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At present, the recovery and utilization of methane from anaerobic wastewater treatment

systems as a source of energy are well-researched and widely adopted for a more

sustainable system approach. However, not all methane produced in an anaerobic

treatment system is completely recovered; subsequently, dissolved methane present

in the effluent can be released into the environment and contribute to greenhouse

gas accumulation in the atmosphere and reduce the system’s methane yield. Many

studies have already investigated and discussed the factors affecting the production

of dissolved methane, as well as the techniques for its recovery. Among the recovery

techniques, the use of degassing membrane contactor is most preferred for wastewater

treatment application. However, reported data in the literature is limited to certain types

of wastewater characteristics and anaerobic systems. Studies on membrane-based

recovery of dissolved methane from AnMBR effluents are reviewed in this paper. For

the case of the degassing membrane contactor, porous, or micro-porous membranes

provides higher dissolved methane recovery efficiency than non-porous. However,

porous membranes are more susceptible to pore wetting problem. Among the different

operating conditions of degassing membrane contactors, liquid velocity, or flow rate

greatly affects the recovery, wherein higher velocity decreases the recovery efficiency of

dissolvedmethane. Consequently, research priorities aimed at development of degassing

membrane to accommodate higher liquid velocity and to reduce pore wetting. Moreover,

energy analysis of the AnMBR with degassing membrane system should be analyzed for

performance in full-scale applications.

Keywords: methane, wastewater, anaerobic membrane bioreactor, dissolved methane, degassing membrane

INTRODUCTION

Methane is a hydrocarbon compound resulting from the anaerobic degradation of organic
materials. It is flammable and explosive gas, producing carbon dioxide and water vapor
(Encyclopædia Britannica, 2018). The sources of global methane are a result of both natural and
anthropogenic activities. The latter provides 60% of methane sources which are further classified
as agriculture, energy, waste, and industrial sectors. The majority of methane produced from
agriculture sector is released during the enteric fermentation in animal raising; methane from
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the energy sector is mainly produced from the production and
processing of oil; from the waste sector it is primarily generated
from the solid waste and wastewater processing; and lastly, the
industrial source of methane comes from chemicals and metal
productions (Karakurt et al., 2012).

As part of the focus of this study, almost 9% of the
methane released into the environment comes from the activities
involved in wastewater systems—from its collection, treatment,
and disposal (Karakurt et al., 2012; Hu et al., 2017; Short
et al., 2017). Methane is released into the wastewater through
the metabolism of methanogens in an anaerobic condition
of wastewater treatment system (Crone et al., 2016). Water
or wastewater treatment is an inevitable part of the human
community to abate the negative impacts of its disposal on
the environment and living beings. However, the high energy
requirement for the collection and treatment of wastewater is a
major concern. This emphasizes the need for processes which
will allow recovery of methane and its utilization as a source
of energy for the wastewater treatment plant to improve its
energy efficiency (Rongwong et al., 2018). Theoretically, about
0.35 liters of methane is produced per grams of chemical oxygen
demand (COD) removed from the wastewater (Tchobanoglous
et al., 2003) and about one cubic meter of methane has an
estimated energy potential of 9 kWh (Crone et al., 2016). As
cited in the study of Molino et al. (2013), if methane produced
from the wastewater treatment system is used as automotive fuel,
around 97% of potential carbon dioxide emission can be reduced
compared to the use of fossil fuel, provided that the methane
content of biogas is at least 90% (Harasimowicz et al., 2007). A
critical review study on nine pilot-scale AnMBR systems (treating
domestic wastewater) estimated that five of these systems have
positive energy balance, which proved the potential of AnMBR
to be an energy producer (Shin and Bae, 2018). Aside from
this energy impact, recovery and utilization of methane have an
environmental impact, too. According to the Intergovernmental
Panel on Climate Change in 2014, methane has 28 times global
warming potential than carbon dioxide (IPCC, 2014). This
establishes the need for the control on the release of methane into
the environment.

