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Synergies are required to ensure coordination between UN agencies (on norms and

indicators), Member States (on coherence of policy instruments) and consumers (on

perceptions of safety and affordability of services) to advance the achievement of

Sustainable Development Goal (SDG) target 6.3 which focusses on reuse of wastewater.

In this paper we employ theoretical insights derived from an agent-based modeling

approach to undertake a critical examination of the recent UN-WATER directive on

SDG target 6.3 and advocate for an improved understanding of factors that determine

whether and how effective wastewater reuse will be possible while accommodating

for regional variation and institutional change. We demonstrate that by applying the

Nexus approach it is feasible to overcome siloes by forging concepts of trade-offs

and synergies to draw out coupled perspectives of bio-physical and institutional

dimensions of water-energy-food interactions. By employing this proposition, the paper

advocates for place-based observatories as a mechanism that can support valorization

of data and methodological assumptions as a precursor to robust monitoring of the

SDG’s. The systematic use of literature reviews and expert opinion to develop and

pilot-test composite indices via place-based observatories raises the prospect of a

data light approach to monitoring SDGs; specifically, what are the merits of relying on

extensive survey data compared to composite indices that while being amenable to

supporting benchmarking and scenario analysis can provide the insight needed to inform

decision-making and robust monitoring of global goals?

Keywords: Water-Energy-Food Nexus, Sustainable Development Goals, trade-offs, siloes, synergies, agent-based

modeling, Wastewater Reuse Effectiveness Index, place-based observatories
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INTRODUCTION

The gulf between theory and practice in Global Public
Goods Research1 has become apparent in recent years. For
instance, International organizations such as the Consultative
Group on International Agriculture Research (CGIAR) have
for their part placed a premium on adoptionrates for technical
options that encourage resource recovery and reuse as an
indicator of the effectiveness of international development
assistance. However, a recent CGIAR Standing Panel on
Impact Assessment synthesis report found adoption rates
for full-fledged NRM technologies2 to be remarkable and
consistently low, ranging between 1 and 10% in areas where
a variety of actors had been promoting these technologies
(Stevenson and Vlek, 2018). Similarly, research on the merits
of integrated billing for water supply and sanitation in
the Netherlands showed that consumers stood to benefit
in terms of less time and money spent on administration
(Salome, 2010). However, despite the efficiency gains that
could arise from overcoming administrative siloes combined
billing has not succeeded because this would require the
Water Boards (responsible for sanitation) and private companies
(responsible for water supply) to give up some of their
autonomy with regards to their sources of financing (see
also Howarth and Monasterolo, 2016; Yang et al., 2016;
Weitz et al., 2017).

These examples outlined above highlight a key issue that
speaks to the question posed by this Special Issue: Achieving
Water-Energy-Food Nexus Sustainability- a Science and Data
Need or a Need for Integrated Public Policy?: there is a lack of
understanding of the institutional pathways (mediated by state
andmarket mechanisms) for adoption of the results of controlled
experiments and case studies.

Recognizing the lack of understanding of (i) the institutional
environment (i.e., property rights, legal and policy framework),
(ii) the trade-offs involved in decision making and (iii)
administrative culture and policy priorities, an agent-based
modeling approach has emerged to emphasize the use of
role games and experiments to collect data as well as having
stakeholders involved in validation of multi-dimensional
models (Barreteau et al., 2010; Poteete et al., 2010, p. 13).
Agent-based modeling can potentially support analysis
of the Sustainable Development Goals (SDGs) because it
emphasizes the need to examine mechanisms for coordination
and information sharing among networks of public agents,
in the absence of which synergies in decision making
fail to emerge.

1In the era of technological change, rise of emerging economies and global

environmental challenges the potential of the private sector as a stakeholder in

achieving the Sustainable Development Goals (SDG’s) cannot be understated. But

it is important to emphasize that from the point of view of monitoring the SDG’s,

UN think tanks have a mandate to improve the capacity of regional, national and

local governments to support the design, implementation andmonitoring of global

goals. For an excellent discussion of the role of global think tanks in supporting

evidence-based decision making (see Niblett, 2018).
2The five technologies that were reviewed included Conservation Agriculture

(CA), Fertilizer Micro-dosing (MD), Alternate Wetting and Drying (AWD),

Agro-Forestry (AF) and Integrated Soil Fertility Management (ISFM).

