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Hydraulic redistribution (HR) by woody vegetation has been proposed as a potential water

source for crops in intercropped systems. The native woody shrub, Guiera senegalensis

J.F. Gmel, grows in the fields of farmers across the African Sahel and has shown

profound yield benefits to associated pearl millet (Pennisetum glaucum) crops, especially

in drought years. We tested whether this benefit resulted from the shrubs performing

hydraulic redistribution (HR) with pearl millet using some of this HR water. During an

experimentally imposed drought, an enriched deuterium (2H) water tracer applied to 1m

deep roots of G. senegalensis shrubs was detected (2H ≥ +300‰) in aboveground

stems of intercropped millet within 12–96 h of tracer introduction. The only viable path

for the 2H-enriched H2O into millet was via HR by the shrubs, which confirmed active

HR during the time when growing millet was under severe drought stress. Millet biomass

production when intercropped with shrubs was over 900% greater than crops grown

without shrubs present. Improvement of growing conditions previously found near shrubs

cannot fully account for the benefit to associated millet under extreme drought stress

without considering the positive impact of the transfer of HRwater. This finding illuminates

HR and water transfer as an important mechanism in a successful agroforestry system

in a region where food security is a serious issue.

Keywords: agroecology, agroforestry, hydraulic redistribution, hydrology, crop water stress, drought, pearl millet,

Sahel

INTRODUCTION

Plant roots spanning spatially disconnected areas of soil moisture can serve as conduits to
redistribute moisture within the soil profile. Breazeale (1930) and Breazeale and Crider (1934)
performed experiments investigating the ability of catclaw (Acacia gregii), date palm (Phoenix
dactylifera), corn (Zea mays), and tomato (Lycopersicon esculentum Mil.) to grow roots into
soil below the wilting point and then translocate moisture from disconnected wet soil into
dry soil layers over a period of days to weeks in pot and field culture. Further studies by
Breazeale and Crider (1934) with tomato plants identified the potential for this translocated
moisture to help nearby wheat (Triticum aestivum) seedlings survive otherwise lethal levels of
soil moisture stress in a pot-culture. Many years later, the phenomenon was studied in a natural
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system by Mooney et al. (1980) who found increased soil
moisture overnight in the dry shallow soil under phreatophytic
Prosopis tamarugo trees growing in the Atacama Desert and
proposed that this moisture movement and subsequent release
happened at night when the trees were not transpiring. Later
Richards and Caldwell (1987) observed the phenomenon of
overnight increase in water potential using thermocouple
psychrometers in a natural field setting beneath sagebrush
(Artemesia tridentata), which has deep tap roots. They coined
the term “hydraulic lift,” [later termed “hydraulic redistribution
(HR)” by Burgess et al. (1998)] to describe the process.

The stable and radioactive isotopes of hydrogen are extremely
useful tools for tracking water movement in ecological studies
(Rundel et al., 1989). Studies using natural abundance hydrogen
isotopes (Dawson and Ehleringer, 1993), as well as deuterium
(Caldwell and Richards, 1989), and tritium (Corak et al., 1987)
enriched water, have been used to trace the path of HR
water from deeper to shallower soils. HR has been identified
across a variety of ecosystem types (Emerman and Dawson,
1996; Warren et al., 2007; Bleby et al., 2010). Hydrogen
isotopes have been important tools in observing HR water
transfer in natural environments between Acer saccharum trees
and multiple nearby species, where the proportion of A.
saccharum HR water used correlated linearly to the growth
of nearby shallow-rooted species (Dawson and Ehleringer,
1993). Dawson and Pate (1996) continued this work measuring
HR in several Australian ecosystems and identified how the
dimorphic (i.e., deep and shallow) habit of tree roots in
seasonally dry environments can lead to seasonally distinct
patterns of water uptake from different elevations within the soil
profile.

The presence of HR has been linked to numerous ecosystem
processes beyond simple transfer from one plant to another.
For example, in greenhouse conditions under severe water
stress, Querejeta et al. (2003) showed that HR water can be
transferred to mycorrhizal symbionts of oak trees. Furthermore,
Cardon et al. (2013) provided evidence that HR promoted
nitrogen mineralization and plant nitrogen uptake by Artemesia
tridentata. Although HR has been suggested to provide
a potential benefit to agroecosystems (Corak et al., 1987;
Liste and White, 2008), the transfer of HR water from
a deep-rooted woody species to an important food crop
species as a mechanism to buffer against a severe, in-
season drought that would otherwise cause crop-failure has
not been conclusively shown to the best of the authors’
knowledge.