However, not all methane produced in a wastewater treatment
system is recovered, which in turn will be discharged with the
effluent in the form of dissolved methane and released into
the environment. Liu et al. (2014) provided correlations among
the solubility of methane in water and the temperature and
salinity of the water (Figure 1). From Figure 1, the theoretical
dissolvedmethane present inmunicipal wastewater effluent (with
an average influent soluble COD concentration of 200 mg/L
and a COD removal efficiency of at least 90%) at 30◦C is
around 45% of the total methane produced (Liu et al., 2014).
In support of this, Smith et al. (2013) found that the percentage

Abbreviations: AnMBR, anaerobic membrane bioreactor; COD, chemical oxygen

demand; EGSB, expanded granular sludge bed; HRT, hydraulic retention time;

OLR, organic loading rate; PDMS, polydimethylsiloxane; PE, polyethylene; PP,

polypropylene; PU, Polyurethane; PVDF, Polyvinylidene difluoride; SAF-MBR,

staged anaerobic fluidized membrane bioreactor; SRT, solids retention time;

SAnMBR, submerged anaerobic membrane bioreactor; UASB, upflow anaerobic

sludge blanket.

FIGURE 1 | Solubility of methane in water under different temperature and

salinity (Adapted with permission from Dissolved Methane: A Hurdle for

Anaerobic Treatment of Municipal Wastewater Liu et al., 2014. Copyright 2014

American Chemical Society).

of dissolved methane in the effluent is 40–50% at 15◦C. This
dissolved methane can be utilized as an additional energy source
for the operation of wastewater treatment facilities. Rongwong
et al. (2018) calculated that optimum net electricity energy of
0.178 MJ could be recovered from the dissolved methane per
cubic meter of effluent from an AnMBR coupled with a degassing
membrane. This is still around 85% of the total energy recovered
from the dissolved methane.

ANAEROBIC MEMBRANE BIOREACTOR
(ANMBR): APPLICATIONS AND
CHALLENGES IN WASTEWATER
TREATMENT

Anaerobic membrane bioreactor (AnMBR) is a type of biological
wastewater treatment system that operates in the absence of
oxygen and utilizesmembranes to provide solid-liquid separation
(Lin et al., 2013). AnMBR is usually favored over other
conventional aerobic and anaerobic treatment systems because it
provides effluent with high quality, requires a smaller footprint,
provides long solid retention time (SRT) while having low
hydraulic retention time (HRT), and allows complete retention
of biomass. Also, it has lesser start-up time and can be applied as
either complete treatment or pre-treatment. However, the major
challenge with AnMBR is to maintain the permeate flux which
will tend to reduce over time due to the fouling of membrane.
But with the addition of membrane fouling control, such as gas
sparging and use of chemicals, the operating and maintenance
expenditures will increase (Lin et al., 2013; Berkessa et al., 2018).

The configuration of AnMBR can either be an external
crossflow AnMBR, where the membrane module is separated
from the reactor, or submerged AnMBR (SAnMBR), where
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the membrane is submerged in the reactor. Although external
AnMBR provides more direct control of fouling and easier
replacement of membrane module, studies confirm that
SAnMBR has lower energy consumption, fewer cleaning
procedures, and lower tangential velocities (Lin et al., 2013;
Dvorák et al., 2015). Furthermore, membrane materials used in
AnMBR is categorized as polymeric, metallic, and inorganic, and
the membrane module configuration as flat sheet, hollow fiber,
and tubular. Aside from the material and configuration of the
membrane, its pore size also determines the treatment efficiency
and the capability of AnMBR (Lin et al., 2013).

Based on the review by Lin et al. (2013), the applicability of
AnMBR in wastewater treatment is described by the influent
concentration, influent particulate characteristics, and extreme
conditions, such as very high or very low temperature and pH.
It was then concluded that AnMBR is applicable to treat all
types of wastewater except those with high organic strength,
low particulate concentration, and less extreme conditions. With
this, new designs for AnMBR have emerged to improve the
applicability of AnMBR to other environments, such as high
strength and industrial wastewaters, with lesser problems with
fouling (Liu et al., 2016; Hu et al., 2017; Berkessa et al., 2018).

