanding of organizing

mechanisms at different scales, provided that the major driving forces are taken into

account. In this research we present an extension of the mechanistic model for transport,

biomass development and solid restructuring that was proposed in a former publication

of the authors. Three main extensions are implemented. First, arbitrary shapes for the

building units (e.g., spherical, needle-like, or platy particles), and also their compositions

are incorporated into the model. Second, a gas phase is included in addition to solid,

biofilm, and fluid phases. Interaction rules within and between the phases are prescribed

using a cellular automaton method (CAM) and a system of partial differential equations

(PDEs). These result in a structural self organization of the respective phases which

define the time-dependent composition of the computational domain. Within the non-

solid phases, chemical species may diffuse and react. In particular a kinetic Langmuir

isotherm for heterogeneous surface reactions and a Henry condition for the transfer

from/into the gas phase are applied. As third important model extension charges and

charge conservation laws are included into the model for both the solid phase and ions

in solution, as electrostatic attraction is a major driving force for aggregation. The ions

move obeying the Nernst-Planck equations. A fully implicit local discontinuous Galerkin

(LDG) method is applied to solve the resulting equation systems. The operational,

comprehensive model allows to study structure formation as a function of the size and

shape of the solid particles. Moreover, the effect of attraction and repulsion by charges

is thoroughly discussed. The presented model is a first step to capture various aspects

of structure formation and self organization in soils, it is a process-based tool to study

the interplay of relevant mechanisms in silico.

Keywords: soil structure, mechanistic modeling, cellular automaton, microaggregate formation, multiphase

system

1. INTRODUCTION

Understanding the structural formation in soils with respect to space and time is highly demanding
at any scale. Pedogenesis induces an aggregate structure in most soils (see Totsche et al., 2018),
and hierarchical concepts have been developed for it (c.f. Tisdall and Oades, 1982; Six et al., 2000,
2004; Totsche et al., 2018). We concentrate on the smallest building units that form the so-called
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microaggregates, which typically have a diameter of <250
microns (Totsche et al., 2018). In their reviews Six et al. (2004)
and Totsche et al. (2018) point out that a quantification of
the dynamic interrelation between the major influencing factors
for microaggregate formation is clearly necessary. This lack of
quantifying studies may be due to the manifold of interactions,
the different scales on which the mechanisms operate, and the
heterogeneity of the porous system (Six et al., 2004). Thus,
detailed, process-driven models going down to the scale of
microaggregates are rare. Recently, new experimental techniques
allow to investigate these scales (c.f. Totsche et al., 2018),
and porescale geometries of natural soils may be imaged with
reasonable high resolution. However, also advanced imaging
techniques are still often restricted to a static view such that
the dynamics of aggregation mechanisms are poorly understood
up to now. Dynamic measurements and obtained insights push
forward mechanistic models describing the dynamic aggregation
processes. An operative tool based on mechanistic principles that
allows to study in silico the formation of such aggregates thus
could be helpful to supplement experiments, and also provide a
link to soil functions like water retention curves.

However, to our knowledge no currently available model is
able to simulate a fully dynamic and mechanistic evolution of
the soil structure. A first step towards that direction applying
cellular automaton methods (CAMs) has been made in the work
of Crawford et al. (2012) (see also the references cited therein),
and Ray et al. (2017).

CAMs provide a flexible way to describe the restructuring
of soil particles and pore-filling phases. The variability in soil
structure as a consequence of the self organization of the soil-
microbe system has been investigated in Crawford et al. (2012).
Extracellular polymeric substances (termed gluing agents in
Totsche et al., 2018) are emerging which enhance the binding of
soil particles.

CAMs have also been applied in the context of biofilm
models. In combination with experiments, Tang and coworkers
prescribed biomass spreading rules in Tang and Valocchi
(2013) and Tang et al. (2013), and investigated the structural
development of biofilm at the pore scale. Likewise, the coupling
of a cellular automaton model for biofilm growth to fluid flow
and solute transport is considered in Benioug et al. (2017) and its
impact on the hydraulic conductivity is studied.

In Ray et al. (2017) both aforementioned processes were
combined in a comprehensive pore-scale model that allows
to study the interplay of solutes, bacteria, biomass, and solid
particles. It is based on a combined partial differential equation
(PDE) model and cellular automaton formulation. However,
further important processes andmechanisms need to be included
to study their influence on structure formation, and for accessing
more realistic applications. In addition to microbial activity
and biofilm development microaggregate formation strongly
depends on the characteristic properties of the system such
as saturation and of its constituents including particle shape
or charge (c.f. Totsche et al., 2018). Moreover, the break-up
of aggregates due to the interplay of attractive and repulsive
forces has to be taken into account for a reasonable aggregation
model.

In this research, we present the related model extensions
and study their impact using simulation scenarios. The CAM
rules are adapted for the effects of solid surface charges and
ion transport, and their impact is considered also in the solute.
Rotations of solid particles are for instance included into the
model to facilitate the aggregation of solid particles with opposite
face charges.