To address whether HR can increase crop production,
we investigated the existence of this pathway with the native
woody shrub, Guiera senegalensis J.F. Gmel, which often
grows in the agricultural fields of farmers throughout the
Sahel (Figures 1A,C). The Sahel is a transitional climate
zone between the arid Sahara desert in the North and the
Savannah to the South, where one-third of the 20.2 million
inhabitants face food and economic insecurity (United Nations,
2014). The majority population is directly employed in
agriculture, which is 97% rain-fed on low-fertility soils where
external inputs are not affordable for subsistence farmers

(Calzadilla et al., 2013). Furthermore, unsustainable land
management such as discontinuation of fallowing, cropping
intensification, overgrazing (United Nations, 2014) and
scavenging for fuel wood have contributed to severe degradation
and no increase in crop yield over the last 50 years (FAO,
2015). Another important agronomic challenge for the Sahel
is low and unpredictable rainfall and in-season drought
periods, which lead to low yield or crop failure (Figure 1B)
(Terrasson et al., 2009). Therefore, water is the most important
factor that farmers must use effectively to optimize crop
productivity.

Previously, our team documented benefits to soils and food
production when crops are inter-planted with the native woody
shrub, G. senegalensis, which is found throughout the Sahel
between the 500 and 800mm isohyets (Figure 1C) (Le Houerou,
1980). This is an optimized system where the density of shrubs
is elevated (∼1500 shrubs ha−1 or 3 to 4 times greater than
the natural density) and coppiced shrub residues are annually
returned to the soil. Studies conducted in experimental plots and
farmers’ fields in the past 15 years concluded that shrubs improve
soil quality (Dossa et al., 2009; Diedhiou-Sall et al., 2013) via
root and litter inputs that build soil structure, organic matter
concentrations, nutrient availability, and water storage (Dossa
et al., 2009, 2010).

G. senegalensis has tap roots that that extend beyond 3m
which enable retrieval of water from the subsoil during the dry
season and drought periods of the cropping season when the
upper 50 cm of soil becomes very dry (Gaze et al., 1998; Wezel
and Böcker, 1999; Kizito et al., 2006). Because of this adaptation
to the dry climate, G. senegalensis uses minimal amounts of water
during the critical early phases of crop germination and growth
and does not compete with crops for water (Kizito et al., 2007).
Our previous studies (Kizito et al., 2012) also documented
elevated soil moisture and diurnal soil water potential
fluctuations beneath shrub canopies during drought periods as
evidence G. senegalensis performs upward HR of water via roots
from wet subsoil to dry surface soil (Caldwell and Richards,
1989; Neumann and Cardon, 2012) due to a soil water potential
gradient.

In the coarse soils typically found in the region, water potential
ranges widely from near-saturation (−0.01 MPa) to permanent
wilting point (−1.50 MPa) with only a 7% change in volumetric
water content (Bogie et al., 2018). Rapid drying of the surface
soils through crop and shrub evapotranspiration can lead to large
gradients in moisture content and water potential, creating the
necessary conditions for HR. We hypothesized that HR water
could buffer crops against in-season periods of water stress.
Furthermore, an 11 year study on P. reticulatum (Bright et al.,
2017) and a 4 year study on G. senegalensis (Dossa et al., 2012)
showed that crops near shrubs had significantly higher crop yield
per mm of rainfall, even in dry years, over non-shrub treatments.
In our earlier work, only indirect evidence that HR water from
shrubs is available to adjacent crops was documented. To accept
or refute this hypothesis, an irrigated field experiment in the dry
season was conducted in tandem with a deuterium tracer study
during a simulated drought to determine if HR water was taken
up by adjacent millet plants.
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FIGURE 1 | Conceptual figure showing Guiera senegalensis and associated Pennisetum Glaucum (pearl millet) (A). Mean annual millet yield across latitudinal transect

in Senegal over the years 1987–2002. Mean annual precipitation for the same time period is indicated by color. Fitted line represents linear relationship of latitude and

yield with values below 800mm of mean annual precipitation (r2 = 0.68) (B). Map of the Sahel showing published locations of G. senegalensis and the median, and

10th and 90th percentiles of the 500mm isohyet to illustrate the interannual variability of the precipitation (C).

MATERIALS AND METHODS

Research Site and Field Experimental
Design
This research was performed in the Peanut Basin, Senegal in the
village of Keur Matar Arame (14◦45’ N, 1620◦51’ W and 54m
above sea level) where the mean annual precipitation is 450mm
yr−1. The farming system is a yearly rotation of Pennisetum
glaucum (pearl millet) and Arachis hypogea (groundnut) crops.
Daily mean temperatures at the site range from 20◦ C in
December-January to over 33◦ C from April-June. The soil is a
Rubic Arenosol as described in the FAO system, locally described
as Dior. The soil has minimal structure except for a periodic crust
layer at a depth of approximately 5 cm that disappears once the
soil is wet. This crust layer was not reported in previous studies
at the site (Badiane et al., 2000; Kizito, 2006; Dossa et al., 2009).
There is little horizonation in the top 1m of soil. The texture of

the soil is over 95% sand.
The experimental site was established in 2003. Prior to 2003,

for at least 50 years, the area was in a crop rotation between

groundnuts and pearl millet under local farmer management
with G. senegalensis as the dominant shrub found in farmers’

fields with a density of 240 shrubs ha−1. The experiment is a
randomized complete block split plot design with shrubs as the

main plots and fertilizer rate as the subplot (0, 0.5, 1.0, or 1.5 x
the recommended nitrogen-phosphorus-potassium fertilizer rate
for millet or groundnut) (see Dossa et al., 2012, for details of
the long-term study). For this study the zero fertilizer plots were
used.