RECOVERY OF DISSOLVED METHANE
FROM ANAEROBIC TREATMENT
EFFLUENTS

One of the major challenges associated with the methane
recovery from anaerobic processes is the high concentration
of dissolved methane in the effluent (Liu et al., 2014). Many
studies link this high concentration to the supersaturation index
of dissolved methane which is defined as the ratio between
the actual dissolved methane concentration and the theoretical
concentration, based on Henry’s Law (Crone et al., 2016).
Supersaturation is caused by shock conditions and entrapped
bubbles in the sludge (Smart Water Fund, 2013). Rongwong
et al. (2018) reported that this supersaturation index varied in the
different reactors, wherein upflow anaerobic sludge blanket has a
higher supersaturation of methane (at most 6.9) than in AnMBR
(at most 1.5). This low supersaturation index of AnMBR is due
to the ability of the system to retain the biomass in the reactor
(Crone et al., 2016).

Apart from the supersaturation, the release of methane gas
in the headspace of the AnMBR would initially determine the
concentration of the dissolved methane in the effluent. Guo
et al. (2016) listed and analyzed the factors that affect the
stability and transfer of methane in the headspace of AnMBR,
namely temperature, pH, solid retention time (SRT), organic
loading rate (OLR), and hydraulic retention time (HRT). For
temperature, Henry’s Law states that higher temperature lowers
the solubility of gases. Thus, thermophilic conditions (50–
60◦C) are generally favorable for methane production since
at psychrophilic temperatures (3–15◦C), the dissolved methane
in the effluent increases (Lin et al., 2013; Smith et al., 2015;
Guo et al., 2016). However, the thermophilic condition is not
widely utilized due to the additional energy requirement. The

study emphasized the need for further research for optimal
temperature condition and the effect of temperature shocks
in biogas production. In the study of Gao et al. (2011), it
is worthwhile to note that submerged AnMBR can tolerate
temperature changes with little to no effect on the recovery
of biogas. In the case of pH, methane production is higher
within the optimal range of 6.0–8.0, which provides favorable pH
condition for the growth of methanogenic bacteria (Huang et al.,
2008; Ward et al., 2008; Weiland, 2010). Subsequently, a study by
Gao et al. (2010) of submerged AnMBR for thermomechanical
whitewater treatment with varying pH shocks found that it lowers
the methane recovery, increases fouling, and lowers effluent
quality. This lower methane recovery could be attributed to
the increase in the supersaturation of methane due to shock
condition. Lastly, longer SRT and HRT as well as higher OLR
(since 0.35 liters of methane can be recovered for every gram of
COD removed) provide higher methane production (Roh et al.,
2006; Saddoud and Sayadi, 2007;Wijekoon et al., 2011; Guo et al.,
2016). From the study of Yeo and Lee (2013), the production of
methane gas is 45% higher for SRT of 40 days compared to that
of 20 days. Also, they found out that supersaturation of dissolved
methane occurred for 20 days and none for 40 days. However,
lower HRT and higher OLR could induce fouling (Guo et al.,
2016).

There are several techniques for the recovery of dissolved
methane in the anaerobic wastewater treatment effluent. The
most common techniques for these systems are aeration, gas
stripping, and degassing membrane. The use of membranes
provides the highest potential for dissolvedmethane recovery due
to its ease of operation and high mass transfer area (Rongwong
et al., 2018). Moreover, agitation provides the lowest methane
recovery among the list, while sparging and degassing membrane
produce the best methane recovery with medium to high capital
and operating costs (Smart Water Fund, 2013).

The mechanism of the membrane to separate the gas from the
liquid is from the concentration difference defined by Fick’s Law
and pressure drop across the membrane (Gabelman and Hwang,
1999; Crone et al., 2016). Moreover, the hydrophobicity of the
membranes acts as a barrier between the gas and liquid phases
(Wongchitphimon et al., 2017). The hollow fiber membrane is
the most used configuration for the membrane due to its high
gas-liquid separation efficiency, compactness, ease of scaling-up,
and very high surface area as compared to flat sheet membranes.
There is a wide range of commercially available hollow fiber
membranes that varies from the type of hydrophobic polymer
used, the porosity (non-porous, porous, microporous), and the
inner and outer diameters, length, thickness, and the number of
the fibers. However, membrane wetting, which is the penetration
of liquid into the pores of the membrane, is the major issue in
degassing due to the additional mass transfer resistance it poses
(Wongchitphimon et al., 2017).