To study the formation of microaggregates from building
units of diverse types new prototypes have been implemented
to represent different geometric structures. Moreover, a gas
phase has been included to consider moisture variations. Thus
situations can be taken into account where the aggregates are
not fully saturated but, e.g., coated only by a thin film of
water. A restructuring of the solid phase may then induce the
necessity of a reorganization of the gas phase to maintain the
non-wetting properties (section 2.3.2). Exchange between and
transport within the different phases may become prominent
since mobility of species varies within water, gas, or biofilm. As
electric forces are an important driving force for aggregation—
as highlighted in Totsche et al. (2018)—the Nernst-Planck-
Poisson equations are applied to determine the movement of
ions. We furthermore consider homogeneous chemical reactions
(e.g., described via the mass action law) within the fluid phases
and biofilm, as well as heterogeneous reactions with the solid
phase.

Several simulation scenarios are investigated in two
dimensions to demonstrate the effects of the novel mechanisms.
The underlying model equations are discretized by means of a
local discontinuous Galerkin (LDG) method as presented and
analyzed in Rupp and Knabner (2017), Aizinger et al. (2018),
and Rupp et al. (2018) and solved globally fully implicitly using
an implementation in M++ (Wieners, 2005). The results are
discussed thoroughly focusing on the influencing conditions
for structure formation. Along this line, we emphasize the
emergence of phenomena observed in soils such as the creation
of cardhouse structures under the presence of charges, the
occurrence of liquid bridges (Carminati et al., 2017) under
unsaturated conditions, or the characterization of regions with
high or low nutrient availability.

The paper is structured as follows: In section 2, we
establish the underlying mathematical model. We shortly review
the model introduced in Ray et al. (2017) and thoroughly
discuss its extensions. Section 2.5 mentions the used numerical
methods and describes the overall algorithm. In section 3
the presented model is investigated numerically. With several
simulation scenarios we illuminate the role of shapes and
charges. Section 4 wraps up the manuscript by summarizing the
results.

2. MATERIALS AND
METHODS—GEOMETRY AND
MATHEMATICAL MODEL

2.1. Model Parts
Within our model, we essentially consider the following
prototypical time- and space-dependent model parts:
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1. a solid phase (s). A gluing agent may be present on the solid
surfaces, and also (variable) surface charges which influence
the restructuring rules. Additionally, heterogeneous reactions
with mobile chemical species may take place on the solid
surfaces.

2. a fluid phase (f ), the wetting phase, in which potentially
charged chemical species diffuse and react.

3. a bio phase (b) in which potentially charged chemical species
react and diffuse with lower diffusivity and mobility than
in the fluid. Moreover, biomass development is treated as
described in Ray et al. (2017).

4. a gas phase (g), the non-wetting phase, in which reacting
chemical species diffuse with the highest diffusivity.

5. several types of mobile, potentially charged chemical species
that may participate in heterogeneous or homogeneous
reactions. Species that are present in the gas and the fluid/bio
phase follow Henry’s Law as transfer condition. Examples
for relevant chemical species are for instance oxygen, or
nitrate as nutrients for bacteria and microorganisms creating
extracellular polymeric substances (EPS) and biomass.

6. a gluing agent (e.g., EPS) which is produced as a consequence
of local biological activity (c.f. Crawford et al., 2012; Ray et al.,
2017).

2.2. Discrete Geometry
The cellular automaton acts on a regular quadrilateral domain
Y with periodic boundary ∂Y (dashed lines in Figure 1) being
covered by a regular grid containing N2 squares Y i with faces
∂Y i. At first, one of the following cell states is (randomly, but
in desired proportions) assigned to each of the squares: “bio”

(b), “fluid” (f ), “solid” (s), or “gas” (g) (c.f. Figure 1). Note
that this is distinct from real world situations, where the fluid
distribution depends for instance on wettability and pore sizes.
However, we want to emphasize the self-organization of the
system due to the underlying mechanisms without relying on
specific spatial structures. The additional consideration of more
realistic structures, e.g., as a result of CT images, is focus of
forthcoming research.

The cells Y i in the cellular automaton correspond to the
smallest physical units in the model. In our new approach
different inseparable building units with various shapes may be
defined that are composed of cells Y i (c.f. Figure 2). We thus
can consider for instance (approximately) spherical geometries,
needle shapes, or plates, and investigate the interaction of these
structures and the resulting soil structures. The inseparable
building units may represent prototypes of e.g., quartz, goethite,
or illite particles (c.f. Figure 2 or A in Figure 1). Additionally,
composites of different building units may be considered (c.f.
Figure 2).

The union
⋃

i Y
i
s of all solid cells is termed the solid phase

and denoted by Ys with boundary Ŵ : = ∂Ys. Likewise, the
union

⋃

i Y
i
b
of all bio cells—the bio phase—is denoted by Yb,

the union
⋃

i Y
i
f
of all fluid cells—the fluid phase—by Yf , and the

union
⋃

i Y
i
g of all gas cells—the gas phase—by Yg (c.f. Figure 1).

Furthermore, we denote the union of fluid and bio phase with
liquid phase and define the interface ŴLG : = (∂(Yf ∪ Yb)) ∩ ∂Yg

of the gas with the liquid phase. In each time step a redistribution
of the respective phases is defined according to restructuring
/ growing and shrinking / reorganizing rules in the cellular
automaton framework (c.f. Ray et al., 2017 and section 2.3).