Specifically, with reference to SDG target 6.33 synergies
are required to ensure coordination between UN agencies
(on norms and indicators), Member States (on coherence of
policy instruments) and consumers (on perceptions of safety
and affordability of services) to ensure effective reuse of
wastewater. The failure to ensure coordinated action could
exacerbate unintended consequences of policy action. In existing
literature on public choice and New Institutional Economics
(NIE), we can find some theoretical propositions that promote
understanding of synergies in environmental planning and
management. For instance, rational choice scholars imply that
improved information could potentially overcome the effect of
siloes through coordinated and evidence-based decision making
(North, 1990; Ostrom, 1990). NIE scholarship, on the other
hand focuses on the aspect of strategic interaction4 in the
decision- making process. This scholarship implies that decisions
of officials within public agencies need not be made merely based
on available information (i.e., data and evidence) but more on
strategic considerations (Eggertsson, 1990; Harriss et al., 1995).

The analysis of the role of data and evidence in decision-
making process would be enhanced by acknowledging historical
specificities of the institutional environment. This is precisely
because these historical specificities shape subsequent choices
in environmental planning and management i.e., whether
to prioritize infrastructure construction or service delivery,
promote centralized or decentralized governance, and emphasize
public or private service delivery models (Pollitt and Bouckeart,
2000; Abelson, 2003). It is pertinent to acknowledge in this
context that the trajectory of Global Public Goods Research on
Natural Resource Management (NRM) has itself undergone a
shift in emphasis toward understanding the role of institutions
in environmental planning and management. In the tradition
of the “stages of growth” model of economic development,
scholarship has iteratively emphasized the role of extension
agencies such as forestry and irrigation departments in:
(i) establishing infrastructure, (ii) enabling well-functioning
markets for distribution of seeds and fertilizers, and (iii)
disseminating information on management practices on the

3The SDGs were agreed by UN member states at the High-Level Political Forum

(HLPF) in September 2015. SDG target 6.3 states “by 2,030 improve water quality

by reducing pollution, eliminating dumping and minimizing release of hazardous

chemicals and materials, halving the proportion of untreated wastewater and

substantially increasing recycling and safe reuse globally” (UN-Water, 2015). The

Sustainable Development Goal (SDG) target 6.3 by methodologically implying

“wastewater supplied to a user for further use with or without treatment

and excludes water which is recycled within industrial sites” hints at the

potential for wastewater reuse in agriculture (WHO UNICEF, 2015). The

indicators for monitoring the SDGs were ratified by the HLPF in July 2018 for

which the World Health Organization and UNHABITAT (co-custodian agencies)

recommended the inclusion of a specific indicator on reuse for SDG 6.3.1

(UN-Water, 2018, pp. 57–58).
4Within agent-based models, agents are defined as autonomous decision-making

algorithms. By focusing on interactions between agents who are boundedly rational

and vary in their attributes within the agent population, agent-based modeling has

the potential to generate a series of observed behavioral regularities that may be

useful in clarifying the following issues: (a) how do agents make decisions? (b) how

do they forecast future developments? (c) how do they remember the past? (d) what

do they believe or ignore? (e) how do they exchange information? (Poteete et al.,

2010, p. 211).
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assumption that these interventions will boost agricultural yields
and with the expectation of a positive effect of their adoption on
levels of poverty and hunger (Brohman, 1996; Dorward et al.,
2005; Shiva, 2010; Food Agriculture Organization, 2014).

Recent Nexus scholarship has begun to emphasize the
importance of agent-basedmodeling to systematically analyse the
role of social networks, institutional capacity and information
sharing within and between departments responsible for
management of water, energy and food (Harwood, 2018; Portney
et al., 2018; Uden et al., 2018). However, formal models often
work with unrealistic assumptions and without addressing the
gap between theory and practice and thus do not explain the
behavior of public agencies and agents in a comprehensive
manner (Poteete et al., 2010, p. 4; Smajgl and Ward, 2013a).
Against this background, it is feasible to overcome siloes by
forging concepts of trade-offs and synergies to draw out a coupled
perspective of bio-physical and institutional dimensions of water-
energy-food interactions. By employing this proposition, the
paper advocates for place-based observatories as a mechanism
that can support valorization of data and methodological
assumptions as a precursor to robust monitoring of the SDG’s.