Table 1 summarizes the different studies which used a
degassing membrane contactor unit to improve the recovery of
dissolvedmethane recovery from the effluent of the reactor. From
these studies, use of a degassing unit improved the recovery of
dissolvedmethane from the effluent of the reactors used to almost
99%. All of these studies concluded that low liquid velocity or
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TABLE 1 | Literature on degassing membrane for improved dissolved methane recovery.

References Reactor (effluent source) Degassing membrane specifications Dissolved methane

recovery efficiency (%)

Condition for higher

dissolved methane recovery

Bandara et al., 2011 UASB Non-porous PE and porous PU (Mitsubishi

Rayon Co.); contact area = 1.7 m2
86 Long retention time; High

transmembrane pressure; Low

temperature

Cookney et al., 2012 EGSB PDMS (Sterilin Ltd. UK); contact area =

0.139 m2
72 Low liquid velocity

Giménez et al., 2012 SAnMBR Hollow fiber ultrafiltration (PURON Koch,

0.05 micrometer) PVDF

57 Low influent soluble sulfate

concentration

Luo et al., 2014 UASB Non-porous (PU) sandwiched between

porous (PP) (Model 3504 Mitsubishi

Rayon); with stirring

86 Carbon dioxide desorption

Cookney et al., 2016 UASB and AnMBR PDMS non-porous potted with PVC (area

= 0.094 m2) and PP micro-porous (area =

0.58 m2)

99 PP (micro-porous) membrane;

Low liquid velocity

Henares et al., 2016 Expanded Granular Sludge

Bed (EGSB)

Non-porous PDMS (area = 0.0159 m2)

and Micro-porous PP (area = 0.180 m2)

98 Micro-porous PP; Low liquid

flux; High transmembrane

pressure; Flow at lumen side of

membrane

SAnMBR, submerged anaerobic membrane bioreactor (AnMBR); UASB, upflow anaerobic sludge blanket; SAF-MBR, staged anaerobic fluidized membrane bioreactor; EGSB, expanded

granular sludge bed; PE, Polyethylene; PU, Polyurethane; PP, Polypropylene; PDMS, Polydimethylsiloxane; PVDF, Polyvinylidene difluoride.

flux, high transmembrane pressure, and porous/micro-porous
membranes increase the recovery efficiency of dissolved methane
from the effluent. At lower liquid flux, the membrane contact
time increases the probability of methane to be diffused into the
membrane (Cookney et al., 2012). In the study of Cookney et al.
(2016), the recovery of dissolved methane decreased from 98.9
to 63.3% when the liquid velocity was increased from 0.0004
to 0.045 m/s. This decrease in the recovery efficiency is more
pronounced for the case of non-porous membrane used, wherein
the efficiency decreased from 92.6% (0.0004 m/s) to 10.8% (0.047
m/s). This shows that porous/micro-porous membrane is better
than non-porous membrane in terms of dissolved methane
recovery at high liquid flux.

A study by Cookney et al. (2016) found that the mass transfer
resistance in porous membrane is 0.2% at high liquid velocity
and 91% with non-porous membrane. However, in the study of
Henares et al. (2016), the micro-porous membrane has lower
recovery efficiency than non-porous membrane at higher liquid
flux (for 90 L/h/m2 at a vacuum pressure of 50 kPa). This
is due to the pore wetting problem typically experienced with
porous/micro-porous membranes at higher liquid flux (Henares
et al., 2016). On the other hand, flow in lumen side of the hollow
fiber membranes (flow is through the inside of the fiber) rather
than its shell side (flow through the outside) is favorable for
recovery of dissolved methane. This is because the lumen side
provides higher mass transfer efficiency (Crone et al., 2016).
Finally, these degassing units did not show any negative impact
on the effluent quality.