In 2003 the crop only subplots had shrubs removed manually,
which included digging out major roots, and over the course of
the experiment received only crop residues as biomass input.
The crop+shrub treatment was managed optimally by planting
additional shrubs in 2003 to increase shrub density to 1500–
1833 shrubs ha−1 followed by annual incorporation of coppiced
shrub biomass in May, for the purposes of this dry-season study,
additional cuttings and incorporations of biomass occurred on
February 27 and April 15, 2014. In contrast to the typical farmer
practice of burning coppiced shrub biomass before using a
shallow (6 cm) sweep-tillage implement to till the soil prior to
planting (traditional, thermal management), the shrub material
was chopped (∼5 cm lengths) and spread evenly across the
crop+shrub subplots after which the same horse drawn sweep
tillage implement mentioned above was used to incorporate the
shrub stem and leaf material to a depth of about 6 cm (non-
thermal management). A study by Dossa et al. (2012) showed
improved yield of millet near shrubs with this higher shrub
density and non-thermal shrub residue management compared
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to millet planted on bare soil. A different study by Kizito et al.
(2006) showed an insignificant yield increase of millet planted
near shrubs at their native density with thermal management
compared to millet planted on bare soil. Therefore, the difference
between traditional thermal management of shrub residues and
this optimized non-thermal management practice may result in
higher crop yields compared to a bare soil control where crops
are planted alone.

Since 2003 and for the study reported here, (March to
June 2014) crop and soil management followed typical farmer
practices using animal traction and manual labor. Drip irrigation
was used to impose a strong drought stress at early flowering
when the crops were highly vulnerable. All shrubs used for
the tracer study were the oldest shrubs within the crop+shrub
subplots with extensive root systems, present before the addition
of new shrubs in 2003.

Plot Layout and Irrigation
In this region, the major field crops of pearl millet and groundnut
are entirely rain-fed. To enable full control for inducing drought,
the experiment was performed during the dry season. Subplots
measuring 10 x 6m normally cultivated at the site were split
to 5m x 6m and had drip irrigation installed. Drip tubes were
positioned on the surface with 1m between tubes and along these
tubes drip emitters were inserted every 0.5m. The plots were
then sown with pearl millet (Pennisetum glaucum var. Souna III)
at a 1m x 1m spacing on March 7, 2014. Crops were irrigated
beginning on March 5 initially with 24mm of water and then
with 3–30mm of water every 1–2 days with groundwater from
a local water system. For 2 weeks in the early part of the season,
plots were irrigated with a sprayer by hand with the amount of
water delivered to each plot quantified by a volume counter on
the hose, as well as checks in each plot using five buckets to
measure water quantity. This was done to avoid excessive surface
temperatures since there were no clouds and the climate stayed
dry and hot. On days when water was not available, irrigation had
to be increased at the following event. Biomass yields obtained
in this study were higher than those obtained during the rainy
season, particularly for the crop only subplots, though the yields
vary widely from season to season (Dossa et al., 2012). As a result
of drip irrigation applications that were smaller than the typical
large precipitation events during the rain-fed growing season the
soil profile did not undergo the large wetting and infiltration
events that lead to deep percolation below the rooting zone as
seen during the growing season (Kizito et al., 2007; Bogie, 2016).
Drip irrigation could have led to higher water use efficiency (g dry
matter produced per mm water applied) in this trial than under
rain-fed conditions. Therefore under water limited conditions
such as this drought treatment, drip irrigation could yield higher
biomass and grain production for the same quantity of water
entering the soil surface. On May 9, irrigation was cut off during
the early flowering stage of the millet and no further water was
applied to the crop for the 41 days remaining until harvest. The
isotope tracer study occurred fromMay 24 - May 29.

Millet was harvested on June 19, 2014, six plants per treatment
in each of three replicate plots (n = 3 per treatment) were
harvested from a 6 m2 area and the total per subplot was

used to scale the mass of the six plants to per hectare yield.
Panicle yield was used instead of grain yield because many plants
were damaged by birds that invaded protective cloth shields
placed over panicles and subsequently consumed many of the
seeds. Panicles may have been slightly damaged, but the authors
observed that the damage was uniform across panicles that had
developed through the grain-filling growth stage.

Stable Isotope Tracer Investigation
In order to deliver labeled 2H-water to the deep roots of the
shrub, glass vials with rubber septa (4 cm diameter) and screw
caps were drilled with holes from 2 to 5mm in order for them
to stretch and create a tight seal around roots that ranged in
diameter from 3 to 9mm. In three separate crop+shrub subplots
a hole was dug to ∼1 meter and two roots were chosen from
one shrub for each subplot (Figure S1). The shrubs were the only
plants except for the millet within the study site and had large
woody roots compared to the softer roots of the millet that were
found above 60 cm depth. Previously sealed vials with∼70mL of
46 atom % 2H2O (Sigma Aldrich, St. Louis, MO) were attached
to two roots cut below 1m depth for each of three shrubs. Bottles
were partially buried under∼20 cm of soil when the tracer study
was initiated

Background δ2H millet signals (δ2H-free crop) were
determined from millet plants grown in shrub-free plots
separated by more than 30m from the nearest tracer source.
Shrub control samples (δ2H-free shrub) were collected from
a shrub 100m away from the nearest tracer source. Tissue
samples for δ2H analysis were not collected in the crop only
subplots that were used for moisture and millet physiology and
phenology measurements (Figure S1). Tracer δ2H exceeding two
standard deviations above the control mean were considered as a
statistically significant signature of the applied tracer.