FIGURE 1 | Domain Y , geometric structure, cell states—gas ( ), fluid ( ), bio ( ), solid ( )—and prototypic representation of an inseparable building unit A .
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FIGURE 2 | Possible shapes of building units (size not to scale); from left to right: Spherical, platy, or needle-like, and composites. Black and white to indicate equal

charge for the composites.

Within the fluid, bio, and gas phases, the continuum parts
of the model come into play. Here, (possibly coupled, partial)
differential equations are solved for the transported, potentially
charged chemical species, and also the immobile biomass.
Likewise, an ordinary differential equation is considered for the
gluing agent (e.g., EPS), possibly being present on

⋃

i ∂Y
i
s ∪

⋃

i ∂Y
i
b
and holding together bio and/or solid cells. A detailed

statement of the ordinary differential equation describing the
oxygen-dependent growth and decay of gluing agent, which lives
on the boundaries of bio and solid cells, can be found in Ray
et al. (2017). The extensions of the model are discussed in the
following.

2.3. Cellular Automaton Method (CAM)
The cellular automaton rules are based on the movement of
the building units (section 2.2). For single cells this was already
described in Ray et al. (2017). Building units that are not
bound to either biomass or further solids by either gluing agent
or electric forces have the ability to move. For the ease of
presentation we describe the CAM rules for single cells, since
an extension of the rules to inseparable building units or their
composites is straightforward. The potential movement of cells in
the cellular automaton method is always based on the evaluation
of stencils (c.f. Figure 3), i.e., the investigation of the properties
of neighboring cells. The stencil represents the range of influence
of cells on each other. Within this research, stencils of different
sizes up to 3 unit lengths [L] are considered.

2.3.1. CAM for Bio and Solid Phases

The application of the cellular automaton method was already
discussed in Ray et al. (2017) for biomass development and solid
restructuring. We briefly recapitulate the main issues:

The biomass spreading rule is based on the CAM described
in Tang and Valocchi (2013) and Tang et al. (2013). In each time
step, for all biomass cells Y i

b
it is examined whether the mean

biomass concentration exceeds a certain threshold value. Then,
the neighboring fluid cells are tested whether they may take up
a certain amount of excess biomass. In doing so, a shortest path
strategy is applied.

The CAM rules for uncharged solid cells are inspired
by Crawford et al. (2012) and described in detail in Ray et al.
(2017). In our new model, we likewise consider inseparable
building units or their composites for which the CAM rules are
defined analogously. Additionally, we account for electrostatic
effects and the resulting reorganization of the solid due to

FIGURE 3 | Stencil of size 0 ( ) , 1 ( ), 2 ( ), and 3 ( ) for the center cell B .

charges. The respective CAM rules are superimposed with the
rules described in Ray et al. (2017) as shown in Equation (2).

For the new CAM, “movable cells” Y î
s are identified first. Note

that with the gluing agent concentration possibly decaying in
time, composites may break up again. The break up particularly
happens if electrostatic repulsion becomes predominant in
comparison to the gluing properties. The counterbalance of
electric forces and gluing properties on common faces of
neighboring solid cells Yk

s is evaluated in the following
expression:

c
α,îk − γ̃

∫

∂Y î
s∩∂Yk

s

ρ
Ŵ,Y î

s
e ρ

Ŵ,Yk
s

e dσ ≤ 0. (1)

Here, c
α,îk [1/L] denotes the average concentration of the gluing

agent at the common face of the neighboring solid cells Y î
s and

Yk
s . Likewise, ρ

Ŵ,Y î
s

e [IT/L] and ρ
Ŵ,Yk

s
e [IT/L] denote the surface

charge densities at the common face of the neighboring solid

cells Y î
s and Yk

s . [L] is the unit for a length, [T] for time, [I]
for the electric current measured in ampere, and later on we
also use [M] for mass. Note that attraction means a positive
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contribution to the left-hand side of Equation (1) by gluing agent
concentration or electric forces stemming from charge densities
with opposite sign. On the other hand, electric repulsion means
negative contribution from the second term for charge densities
with like sign. The proportionality constant γ̃ > 0 [1/(IT)2]
balances the impact of gluing and electric forces. If (1) holds true

for all neighbors of Y î
s , Y

î
s is a cell with the ability to move in the

CAM.
The attraction or affinity Ai [−] of potential target fluid or gas

cells Y i is then a weighted superposition of the different attracting
forces related to gluing agent, type of neighbors, and electric
forces:

Ai = γ̂











∑

neighbors

Y î
s 6=Y j of Y i

cα,ij











+ number of solid neighbors 6= Y î
s of Y

i

−γ̄ min



















∑

neighbors

Y î
s 6=Y

j
s of Y

i

∫

∂Ȳ î
s∩∂Y

j
s

ρ
Ŵ,Ȳ î

s
e ρŴ,Y

j
s

e dσ

∣

∣

∣

∣

∣

Ȳ î
s is a rotation of Y î

s



















(2)

with proportional constants γ̂ [L], γ̄ [L/(IT)2], and i denoting
the index of a cell contained in the stencil around the center
cell (c.f. Figure 3). We emphasize that rotations of solid cells
relative to each other may become prominent in the case that
their faces are not equally charged. With our definition, we
enable a reorganization into such favorable positions (c.f. C in
Figure 4).