In this paper we employ theoretical insights derived from
an agent-based modeling approach to undertake a critical
examination of the recent UN-Water directive on SDG 6.3.15 and
advocate for a multi-dimensional approach to monitoring global
goals. Conventional unidimensional approaches emphasize: (1)
a disproportionate focus on analysis of behavior of bio-physical
resources; (2) efficiency of ecological systems; (3) statistical
analysis of interactions between SDG goals and targets; and
(4) case study research-data, models and approaches that have
neither been pilot-tested nor valorized through engagement
with governance structures and processes (see Cai et al.,
2017; Bleischwitz et al., 2018; Dombrowsky and Hesengerth,
2018; Liu et al., 2018; Scott et al., 2018), and thus could
promote siloes in environmental planning andmanagement with
potential to seriously undermine the credibility of the global
monitoring regime.

Our proposed approach, on the other hand, advocates
for improved understanding of the factors which determine
whether and how effective wastewater reuse is possible while
accommodating for regional variation and institutional change.
As demonstrated in this paper, the proposed Wastewater Reuse
Effectiveness Index (WREI) composed of both bio-physical
and institutional components, relied upon data valorization,
expert opinion and coupling of bio-physical and institutional
perspectives of water-energy-food interactions with potential to
effectively monitor SDG 6.3. Further, WREI showcases cutting
edge applications of the Nexus approach6 in managing trade-
offs and fostering synergies in environmental planning and
management (Kurian and Ardakanian, 2015; Scott et al., 2015).

5The directive notes “A sub-indicator on reuse would respond to the full

aspirations of indicator 6.3.1, and would encourage better assessment of reuse

potential, in support of target 6.4 on water scarcity” (UN-Water, 2018, p. 58).
6For purposes of our analysis we define the Nexus approach as a framework that

enables integrative modeling of trade-offs with the objective of advancing synergies

in decision making on water-energy-food interactions.

The subsequent sections of the paper are organized as
follows. In section Governing the Nexus of Water, Energy
and Food: The Case of Wastewater Reuse in Agriculture we
discuss the implications of grounding the Nexus approach
for management of environmental resources in discourses
of planetary boundaries and the circular economy. Section
Monitoring Sustainable Development Goal (SDG) Target 6.3 on
Wastewater Reuse: Method, Data and Applications of Agent
Based Modeling highlights the applications of trade-off analysis
in delineating the role of financing, institutional capacity and
information in fostering synergies in environmental planning
and management. Section Political Economy of Public Decision
Making in the Water-Energy-Food Nexus explores the role of
composite indices in advancing monitoring of wastewater reuse
and its implications for learning and capacity development via
place-based observatories. The concluding section of the paper
discusses the ramifications of monitoring wastewater reuse in
agriculture for design of global public goods research.

GOVERNING THE NEXUS OF WATER,
ENERGY AND FOOD: THE CASE OF
WASTEWATER REUSE IN AGRICULTURE

Planetary vs. Administrative Scale
Perspectives of Environmental Change
Agriculture has today become a key driver for four of the
eight Planetary Boundaries (PB’s) (identified by Rockstrom
et al., 2009) that are at a critical stage of risk: freshwater
use, biogeochemical flows, changes in biosphere integrity and
climate change (Campbell et al., 2017). We could deduce
from the arguments of “stages of growth” theorists that as
economies grow infrastructure begins to play an important
role in connecting populations to services in the form of
irrigation, wastewater treatment or hydro-power. This is where
planetary scale analysis of climate change, biogeochemical
flows, biosphere integrity and land-system change need not
necessarily align with decision making at administrative scale:
plot, farm, local government or river basin authority. In
other words, while results of planetary scale analysis may
emphasize the finiteness of water, soil and waste resources and
advocate for recharge of aquifers, restoration of soils, multiple
uses of forest ecosystems, extended life-cycle management of
infrastructure or tax rebates for adoption of renewable energy,
administrative scale decisions need not necessarily support
policies, projects or programs that emphasize circular economy
pathways such as reuse, re-manufacture, replace, reduce and
retrofit (Destouni et al., 2013; Jaramillo and Destouni, 2015).
On the contrary political economy compulsions may drive
decision makers to commit more resources toward exploitation
of newer sources of water and energy without ensuring that
established infrastructure is properly functioning. This may
satisfy entrenched political interests but may exacerbate pressure
on environmental resources (Agrawal, 2005).