Crops and shrubs were sampled separately in the following
order at each time interval of during the tracer experiment: (1)
shrubs chosen 100m (δ2H-free shrub) away from the site were
sampled, then (2) crops 30m (δ2H-free crop) from the nearest
tracer application location were sampled as a control, (3) then
the crops in the sample plots were sampled and followed by,
(4) labeled shrub sampling. On May 24 the deuterium label was
applied to the shrub roots. On the evening of May 27, the roots
attached to the vials were completely severed above the bottle,
and both cut ends covered in electrical putty to stop the flow of
tracer. After the roots were severed and sealed the bottles were left
buried in place in order to minimize disturbance of the soil and
reduce the possibility of contamination of the soil with labeled
water. From May 24 to 28 sampling of shrub and millet biomass
at the above plot locations was done at 8-24 h intervals with
shorter intervals in the first 3 days of the tracer study. The bottles
were excavated then removed from the holes on May 29 after the
last sampling was complete. All of the bottles except one of the
two in crop+shrub subplot B (which lost 2.8 g) lost between 33
and 65 g of the tracer water as a result of root uptake.

Extreme caution was taken to avoid contamination, baseline
crop and shrub samples were collected in the field before the
deuterium solution was ever removed from the lab, and a separate
pair of rubber gloves was used to sample each replicate of each
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type of plant. Shrub biomass was sampled by cutting four stems
at the soil surface which then had bark removed. The stripped
stems were placed in a glass vial with a polycone cap, sealed,
and wrapped with parafilm. The sampled shoots of the shrub
were all new growth since the beginning of the study, and
were approximately 40 cm long. For the crop sampling, tillers
were cut within 5 cm of the soil surface, the first 2 layers of
material were removed. The remaining internal shoot material
was placed and sealed in glass vials as described for shrubmaterial
above. Immediately after sealing, the glass vials were placed
in polyethelene bags separated by replicate and treatment and
transported in a cooler on ice to a −20◦ C freezer within 2 h and
remained frozen until extraction of the water.

Samples were extracted by cryogenic vacuum distillation as
described by West et al. (2006) with the modifications noted
below. Samples were removed from the freezer 12 h before
extraction to thaw and equilibrate. Most of the extractions were
carried out at IRD Dakar and the remaining samples were
shipped back to Merced, CA, USA on dry ice to keep them
frozen before they were extracted. Once samples were thawed,
vials were opened and samples placed into extraction vials with
decontaminated dry tweezers and sealed immediately in the
previously evacuated vacuum extraction apparatus. Once sealed
on the vacuum line, samples were frozen in liquid nitrogen and
then drawn down to 30 mTorr using a rotary vane vacuum pump
(Max 8C, Fisher Scientific, Pittsburgh, PA). The sample was then
isolated from the manifold and monitored for leaks. If no leaks
occurred, then the nitrogen was replaced with boiling water over
the extraction tube and maintained at boiling throughout the
extraction. The nitrogen was then placed on the collection tube
to catch the distillate. After 70min the glass lines were inspected
for any condensation and glass and metal parts were heated with
a heat gun to make sure no condensation remained inside the
lines. Once it was established that there was no condensation
in the system, the frozen collection tube was removed from the
manifold, sealed with parafilm to thaw, pipetted into 2mL storage
vials with a screwcap and PTFE septa. These sealed vials were
wrapped with parafilm and brought back to the Fogel Lab at UC
Merced for analysis.

Isotope Analysis
Samples were analyzed for 2H on a Thermo Scientific
Temperature Conversion Elemental Analyzer (TCEA) coupled
to a Conflo-IV and an isotope ratio mass spectrometer (IRMS)
(Delta V- Plus, Thermo Scientific) in continuous flow mode.
Isotope ratios are represented using the δ2H notation (Eq. 1)
where Rsample is the ratio of 2H/H of the sample, and Rstandard

is the ratio of 2H /H of the Vienna Standard Mean Ocean Water
(VSMOW) standard.