As in the case without charges, the target cell with the
largest Ai is selected. If several target cells are identified as
equally attractive, one is randomly chosen and the restructuring
is carried out. A conflict may occur if the same target cell is
selected by different mobile solid cells. To resolve such conflicts
one solid cell is randomly chosen to move for each of the
conflicts.

In Figure 4, we illustrate the reorganization of a charged
solid phase. A stencil of width two, c.f. Figure 3, is applied to
all solid cells. The arrows on the left hand side in Figure 4

indicate potential target cells for such a stencil. The continuous
arrows indicate the jump to the most favorable positions for
the respective cell. Dashed arrows indicate further possible
and advantageous movements, while dotted arrows indicate
disadvantageous configurations. On the right hand side in
Figure 4 the final consolidated configuration is shown, after the
cells have moved in alphabetical order. The effect of charges is
clearly visible: The solid cell denoted with C rotates in such a
way that faces with opposite charges attach to one another and
their charges balance out. Along this line the absolute net charge
of the system decreases, while electroneutrality is preserved. The
uncharged solid cell D moves in such a way that it obtains the
maximal possible number of neighboring solid cells. Afterwards,
the optimal position for E is its current position, since likely
charged cells repel each other.

2.3.2. CAM for Gas Phase

In the following, we briefly discuss the extensions of the CAM
due to the occurrence of a gas phase.

In natural soils the liquid (fluid and bio) phase is the wetting
phase, while the gas phase is the non-wetting phase. In the cellular
automaton rules this is implemented as follows: Whenever, a gas
cell has a common interface with a solid cell, its direct neighbors
are considered, i.e., a stencil of size 1 is applied (c.f. Figure 3).
If there is only one liquid neighbor of the gas cell (like it is for
G in Figure 5), the gas cell and the liquid cell switch places. If
there are several fluid/bio cells who are neighbors of the gas cell,
one of the fluid/bio cells with the minimum amount of common
interfaces with the solid phase is chosen to switch places with the
gas cell. According to this rule fluid and bio cells attach to solid
cells while gas cells do not. If the same target cell is selected by
different gas cells, again one gas cell is randomly chosen to jump
to the respective target cell and the possible reorganization of the
remaining gas cells is postponed to subsequent iterations.

In Figure 6 the functionality of the CAM is illustrated with
focus on the reorganization of the gas phase and its non-wetting
property on a computational domain consisting of 64× 64 cells.
A random configuration of solid (black), fluid (gray), and gas
(white) cells with a volume proportion of 33% each is taken
as starting point. After the CAM is run it is evident that the
fluid forms a film on the consolidated solid phase, and even
liquid bridges can be found as a result of the restructuring
algorithm. Contrarily, the gas phase clearly shows its non-wetting
property.

2.4. Nernst-Planck Equations for Ion
Movement
The nonlinearly coupled Nernst-Planck-Poisson Equations (3)
describe the movement of a potentially charged chemical
species in the liquid, i.e., the time-dependent domain Yf ∪

Yb whose structural arrangement is defined in each time
step by the CAM (see section 2.3). In contrast to this,
the Poisson Equation (5) is defined on the whole periodic
domain Y . In the following, ω±

r [1/L2] denotes the volume
concentrations of the r-th species and ωŴ,±

r [1/L] its surface
concentration on the solid phase’s boundary Ŵ : = ∂Ys.

∂tω
±
r ±∇ ·

(

Crω
±
r E

)

− ∇ ·
(

Dr∇ω±
r

)

= Rr(ω) in (0,T)× Yf ∪ Yb, (3a)

k
(

g(ω±
r )− ωŴ,±

r

)

= ∂tω
Ŵ,±
r on (0,T)× Ŵ, (3b)

±
(

Crω
±
r E

)

· ν −
(

Dr∇ω±
r

)

· ν = ∂tω
Ŵ,±
r on (0,T)× Ŵ, (3c)

±
(

Crω
±
r E

)

· ν −
(

Dr∇ω±
r

)

· ν = 0 on (0,T)× ŴLG, (3d)

ω±
r = ω±

r,0 in {0} × Yf ∪ Yb. (3e)

Here, the advective flux is proportional to the electric field E

[ML/(IT3)] with discontinuous, phase-dependent mobility Cr

[IT2/M]. Likewise, the diffusivities Dr [L
2/T] are discontinuous.

The homogeneous reaction rates are denoted by Rr [1/(L
2 T)] and

obey the mass action law while the heterogeneous reactions are
described by the kinetic form of the Langmuir isotherm g(·) [1/L]
with rate constant k [1/T](c.f. Sparks, 1989). Assuming that the
domain evolves quite slowly (in the range of µm per day as can
be deduced from Tang et al., 2013 where two discrete steps per
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FIGURE 4 | Effects of charges in solid restructuring. Initial configuration with potential movements to target cells for a stencil of 2 (left) and consolidated configuration

following the strongest attraction for each particle (right). Straight and broken lines indicate opposite charges at the faces of the solid particles.