Given the stark divergence between planetary and
administrative scales of analysis, five contemporary trends
within the agriculture sector necessitate particular attention to
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enable a transition from a narrow focus on crop systems toward
food systems: (Tomich et al., 2018) (a) De-coupling of GDP
growth from labor force participation in agriculture (Campbell
et al., 2017), (b) increasing diversion of water from agriculture
toward urban water supply reflecting a growth in secondary
towns at the peri-urban interface, (c) changes in diets away from
staples toward processed food reflecting changes in composition
of labor force and changes in income and non-farm employment
(Annexure 1), (d) Land sub-division with potential to affect the
viability of farming operations especially in high-density tropics
(Saith, 1992) and (e) the growing influence of transnational
corporations for seeds, capital, pesticides, marketing and
mechanization that has had the effect of exacerbating the
separation of power from local politics and decision- making
structures (Kurian, 2010).

Looking ahead to prospects for 2050 Hazell (2017)
foresees growing differentiation within agricultural sectors
in developing countries, with small farms becoming smaller
and more numerous; more part time farmers, particularly
among smallholders, for whom agriculture is a modest and
diminishing share of household income and growing bifurcation
between. . . ..young and elderly farmers and geographically
well-situated regions (urban and peri-urban) vs. isolated,
marginal rural areas. He therefore argues that agricultural
research that take consideration of contemporary conditions
with the goal of advancing poverty reduction, must consider a
typology of different smallholder types with different resources,
connections to markets and hence economic prospects and
agriculture for development needs. To these categories he adds,
we must also add important differences in household structure
and intra-household differences across farms, even within the
same communities, and the culturally mediated roles of gender
in access to land, irrigation water, forests affecting labor market
participation and wages, which may systematically disadvantage
women and girls and make them more directly experience
poverty (Agarwal, 2001).

Trade-Off Analysis and Rebound Effects of
Water-Energy-Food Interactions
When integrative analysis of interventions is weak, we fail
to account for rebound effects in development practice
(Annexure 2). For example, a recent CGIAR assessment found
that high levels of fertilizer subsidies (energy) in Zambia
adversely affected rates of adoption of Integrated Soil Fertility
Management (ISFM) (Stevenson and Vlek, 2018). This is where
trade-off analysis can prove to be important in untangling
the individual elements of the ISFM technology package into
costs and negative externalities that are involved covering
water, energy and food. The subsidies on fertilizer make their
application more likely than in other countries, but farmers stop
after applying fertilizer and don’t do the other things that will
build up soil fertility in the long-run. These reasons could be
prohibitive effective labor costs of applying the other component
practices; farmers not perceiving a benefit from the package as a
whole; farmers not caring about long-term fertility (high discount
rate) or that it is just not on their radar (short planning horizon).

Trade-off analysis may reveal the priorities and accompanying
logic guiding decision makers within a given administrative
jurisdiction as to which set of actions to prioritize. For example,
who are the beneficiaries of energy subsidies and how does this
compare with the interests of farmers with potential to benefit
from adoption of ISFM? Further, are the equity concerns relating
to increased women’s workload under irrigated agriculture
likely to override the interests of those benefitting from
expanded urban water supply because of catchment protection
interventions? Therefore, trade-off analysis can inform targeting
of development interventions in line with locally defined norms
of fairness. In situations where equity is prioritized for example,
targeting may lead to design of subsidy schemes that focus
attention on reducing income poverty among poorer households
and increased investment of savings to improve productivity
of livestock and agricultural assets (Standing, 2017). Cash
Conditional Transfers (CCT’s), for example in Sri Lanka’s
Samruddhi scheme resulted in improved child nutrition, while
in other cases transfers that have increased productivity of
agriculture and livestock have resulted in reduction in casual
wage labor which tend to be lower paying among non-farm jobs.

Synergies: A Function of Legal and
Policy Frameworks
Agent-based modeling emphasizes the importance of
coordinated action to overcome siloes in decisionmaking. Agent-
based modeling of trade-offs will reflect the fact that policy and
management choices that operate at global, national and local
scales are guided by norms and agency and individual behavior
that are focused on ensuring a balance between planetary scale
imperatives of resource conservation/reuse and institutional
priorities of effectively delivering critical public services at the
appropriate administrative scale7 (Thaler, 2015). The degree
to which institutional synergies are forged will determine
the success with ensuring a balance and mitigating rebound
effects in environmental planning and management. When
planning over-emphasizes either bio-physical or administrative
imperatives rebound effects are bound to be amplified either in
the form of environmental risks or institutional siloes. The level
of divergence from the ideal, balanced scenario is depicted as the
space between the blue continuous line and the blue broken line
in Figure 1.