One µL aliquots were injected manually into the TCEA with
a 10 µL syringe. The TCEA furnace was maintained at 1430◦

C with a constant stream of helium carrier gas. The TCEA
reactor column consisted of a graphite crucible housed in a
glassy carbon rod where H2O was converted to H2 and CO.
Hydrogen and carbon monoxide were separated on a molecular
sieve column before entering the Conflo. Samples were run in
triplicate with H2 gas standard injected twice before and twice

after the sample injections with a mean standard deviation of
1.5‰ among peaks for a given sample. In order to correct for H+

3
that is produced during ionization, the H+

3 factor was measured
with a typical value of 4.71 ppm nV−1. This is introduced because
H+

3 has the same mass/charge (m/z) value as H2H+ and is read
by the Faraday detector for m/z = 3 (Sessions et al., 2001).
The voltage signal from the IRMS was processed using ISODAT
and calibration regressions were performed using R (R Core
Team, 2016). For a sample reading δ2H 23‰ the 95% confidence
interval was ±1.4‰. A series of Los Gatos Research working
standards were used across the range of −150±1.0 to −40 ±1.0
‰, as well as an enriched internal standard of 1000‰, VSMOW
standard, UCMerced distilled water, and SMOW-GL, an internal
water standard with a δ2H close to VSMOW.

δ=
Rsample

Rstandard
− 1× 1000 (1)

Soil Moisture and Water Potential
Soil water potential was measured using screen-cage
thermocouple psychrometers individually calibrated
isothermally in a range of KCl solutions (Brown and Bartos,
1982). Psychrometers used a cooling time of 30 s and were
logged hourly with a data logger (PST-55/PSYPRO, Wescor,
Logan, UT). The only functional psychrometers were located
in the crop+shrub subplot of plot C at depths of 20, 60, and
100 cm. The fluctuations in water potential are synchronized
and there is no time lag of the daily maximum and minimum
water potential with depth (Figure 2). This is strong evidence
that these fluctuations are not caused by diurnal temperature
changes, which typically exhibit a depth-wise phase shift in a
sinusoidal plot with time series on the x and temperature on
the y-axis. Water potential is highly sensitive to changes in
temperature (Andraski and Scanlon, 2002) in the range observed
at this field site. Therefore, if diurnal temperature fluctuations
were driving the changes to water potential that are observed
here, the sinusoidal shape of the temperature vs. time plot would
exhibit a phase shift with depth. Since there is no phase shift
observed in the diurnal water potential fluctuations, we conclude
that the changes to water potential are driven by changes to the
relative humidity in the soil, which we propose is as a result of
transpirational uptake and nighttime efflux of moisture from
shrub roots rather than changes in soil temperature, though
vapor flux can account for a fraction of water potential change in
this system during HR (Kizito et al., 2012).

Soil moisture content wasmeasured with amulti-depth profile
capacitance probe in access tubes that were installed according
to the manufacturer’s recommendations with great care taken
to avoid air gaps along the tube (PR 2/6, Delta-T Devices,
Cambridge, UK). Soil water measurements were taken at three
locations: (1) < 0.5m from canopy in the crop+shrub subplots
(crop+shrub “near”); (2) 1m from the nearest shrub canopy
in the crop+shrub subplots (crop+shrub “far”); and (3) >3m
from the nearest shrubs in the crop only subplots (Figure S1).
The profile probe measured moisture at depths of 10, 20, 40, 60,
and 100 cm. The factory calibration of profile probe was used
with an accuracy of ± 0.04 m3m−3. Soil moisture measurements
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FIGURE 2 | Soil water potential measured by thermocouple psychrometers at

three depths in crop+shrub subplot C. “Tracer” indicates the beginning of the

stable isotope 2H-tracer study on the evening of May 24. Gray shading

represents night time hours. These data represent conditions beginning on day

13 of the imposed drought.

were taken just prior to turning on irrigation every 1–3 days. On
May 25 the soil moisture sensor failed, so there are no moisture
measurements following this date. Trapezoidal integration was
used to calculate the height of water (mm) in the 10–100 cm
depth range.

Statistics
Statistical analysis for biomass and panicle production were
performed in R (RCore Team, 2016). Two-sided t-tests were used
to calculate yield difference on the sum of total millet biomass or
panicle masses within each crop+shrub or crop only subplot (n
= 3). Statistically significant results were considered at P-values
below 0.05. For plant height a non-parametric Kruskal-Wallis test
was used to compare between three distances from the shrub on
each separate date and a post-hoc Dunn’s Test with a Bonferroni
correction of the p-value threshold was used (Dinno, 2015).

Regional Precipitation, Yield, and Shrub
Locations
The GPCC precipitation and the yield-precipitation data used
in Figures 1B,C are adapted from (Mahul et al., 2009) and
GPCC precipitation can be found at: http://www.cgd.ucar.edu/
cas/catalog/surface/precip/gpcc.html. The reference for GPCC
data is specified as (Schneider et al., 2014). The locations of G.
senegalensis in Figure 1C are from the following publications,
Ringrose and Matheson (1992), Geiger and Manu (1993),
Gijsbers et al. (1994), Levy and Jarvis (1998), Wezel et al. (2000),
Seghieri et al. (2005), Yelemou et al. (2007), Lufafa et al. (2009),
Brandt et al. (2017). Note in some cases where there weremultiple

sites with G. senegalensis reported within a small region, an
approximate location central to the field locations was used.

RESULTS AND DISCUSSION

Millet was grown with fully sufficient levels of water for plant
growth until early flowering and then water was withheld for 41
days until harvest. Soil water potential rapidly declined during
the drought period with soil at the 20 cm depth reaching −2.0
MPa after 12 days, which was drier than the 60 cm and 100 cm
depths (Figure 2).