FIGURE 5 | Reorganization of gas cells being tangent to solid cells. (Left) Favorable options (continuous arrows) leading to a loss of contact to solid, and further

options (dashed arrows) having the same contact to solid. (Right) The cells F , H , I performed a favorable step, and G moved also (dashed step). G will

repeatedly change positions tangent to the solid (equally favorable, dashed steps) until finally position K or L can be reached (by a favorable step).

day are chosen) compared to the speed of diffusion and reactions,
the boundary condition represents balance of mass/charges while
possible surface diffusion is neglected.

Since the mobility Cr vanishes for uncharged species ω0
r ,

reaction-diffusion equations are obtained which are similar to
the ones considered in Ray et al. (2017). In this manuscript
we additionally consider diffusion and reaction of uncharged
species in the gas phase under appropriate initial conditions
[c.f. (4)]. Moreover, we account for a possible phase transition of
the uncharged species into the gas phase. At thermodynamical

equilibrium and for dilute solutions (3d) is then replaced by
Henry’s law (4b) for these species:

∂tω
0
r − ∇ ·

(

Dr∇ω0
r

)

= Rr(ω) in (0,T)× Yg , (4a)

ω0
r |Yg / ω0

r |Yf∪Yb = HŴLG
r on (0,T)× ŴLG, (4b)

(

Dr∇ω0
r

)∣

∣

Yg
· νg =

(

Dr∇ω0
r

)∣

∣

Yf∪Yb
· νg on (0,T)× ŴLG

(4c)

−
(

Dr∇ω0
r

)

· ν = 0 on (0,T)× Ŵ, (4d)
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FIGURE 6 | CAM including the reorganization of the gas phase illustrating its non-wetting property. Random initial configuration (left) and quasi stationary

consolidated configuration (right) with solid (black), gas (white), and fluid (gray).

ω0
r = ω0

r,0 in {0} × Yg (4e)

with the inverse solubility constant of Henry’s law H
ŴLG
r [−].

The electric field E and the electric potential8 [ML2/(T3I)] are
computed in terms of a Poisson equation with sub-dimensional
sources ρŴs

e (since these source terms are defined on the d −

1-dimensional boundaries of the solids):

−∇ · (ǫ0ǫr∇8) = ρe + ϑρŴs

e in (0,T)× Y , (5a)

E = −∇8 in (0,T)× Y , (5b)
∫

Y
8 dx = 0 in (0,T), (5c)

where ρe =
∑N

r=1 zreω
±
r [IT/L2] and ρŴs

e =
∑N

r=1 zreω
Ŵ,±
r

[IT/L] denote the charge densities in the fluid and on the solid
cells’ boundaries Ŵs

: =
⋃

i ∂Y
i
s , respectively, and scaling factor

ϑ = 1 [L−1]. Finally, e is the elementary charge [IT] and zr [−]
is the charge number of the r-th species, ǫ0 [I

2T4/(ML2)] denotes
the dielectric permittivity, and ǫr [−] is the discontinuous, phase
depending relative dielectric permittivity.

The consistency condition

∫

Y
ρe dx = −

∫

Ŵs
ρŴs

e dσ ,

complements the model meaning that sources and sinks of the
electric potential cancel out globally, i.e., the whole domain must
be electrically neutral. Hence, Rr cannot be chosen randomly
but has to ensure the conservation of charge, while g can be
an arbitrary boundary reaction, as the flux-boundary condition
in (3c) ensures conservation of charge independently of g.
Moreover, the initial condition (3e) has to be consistent with the
electroneutrality condition.

2.5. Numerical Methods
The equations of the continuum model part (3), (4), (5) are
discretized using the local discontinuous Galerkin method as
described in Rupp and Knabner (2017) and Rupp et al. (2018)
on the grid composed of squares which is naturally induced by
the model formulation (c.f. Figure 1). The lower dimensional
source terms are incorporated as symmetric flux corrections. The
used discretization of Henry’s law can be found in Rupp et al.
(2018). Finally, the fully discrete system of equations is obtained
via an approximation of the time-derivative by the first order
backward difference quotient, i.e., we apply an adaptive, implicit
Euler scheme. To ensure the local convergence of Newton’s
method applied to the nonlinear set of Nernst-Planck equations
restrictions of the time step may be necessary. Note that unlike
the algorithm in [Ray et al., 2017, subsection 2.5 (Table 2)],
we solve the complete resulting non-linear system of equations
(NLSE) here fully implicitly with Newton’s method.

The overall algorithm including the continuum model part
and the discrete CAM is depicted in Table 1, where t [T] is the
old time step, τ [T] denotes the time step size, t̃ [T] is the current
time when the CAM is evaluated, T [T] is the end time of the
simulation, andMAXITER [−], ǫ1 [−], ǫ2 [−] are constants. The
frequency of updates of the geometric structure (defined by τ̃ [T])
has an important impact on the evolution of the domain and thus
has to be related with realistic time intervals in an non-artificial
simulation. In Tang et al. (2013) twice a day is chosen. A second
time stepping (t, τ ) is introduced for operator splitting between
the different types of models in section 2.4, but in numerical
experiments we most often recognized that τ = τ̃ yields good
results.