Historical institutionalist literature enables us to identify three
components of robust synergies: (a) social networks that support
information flows and knowledge exchange among different
functionaries within and across departments, ministries and
agencies, (b) deployment of complimentary skill sets (capacity)
by key players and (c) a critical mass of financing and technology
that can be appropriated by agencies and departments focused on
achieving a particular policy goal (Gregory, 1997; Batley, 2004).

There are also several enabling factors for robust synergies,
notably: (a) a clearly articulated legal and policy framework, (b)

7Administrative scale is defined here as the coverage area for delivery of specific

public services. Depending on institutional context and type of service under

consideration administrative scale could be defined by village, town or ward

boundaries.
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FIGURE 1 | Managing rebound effects in the water- energy-food nexus. Adapted from Kurian and Ardakanian (2015), Kurian (2017), and Kurian (2018).

clear set of policy instruments for implementation of legal and
policy framework that includes directives, guidelines, circulars,
standards and notifications stipulating how choices regarding
technology and financing options may be arrived at, (c) data and
evidence on distribution of bio-physical and institutional risks,
(d) manageable levels of administrative discretion with regards
to interpreting and implementing policy instruments and (e)
incentive structure (penalties and rewards) for compliance with
policy instruments (Pollitt and Bouckeart, 2000; World Bank,
2009; Kurian et al., 2018).

In terms of a parsimonious model, co-provision offers
insights on how one may examine the effect of synergies in
environmental planning and management. The following are
some elements of a co-provision model that merit consideration
(Kurian and Dietz, 2013):

• Variability in climatic, soil and groundwater conditions
that influence system performance in terms of biophysical
processes and infrastructure operation

• Accountability in fiscal relations involving multiple levels of
government with potential to impact on infrastructure design
and incentives for effective delivery of public services

• Levels of discretion by public officials in enforcement of
rules relating to infrastructure financing and Natural Resource
Management (NRM)

• Uncertainty in factor and product markets with potential to
influence synergies in environmental management

• Heterogeneous social relations that offer opportunities
for local leadership to emerge for management of
natural resources.

Coupling Bio-Physical and Institutional
Models of Water-Energy-Food Interactions
Agent-based modeling while highlighting tensions between the
application of Nexus principles in research and development

practice has the potential to identify pathways that can overcome
silos in environmental planning and management. Firstly, Nexus
research implies transdisciplinary dialogue involving experts and
non-experts to develop, pilot-test and validate models (Gilbert
and Bullock, 2014). Further, the process of validating models
may require that data and methodological assumptions be
valorized to meet both the tests of scientific rigor and policy
relevance. Secondly, Nexus research also implies the necessity
of translating scientific results to inform design, monitoring and
evaluation of programs and projects that adopt Nexus principles
in development practice (Stirling, 2014). A pathway of how
Nexus principles could be applied in development practice is
offered by multiple use water services of which a prime example,
one may argue is that of wastewater reuse.

The tensions between application of Nexus principles in
research and development practice suggests an urgency for
coupling global models of bio-physical change with models of
institutional change at appropriate administrative scale. This
would emphasize the fact that social rules relating to tariff
setting, design of public subsidies or delivery of water, energy
and food services are determined in the political arena typically
involving strategic interactions and interdependence of officials
within public agencies (Bates, 1995; Barreteau et al., 2010). Expert
opinion would be required to calibrate model prototypes because
they can help explain how equity can sometimes trump efficiency
arguments in decision making and why despite the availability
of data and monetary resources inaction may become the norm
in the face of well- established risks such as droughts and
deteriorating water quality (Howarth and Monasterolo, 2016;
Weitz et al., 2017; Uden et al., 2018). In subsequent sections
of this paper we make a case that the study of dynamic socio-
ecological systems is best supported by recourse to place-based
observatories that can develop and validate composite indices as
a mechanism for monitoring global goals (Larson and Smajgl,
2006; Tian et al., 2018).
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Methodologies for Evaluating Nexus
Typologies of Resource Recovery
and Reuse
Wastewater reuse assumes significance from the perspective of
examining both policy orientation of research and the role of
feedback loops in governance systems. Wastewater reuse in
agriculture assumes importance since it has been estimated that
approximately 20 million hectares of land is currently under
cultivation worldwide using wastewater Kurian et al., 2013.When
wastewater is better managed, significant economic benefits can
be derived in developing countries through reuse for productive
purposes like agriculture, kitchen gardens and poultry rearing
(Jimenez and Asano, 2008). Some of the direct benefits of
wastewater collection and reuse could include double cropping
and lower input costs for agriculture (Rijsberman, 2004). There
may also be important economy-wide trade-offs of encouraging
freshwater swaps through use of treated domestic wastewater in
agriculture.While these trade-offs could involve enhanced source
sustainability of the urban water supply, lower energy pumping
costs and improved food security arising from increased farm
incomes (Kurian et al., 2013), linearity of outcomes cannot be
assumed (Miller-Robbie et al., 2017).