Soil moisture measured at three distances from the closest
shrub remained stable until mid-May, when the near-shrub
moisture began a steep decline of ∼10mm over the course of
a week (Figure S2). Profile soil moisture declined continuously
in all subplots after irrigation was stopped on May 9. Declines
in the crop+shrub “far” moisture and crop only treatments
were less pronounced than the crop+shrub “near” treatments
in crop+shrub subplots A and B, in crop+shrub subplot C the
declines crop+shrub “far” and “near” were similar (Figure S2).
In an earlier study, Kizito et al. (2012) found elevated near-
surface moisture in crop+shrub subplots during the early part of
the season as compared to crop only treatments. They also found
there was movement of moisture upwards toward the shrub and
laterally away from the shrub at night indicating G. senegalensis
was performing HR during times of extreme drying in the surface
soil.

There was little observable difference in moisture content
in the upper 1m of the soil profile between treatments in the
early season which does not resemble the pattern observed by
Kizito et al. (2007). These authors showed that in the early part
of the growing season, crop+shrub treatments had an elevated
moisture content of up to 0.03 m3 m−3 in the upper 1.10m
of the profile, integrated over neutron probe measurements at
0.10m depth increments. The differences Kizito et al. observed
may be due to differences in infiltration rates between plots or
due to the existence of hydraulic redistribution in the shrub root
zone (Kizito et al., 2007). Kizito et al. found higher saturated
infiltration rates near the shrub which they attribute to higher
macroporosity. Saturated infiltration would then lead to deeper
moisture penetration and higher total profile moisture content
beneath the shrubs following a large rainfall event. However, the
rate of water infiltration by the drip emitters in this study was
low enough that there was no ponded infiltration, therefore the
role ofmacropores in infiltration was likely diminished compared
to many of the precipitation events during the rain-fed growing
season. Smaller, more frequent low-intensity events (such as
drip irrigation) could lead to similar infiltration rates across
treatments in this study and a more uniform profile moisture
depth when compared between treatments. Additionally, the
shrub density in this irrigation and tracer study was ∼7 times
as high as the native density in the field studied by Kizito
et al. (2007), so the shrub water uptake was likely higher in
this study which could diminish any shrub-mediated increases
to profile moisture content due to infiltration or hydraulic
redistribution.
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FIGURE 3 | Biomass yield of millet (Pennisetum glaucum) crop grown alone or

in association with Guiera senegalensis (n = 3 per treatment). Error bars are

one standard error, treatments are significantly different (P < 0.05). Photo is

taken in plot C.

Not surprisingly because of the very low soil moisture levels
during the drought, millet without shrubs resulted in crop failure
with virtually no panicle production and very low biomass
(Figure 3 and Figure S3). Although millet is one of the staple
crops in the region, biomass yields in fields without the presence
of shrubs or additional fertilizer can routinely fall below 200 kg
ha−1. Sometimes crops produce no grain at all as they did in
2007 (Dossa et al., 2012) and 2013 at this site (M. Bright, personal
communication).

However, it was surprising to find that millet in the presence
of shrubs, despite experiencing soil water potential well below
the wilting point at −3.0 MPa, was not only able to keep
growing but actually produced a harvestable product. The millet
in crop+shrub subplots produced almost 10 times the biomass
and over seven times more panicles than the crop only treatment
(Student’s t-statistic 15.8, −4.7 for panicle mass and biomass,
respectively, P < 0.05 for both) (Figure 3 and Figure S3). These
results are consistent with Dossa et al. (2012) who found millet
planted near G. senegalensismaintained significantly higher crop
yields during low rainfall years.

This raises a fundamental question on how shrubs keep a crop
growing when soil moisture is so low. Somehow this shrub is
making water available to the crop and apparently very efficiently.

One mechanism for assisting millet could be the higher
soil organic matter that has accumulated in the optimized
shrub-intercropping system (Dossa et al., 2009, 2010, 2012;
Diedhiou-Sall et al., 2013). In particular, Dossa et al. (2012) found

that the particulate organic matter fraction (undecomposed
plant litter) was significantly higher when soils were under
an optimized system which was highly correlated with crop
yields. The improved soil quality due to annual incorporation
of coppiced shrub biomass and root turnover for 9 years prior
to our current study would be expected to increase aggregation
and porosity to store water (Carminati, 2012) and make it
more readily available for crops. However, the extremely low
water potential after the drought was imposed (well below the
wilting point), would suggest that improved soil quality andwater
holding capacity cannot fully account for the positive growth
response of millet in the presence of G. senegalensis.

This leaves the second, and reasonably, the most important
mechanism, HR, as a plausible explanation for the phenomenal
ability of G. senegalensis to keep millet growing through the
severe in-season drought that was imposed. Indeed, all sensors
recorded the typical signature of HR with an increase of water
potential from sunset until sunrise. During this imposed drought
period the largest overnight increase in water potential was 0.57
MPa over a 12-h period at 20 cm depth on May 25 (Figure 2).
However, these diurnal shifts in water potential do not confirm
that hydraulically lifted water by this shrub is actually taken up
by adjacent crops.