Within the discrete model part—which is solved for all
global time steps—the main factors related to structural changes,
apart from the generation of biomass from bacteria, are
evaluated, namely the biomass spreading, solid restructuring and
reorganization of the gas phase. The implementation is written
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TABLE 1 | Algorithm for discrete-continuum model.

t = 0, t̃ = τ̃

While t < T

NUMITER = 0

While the residual of NLSE is > ǫ1 and NUMITER <

MAXITER

Continuum model component: Solve PDEs, ODEs, AEs which

are introduced in section 2.4, i.e., ensure that the residual of

NLSE is < ǫ2.

Continuum model component: Execute the transformation

rules for a fluid cell turning into a bio cell.

Compute the residual of NLSE with the new geometric

structure.

NUMITER = NUMITER + 1.

If the residual of NLSE is < ǫ1 and t̃ = t+ τ

Discrete model component: CAM for biomass spreading.

Discrete model component: CAM for reorganization of solids.

Discrete model component: CAM for reorganization of gas.

t̃ = t̃+ τ̃ .

If the residual of NLSE is < ǫ1 and t̃ > t+ τ

Possibly compute characteristic properties in current geometry

(LDG).

Visualize current state (geometry and concentrations of

different species).

t = t+ τ and τ = t̃− t.

If the residual of NLSE is ≥ ǫ1

Repeat time-step with τ = τ/2.

The gray steps are implemented and described in Ray et al. (2017), but not used in the

scenarios presented here.

in C++ and based on M++ (Wieners, 2005) and uses MPI
parallelization for the PDE and the CAM parts of the model.
The CAM part of the model induces a lot of communication
between different processors (especially for larger stencils).
Conflict resolution strategies have to be incorporated if different
cells have the same target location and jumps over processors’
boundaries are necessary. In general, we recognized that the
computational effort of the CAM increases drastically (compared
to the effort for solving the PDEs) if the portion of solid is high
and large stencils are applied.

3. RESULTS AND
DISCUSSION—SIMULATION SCENARIOS

To demonstrate the impact of the implemented mechanisms on
the formation of structures in soils, we present several simulation
scenarios. The first scenarios focus on the demonstration of single

effects and are chosen in such a way that the self organization
according to CAM rules is illustrated. To this end, various
model components such as charges, biomass, gluing agent, or
solutes in the liquid etc. are switched off. Thereafter, combined
effects are investigated to illustrate the overall capability of the
model. Finally, the interplay of the discrete and continuummodel
component is shown.

3.1. Effect of the Range of Attraction
First, we investigate the influence of the range of attraction
of particles on each other for structure formation which is
represented by different stencil widths. Since this scenario focuses
on the demonstration of a single effect, no charges, biomass,
gluing agent, or solutes in the liquid etc. are taken into account.
Thus, attraction of the cells to each other is uniform and can
be interpreted as the sum of attracting forces as, e.g., van der
Waals forces, that lead also to homoaggregation. It is thus only
determined by the number of neighbors [see Equation (2)
with γ̂ = γ̄ = 0]. Initially, a domain with 50% solid cells
and 50% fluid cells and 256 × 256 cells in total is randomly
created and any charge effects are disregarded. From this initial
configuration (c.f. picture on the left in Figure 7) the CAM is run
with a stencil of width 1 [L] and with a stencil of width 3 [L]
(c.f. Figure 3).

Since we study the formation of structures and do not consider
their disaggregation here, the simulations run into a quasi-
stationary state. The resulting aggregated structures are depicted
in the middle of Figure 7 (for a stencil of width 1) and in the
right of Figure 7 (for a stencil of width 3). It is evident that the
self organization of the solid phase highly depends on the range
of attraction represented by the size of the stencil. A smaller
range of attraction leads to finer structures, i.e., higher specific
surface areas of the solid phase (initially: 65, 168/32, 768 ≈

1.99 [L−1], stencil of size 1: 29, 720/32, 768 ≈ 0.91 [L−1],
stencil of size 3: 9, 208/32, 768 ≈ 0.28 [L−1] after 500 CAM
steps; Figure 7). Contrarily, the larger range of attraction induces
coarser, connected structures, and thus also the average size of
the pore channels is larger (Figure 7, right). Although the choice
of the stencil width representing the range of electric forces can
be determined quite well (see Liang et al., 2007), the analog of
the attraction range originating from other forces such as gluing
effects, has to be estimated. Our model allows to study such
effects separately to validate related assumptions. Moreover, the
combination of different effects on structure formation may also
be studied in silico. In principle, each prototype of particle (c.f.
Figure 2) may have a different range of attraction depending
for instance on its charge. This is represented in the model as
an individual stencil size (see Figure 3) for each prototype of a
particle.