RESEARCH PRIORITIES

Several studies proved that AnMBR showed a more stable
supersaturation index (1.0–1.5) than the upflow anaerobic sludge

blanket reactor (1.34–6.9), as summarized in the review study
of Crone et al. (2016). However, only a few studies have been
carried out for AnMBR with the focus on the connection
between the supersaturation and the dissolved methane recovery.
As presented in the study of Cookney et al. (2016), although
the supersaturation is almost 1.0, the percentage of dissolved
methane in the effluent is 88%. In comparison to the other
AnMBR study of Smith et al. (2013), the index is 1.5 while
the percentage of dissolved methane in the effluent is at most
50%. This could be attributed to the operating condition of the
reactor wherein biogas sparging or bubbling was employed and
the organic loading rate was very high.

Aside from this, all of the studies presented in Table 1 did
not measure the actual dissolved methane concentration in
the effluent; rather the concentration was computed based on
temperature and partial pressure in the still headspace from
Henry’s Law. With the advancement of technology, now the
actual methane concentration in the effluent can be measured
for accurate quantification. At present, only two studies used
a commercially available probe to measure the actual dissolved
methane (Rongwong et al., 2017; Wongchitphimon et al., 2017).
Other studies for AnMBR showed that the higher methane
recovery is expected from hybrid system (two-stage/two-phased
reactors) and with sparging (Roh et al., 2006; Saddoud and
Sayadi, 2007; Huang et al., 2008; Lin et al., 2009; Gao et al.,
2010; Xie et al., 2010, and Wijekoon et al., 2011). This is
supported by the study of Shoener et al. (2016), wherein
a cross-flow multi-tube and submerged hollow fiber with
granular activated carbon (GAC) configurations were suggested.
Moreover, as seen in Table 1, there are very limited studies on
the use of degassing membrane contactor in recovering dissolved
methane from the AnMBR effluent. Further studies should be
aimed at the optimization of the different operating conditions
of degassing membrane contactor, such as liquid flux and
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transmembrane pressure, inclusion of carbon dioxide desorption,
and development of new membrane that is durable and resistant
to pore wetting (Rongwong et al., 2017; Wongchitphimon et al.,
2017). Finally, energy analysis on the use of degassing membrane
contactor is a must to justify its economic and environmental
impact.

On the other hand, improvement of methane concentration
in biogas recovered from wastewater should also be looked
into for the better utilization of biogas. Huertas et al. (2011)
stated that for energy management there should at least 70%
methane, at most 10% carbon dioxide, and negligible hydrogen
sulfide be present in the biogas. However, it should be noted
that removal of carbon dioxide is only recommended if the
recovered biogas is used as a vehicle fuel and as natural gas
for the grid; removal of carbon dioxide is usually not required
for boiler, kitchen stove, and combined heat and power (CHP)
applications (Petersson and Wellinger, 2009). For the cases
which require biogas upgrade, techniques such as absorption (at
least 97% methane), adsorption (95–99% methane), membrane
separation (at least 96%methane), and cryogenic separation (90–
99%methane) can be employed (Chen et al., 2015). Among these
techniques, the use of membranes showed the most benefits such
as low energy consumption, good selectivity, ease of engineering
(Chen et al., 2015).

CONCLUSION

The use of the membranes in wastewater treatment is a well-
established technology and currently used for the treatment of
high strength or industrial wastewater. Moreover, the membrane
can also be used as a technique to separate the dissolved methane
from the effluent of an anaerobic treatment reactor. However,
there are limited studies regarding the use of membranes for
this kind of application, i.e., combining AnMBR and a degassing

membrane contactor, with a focus on the recovery of dissolved
methane. The studies reviewed showed that dissolved methane
recovery using a degassing membrane contactor was higher
under the following conditions: low liquid velocity or flux,
higher transmembrane pressure, use of porous or micro-porous
membrane, flow of liquid from the lumen side of the membrane,
presence of carbon dioxide desorption, longer retention time,
and low temperature. Moreover, the highest reported recovery
of dissolved methane from an AnMBR effluent was around 99%
obtained using a polypropylene micro-porous membrane with a
liquid velocity of 0.0004 m/s. Therefore, further studies with an
aim to optimize recovery and development of new membranes,
while considering membrane fouling and pore wetting problem.
Finally, this optimization should consider the economy of the
system as well.
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