To address this question the 2H-tracer experiment was done
toward the end of the drought period. Figure 4 shows temporal
shift of 2H-tracer in shrub tissue increasing in the first 24 h
and then declining; whereas millet tissue adjacent to the shrub
started showing the signal from 12 h after the tracer was
applied. In crop+shrub subplot A and B above-background δ2H
was observed in millet with peak δ2H values at 36 and 84 h
after tracer application, respectively. In crop+shrub subplot C,
above background δ2H was first observed 36 h after 2H tracer
application in millet, which was also the time at which it reached
its maximum value.

The strongest 2H signal in millet was in crop+shrub subplots
A and B, which exhibited above-background δ2H at all but one
sampling time after the introduction of the tracer on the evening
of May 24 (Figure 4). In subplot C of the crop+shrub treatment
the tracer was significantly above background levels (δ2H =–
18‰) once at the “near” sampling site and twice at the “far” (>
3m from labeled shrub, but still within shrub subplot near other
shrubs) sampling site. The most positive (enriched) δ2H values
in the millet in crop+shrub subplots A, B, and C were 335, 208,
and −17‰ respectively. The δ2H values in the shrub stems in
crop+shrub subplot A showed the greatest enrichment (δ2H =

∼5000‰ increase) and an above-background signal in all but
one sampling after tracer introduction (Figure 4). These results
confirm that G. senegalensis can move water from deep in the
profile by HR to surface soil that can be taken up by nearby millet
plants.

Although it was not possible to quantify the exact amount of
water transferred, the crop yields in crop+shrub vs. crop only
subplots indicate the amount of water transferred is important.
Sap flow data measured in the crop+shrub subplot of plot C
confirms that the millet plants near the shrubs were, in fact,
transpiring even after 17 days without added irrigation water,
and the moisture content was considerably higher in crop+shrub

Frontiers in Environmental Science | www.frontiersin.org 7 September 2018 | Volume 6 | Article 98

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Bogie et al. Bioirrigation by Native Sahelian Shrubs

FIGURE 4 | Time evolution in δ2H in shrub (Guiera senegalensis) and crop (Pennisetum glaucum) plant water in each of three crop+shrub subplots and in a separate

δ2H-free crop and δ2H-free shrub located at least 30m from nearest enriched tracer site. “Tracer” indicates the beginning of the stable isotope 2H-tracer study on the

evening of May 24. Crop+shrub subplot (A,B,C) “near” were taken < 0.5m from δ2H labeled shrub. Crop+shrub subplot C “far” was 4.5m to the East of the δ2H

labeled shrub. Shaded portions indicate night time hours. Note different y-axis scales. Open symbols represent background δ2H signal, and filled symbols represent

above background δ2H signal, “x” symbols represent data from δ2H-free control millet plot and shrub plot.

subplot A where sap flow was measured than in plot C where the
water potential was measured (Figures S2, S4).

Despite the fact that the soil moisture nearest to the shrubs
was the lowest, the plants closest to the shrubs were 267%
taller than the crop only plants, and 142% taller than the
millet 1m away from the shrub (Figure S5). Surprisingly, the
largest plants in the field were in the driest conditions, in
the presence of shrub roots Thus one can only conclude
HR water must have kept millet growing, and done so very
efficiently. Additionally, the quantity of water transferred during

HR is very small, but the water potential, which can vary
widely with a small amount of moisture change, determines
the limit to nitrification (Stark and Firestone, 1995) and
plant water uptake (Richards and Weaver, 1943). Using an
indirect water balance method, Kizito et al. (2012) estimated
the quantity of HR to be 35–47mm annually, which accounts
for 8–10% of the mean annual precipitation of 450mm. With
the cessation of irrigation there was no available water to
the millet other than that stored in the rooting zone, or
HR water.
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Water enriched in, 2H was not strongly detected in shrub
stems in two of three crop+shrub subplots even though it
was applied directly to one of the shrub’s tap roots. Guiera
senegalensis has an extensive vertical and horizontal rooting
system and many aboveground stems (Kizito et al., 2006).
It is therefore conceivable that some of the sampled shrub
stems were not directly connected to the roots that received
the isotopic tracer thus the absence of a 2H signal in the
shrubs at some time steps is not unexpected (Figure 4 and
Figure S6).

This observation does not, however, explain why all HR water
was not completely reabsorbed by the shrubs themselves. One
explanation is that a plant may not use its own HR water, as deep
water may be easier to take up in wetter conditions of the subsoil
due to potential differences in hydraulic conductivity between
surface and tap roots (Mcelrone et al., 1999). Alternatively, millet
may be better adapted, through its high density of roots in the
0-1m range, to exploit HR water than a woody species such as G.
senegalensis (Brück et al., 2003).