3.2. Effect of the Shape of Building Units
The shape and size of the inseparable building units strongly
influence the formation of structural patterns. For an illustration
of this effect, we consider domains of sizes 256× 256 cells where
50% are filled by uncharged solid particles (either single cells or
needles of length 5). In Figure 8 the random initial configurations
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FIGURE 7 | Self organization depending on range of attraction: (Left) Initial, random configuration of single solid cells (black) with porosity θ = 0.5; (Middle)

quasi-stationary state with stencil 1, (Right) quasi-stationary state with stencil 3.

are shown on the left hand side. The corresponding quasi-
stationary states (after 500 CAM steps) are depicted on the right
hand side. Note that the first line of Figure 8 is included in
Figure 7. For each simulation a stencil of size 1 is applied. It is
evident that rearrangement and aggregation have occurred for
both simulation scenarios which are, however, more prominent
in case of the single cells. This is clearly due to size effects since
the rearrangement of needles is physically restricted for quite
high volume fractions of the solid. The small building units have
more options to move to a free single cell, and thus create denser
structures. So less smooth structures are created for the needles as
compared to the single cells and the surface has decreased less: for
the the latter ones by a factor of 0.46 (from initially 1.99 to 0.91
[L−1]), and for the needles by a factor of 0.84 (from 46, 096/32,
768 ≈ 1.41 to 38, 950/32, 768 ≈ 1.19 [L−1]).

3.3. Effect of Charges
Electrostatic forces are a major driving force for particle
aggregation (c.f. Totsche et al., 2018). Volume and surface
charges lead to repulsion or attraction of particles (or faces).
This effect is significantly different compared to the uniform
attraction between particles alone as has been investigated in
sections 3.1 and 3.2. To depict this effect in more detail, we
compare the following two simulation scenarios: For the same
initial configuration and disregarding the role of charges (and
other effects as a heterogeneously distributed gluing agent, e.g.),
the uniform attracting forces lead to augmenting the number of
neighbors in the first setting, c.f. (2) with γ̂ = γ̄ = 0 and
section 3.1. Second, the effect of charges is additionally taken into
account, i.e., 1 =γ̄ 6= 0.

As initial configuration, we consider 20% solid particles and
64 × 64 cells in total for each case. For the second scenario,
we randomly distribute constant charge numbers between −4
and +4 on all solid cell faces ∂Y i

s . For each scenario, we run
the CAM 200 steps with a stencil of size 2 [L] and evaluate the
attraction according to (2). The simulation results are depicted in
Figure 9. The quasi stationary states for the simulation scenarios
without and with charge effects are shown in the middle and
the right of Figure 9, respectively. It is evident that the principle

of augmenting the number of neighbors leads to quite large
and blocky structures. In contrast to this, fine and dendritic
structures, also called card-house structures, are obtained if
charges are taken into account. This is due to the repulsion of
particles with opposite charge. Such card-house structures are
frequently observed in soils with clay particles (Bennett and
Hulbert, 1986) and lead to three times higher specific surfaces
(initially 2, 522/819 ≈ 3.08 [L−1], for uncharged particles
444/819 ≈ 0.54 [L−1], and for charged particles 1, 328/819 ≈

1.62 [L−1]; c.f. Figure 9).

3.4. Effect of Henry’s Law and Gas Phase
In this section, we combine the restructuring of phases according
to the CAM with the PDE model to illustrate the capability of
our comprehensive model: A three phase system (as in Figure 6)
is taken into account without any electric field or charges
(33% solid, 33% fluid, 33% gas cells randomly distributed),
cf. the picture on the left in Figure 10. Within the gas phase
and the fluid phase a constant distribution of a species of 4
and 2 [1/L2], respectively, is present initially. It is degraded
with a first order rate and rate constant −0.375 [1/T] in the
fluid phase representing, e.g., the consumption of a nutrient,
such as oxygen by aerobic organisms in the fluid phase. The
diffusion is faster in the gas phase (D = 10−4 [L2/T])
compared to the fluid phase (D = 10−8 [L2/T]) and the
transfer between the phases is determined via Henry’s law with

solubility constant H
ŴLG
r = 2. The picture on the right in

Figure 10 shows the resulting distribution of the phases and
species after the PDEs for the species are solved and the CAM
is run simultaneously 50 steps on a domain of 64 × 64 cells.
It is evident that the phase transfer determined by means of
Henry’s law, leads to a jump in the nutrient concentration across
fluid–gas interface and therefore to a non-uniform distribution
of the nutrient in the pore space. Moreover, concentration
gradients are visible in the fluid and gas phases which become
more prominent for lower diffusivity. This leads to nutrient-
poor and nutrient-rich regions within the created aggregate
structure.
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FIGURE 8 | Self organization depending on shape and size constraints: (Left) Initial random configuration with single solid cells (top) and needles (bottom) in black

with porosity θ = 0.5; (Right) Quasi-stationary states with a stencil of 1.

FIGURE 9 | Effects of charges in solid restructuring: Initial configuration for both simulations, porosity θ = 0.8 (left), quasi stationary configuration without charges

(middle), and quasi stationary configuration with randomly distributed charges dominating the restructuring (right).