Another mechanism that could contribute to efficient transfer
of HR water from shrubs to crops is mycorrhizal hyphae
connecting roots of two plant species (Egerton-Warburton et al.,
2007). The strong HR signal in the soil water potential (Figure 2)
demonstrates the release of moisture into the shallow soil depths,
but does not rule out the possibility of a mycorrhizal transfer
pathway between species.

We propose three mechanisms by which a relatively small
volume of water in an environment of very high potential
evaporation can contribute to improved crop performance.
First, from soil water potential data (Figure 2) and other
similar studies (Richards and Caldwell, 1987; Caldwell and
Richards, 1989) HR is particularly strong during times of
extreme drought and increases the longevity of shrub roots
by maintaining contact between the root and the rhizosphere
soil which, if broken, can lead to cavitation and loss of root
function (Horton and Hart, 1998). It has been shown that
soil with root exudates (extracellular polymers) can retain a
greater amount of water than bulk soil under drying conditions
(Carminati and Vetterlein, 2013). This mechanism could help
prevent drought-induced cavitation of shrub roots when soil
water potential is near the wilting point. The same logic could
be extended to include the maintenance of root health of
the millet roots when they are intermingled with shrub roots.
During the rainy season in nearby farmers’ fields, the authors
observed millet roots growing closely around G. senegalensis
roots, supporting the assertion that HR water is involved
in the maintenance and functioning of the roots of both
species.

Second, in many arid and semi-arid regions shrubs have
been shown to create resource “islands” with greater carbon
and nutrient contents than in surrounding soils (Dossa et al.,
2009, 2012; Hernandez et al., 2015; Diakhate et al., 2016).
Improved crop yields near these “islands” are associated with
higher microbial activity and abundance in the rhizosphere
(Diedhiou-Sall et al., 2013; Debenport et al., 2015). While
shrubs provide water during drought stress, they also create
higher quality soils and harbor beneficial microbes (Debenport

et al., 2015) that improve crop nutrient and health status, all
of which can contribute to drought resistance. Indeed, some
microbes have the ability to assist plants during water stress
(Timmusk and Wagner, 1999).

Third, quantity of water used during grain filling is extremely
important to grain yields (Vadez et al., 2013b). Vadez et al.
(2013a) showed in a pot study that for every additional kg
of moisture used by millet during grain filling, yield can be
increased by 4.7 and 3.5 g plant−1. Scaling this result up, at
a planting density of 10,000 plants ha−1 this could result in
a yield increase of 35–47 kg ha−1 mm−1 additional moisture
that plants receive during grain filling. This shows that even a
relatively small quantity of moisture, such as that provided by
HR from G. senegalensis to millet, can have a strong impact on
crop yield.

In areas with less than 800mm of mean annual precipitation,
trees in agroforestry systems will outcompete crops for limited
water resources, unless the deep rooted species can access
groundwater (Van Noordwijk and Ong, 1999). Additionally,
pearl millet yields along a transect in Senegal show 800mm
of annual precipitation as a threshold below which yields
begin to decline (Figure 1B) In the presence of shrubs
in this study, however, millet continued to grow and was
more productive than millet grown alone, and the mean
annual rainfall at the site is 450mm (Kizito et al., 2006).
This observation demonstrated that G. senegalensis does
not compete with crops for soil water in times of water
scarcity.

These results show that shrubs can assist crops through
within-season drought periods. This is a particularly critical
growth period because at the mid-to-late crop stage as it is
no longer possible to replant. Many arid and semi-arid regions
including the West African Sahel will experience an increase in
drought severity and a decrease in soil moisture with climate
change (Dai, 2013), HR from associated shrubs in croplands will
increase in their importance for providing adequate food for the
population.

CONCLUSION

Feeding the large and rapidly growing populations in the
socioeconomically and environmentally precarious region of the
Sahel is a major challenge. For the Sahel, where the majority rural
populations depend on drought-tolerant pearl millet, groundnut,
sorghum (Sorghum bicolor), and cowpea (Vigna unguiculata),
shrub intercropping is a logical and locally available solution for
increasing yields and stabilizing productivity in high and low
rainfall years.

The findings provide confirmation of an unprecedented
agricultural system that performs “bioirrigation” by shrubs,
literally transferring hydraulically redistributed water to adjacent
crops. Using soil moisture sensors and stable isotope tracing
this study provided direct evidence for HR to be the key
mechanism of G. senegalensis to sustain millet during extreme
water stress. However, further in-depth research is needed to
understand how such small amounts of hydraulically lifted water
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can be so efficiently transferred from shrubs to crops. Also,
HR research is needed for Piliostigma reticulatum the other
dominant shrub species found in farmers’ fields throughout the
Sahel.

These results have implications for all semi-arid regions where
in-season drought is a common occurrence with increasingly
erratic climate patterns owing to global climate change. For
highly mechanized semi-arid agroecosystems in other parts of
the world, engineered intercropped systems for rain-fed crops
should be investigated as a novel approach to manage water
for crops to buffer against drought. For the Sahel, optimized
shrub intercropping with elevated planting density and the
return of coppiced biomass to soils, offers an ecological and
locally available solution to buffer against droughts and remediate
degraded soils that subsistence farmers can readily utilize.
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