3.5. Effect of the Electrostatic Field in the
Solution
In this section, we combine the restructuring of phases according
to the CAM with the PDE model for movement of potentially
charged species in solution. Thus, we show the interplay of ions
in solution that adsorb to charged particles, i.e., we combine the
CAM for charged solids with the PDEs for a charged fluid phase.

The sorption of ions to the surfaces defined by

∂tω
Ŵ,±
r = k(g(ω±

r )−ωŴ,±
r ) = 1[1/T] ·

(

0.3[L]ω±
r

1+ 0.3[L2]ω±
r

− ωŴ,±
r

)

changes the attraction of particles and the resulting structures.
The left picture in Figure 11 shows the initial state of a
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FIGURE 10 | Aerobic bacteria in fluid phase combined with solid restructuring and gas reorganization: The scale depicts the concentration of a nutrient. Thus, solid

cells are red, fluid cells are violet to dark blue, and gas cells are pale blue to white in the right picture.

FIGURE 11 | Interplay of ions in solution with charged solids: Initial configuration (first image) of solid (red), quasi stationary, final configuration of charged solid in

neutral solution (second), and final configuration of charged solid in ionic solution (third image) when heterogeneous reactions alter the total charges of solid cells’

edges. The zoom highlights charges on solid edges, the rainbow scale corresponds to the surface concentrations.

randomly distributed solid with randomly charged surfaces
(charge numbers between−4 and+4) on a domain of size 32×32
with Dr = 10−8 [L2/T], Cr = 10−3 [IT2/M], and the other
physical constants set to 1.

We compare the resulting structures under the influence of
an uncharged chemical species and positively/negatively charged
species. The uniform initial concentration of the uncharged
species is 10 [1/L2] and homogeneous Neumann boundary is
applied at the solid’s surface Ŵ. Likewise, the uniform initial
concentration of the positively charged chemical species is set
to 10 [1/L2]. To ensure electroneutrality (also balancing the total
charge of the solid), a negatively charged species with an initially
homogeneous concentration of 13.27 [1/L2] is necessary (not
plotted in Figure 11). The middle and right image in Figure 11

depict the quasi stationary, consolidated configurations of the
solid (after 100 CAM steps with a stencil size of 3 [L]), when
uncharged or charged species are considered, respectively. The
inert uncharged species has remained constant at 10 [1/L2] as

depicted in the middle picture of Figure 11. For the charged
species heterogeneous reactions with the solid are included which
alter the solid’s charge and thus also the structure formation.
In the zoom in the right of Figure 11 we see high surface
concentrations of the charged species near high concentrations
in the solute, and vice versa. The altered surface concentrations
by sorption have an impact on the attraction of the solid particles
and thus on the resulting solid structure, this becomes evident
when comparing the aggregated particles in the respective final
states.

4. CONCLUSION AND OUTLOOK

In this research, we presented a comprehensive mathematical
model for structure formation. A novel discrete–continuum
approach was taken, combining a model of partial differential
equations for charged, reactive multicomponent transport with a
cellular automaton method for the interactive self-organization
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of solid, bio, fluid and gas phases. A thorough illustration by
means of numerical simulations was performed. This versatile
approach has the potential to study the interplay of different
aggregation mechanisms in silico. The systematic evaluation
of a broad range of scenarios for microaggregate formation—
also in comparison to batch experiments addressing aggregate
formation—is subject of current work and a forthcoming
article. It addresses, e.g., electrostatic shielding in realistic
configurations, and studies structure formation at various
concentrations and particle type relationships.

Although our results have already contributed towards
enhancing our understanding of structure formation and self
organization in soils, there are several aspects that may be added
to the model.

First, more research is needed to investigate unsaturated
fluid flow. This was for instance done for non-evolving angular
pore networks representing soil aggregates in Ebrahimi and
Or (2016). Here continuum model approaches were combined
with an individual model for microbial community. The
superposition of the results weighted with aggregate size
distributions made it possible to access scales of practical interest.
Traditional mathematical upscaling in unsaturated conditions
has been performed in Daly and Roose (2018) to illuminate the
parametrization of Richard’s equation. Likewise it is desirable to
predict the water retention curve in our setting. Moreover, the
transport limited availability of nutrients and their role for habitat
could be investigated in further research. Such model extensions
seem to be quite promising for further investigations of soil’s
functionality in the future.

Furthermore other process mechanisms could be identified
to broaden the applicability of our model. Those have to be
determined and validated with the help of experimental studies
which itself is a challenge. One step into that direction would be

a model extension with respect to disaggregation of the resulting
structures. Different aggregation and disaggregationmechanisms
and their respective ratios need to be investigated. Moreover,
building units and their composites (i.e., smaller units of building
units) naturally undergo some random movement (representing
self diffusion) independently of the CAM rules. Such amovement
depending on the respective size of the particles needs to be
included into the model. A related research question is how time
scales are related to diffusion and how interaction processes can
be balanced in a reasonable way.

Finally, a quantitative evaluation of the resulting structures
would be possible by means of Minkowski functionals and
further geometric measures characterizing among others the
connectivity and compactness of a structure.
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