The idea of working with typologies to better understand
agrarian change that we alluded to earlier has been accompanied
by discussions within the Impact Evaluations (IE) community
of practice on the need to improve upon our approach to
design of Randomized Control Trials (RCT’s). The standard
approach adopted by IE has been to choose a control area
like the area where the intervention is being introduced, and
compare outcomes in both areas (Craig, 2015). Several iterations
of the approach including “difference-in-difference” method,
however, cannot consider area-specific trends, that is, changes
other than those attributable to the intervention that occur
in one or other of the areas. This is like the energy subsidy
example in Zambia and its adverse impact on adoption of
ISFM technology. The synthetic control method attempts to
overcome this problem by comparing the trend in the outcome
of interest in the intervention area with the trend in the synthetic
composite area8. Both the discussions on typologies and the
use of synthetic controls in IE hold the potential to contribute
toward the holy grail in NRM innovation; namely a tool that
has a degree of scale and context neutrality and thereby has a
recommendation domain that encompasses a range of ecologies
and socio-economic contexts (Stevenson and Vlek, 2018).

The discussion emphasizes the need for going beyond
conventional RCT design (see Dhehibi et al., 2018) and
for a re-examination of the role of extension agencies in

8It is important to clarify that small-scale RCT’s could be run with a control

area and a treatment area but to be cost-effective such comparisons need not

be limited to making a single 1 to 1 comparison. In village-level randomization,

eligible villages would be spread out across the landscape and enrolled into a study–

often many 100 s of villages. For interventions at the level of larger administrative

units (i.e., regions/countries) there are almost never enough of them to randomize

across, hence RCTs cannot used in this way. Synthetic control methods can be

applied in the contexts of these “small N” cases but they come with several

restrictive assumptions, even if they relax the parallel trends assumption that is

central to difference in differences (see White, 2009).

TABLE 1 | The use of typologies in impact evaluation studies.

CGIAR technology

option

Example of trade-offs Typology considerations

Fertilizer micro-dosing Food production vs. food

safety

Rural-urban/agro-

ecology/water

endowed/bounded energy

systems/climate stressed

Integrated soil fertility

management

Soil erosion control vs.

urban water supplies

Rural-urban/agro-

ecology/water

endowed/bounded energy

systems/climate stressed

Conservation

agriculture

Agricultural productivity vs.

diversification of income

Rural-urban/agro-

ecology/water

endowed/bounded energy

systems/climate stressed

Agro-forestry Food production vs.

sustainable sources of

energy

Rural-urban/agro-

ecology/water

endowed/bounded energy

systems/climate stressed

Alternate Wet-drying Environmental sustainability

vs. stabilization of demand

for farm labor

Rural-urban/agro-

ecology/water

endowed/bounded energy

systems/climate stressed

supporting uptake of the outputs of NRM research based
on robust typologies of trade-offs in development (Table 1).
This means that while there have been many RCTs looking
at the performance of these technologies where the unit of
randomization is the plot, there is a serious dearth of RCTs
looking at randomization at the village or individual level–
the only research designs capable of rigorously uncovering the
exact causal pathways between adoption of technical options
and impact on water, energy and food security. Qualitative and
descriptive impact evaluation studies of adoption pathways in the
real world may be useful for generating hypotheses, but there
has been insufficient attention to putting these hypotheses to a
rigorous test.9

MONITORING SUSTAINABLE
DEVELOPMENT GOAL (SDG) TARGET 6.3
ON WASTEWATER REUSE: METHOD,
DATA AND APPLICATIONS OF AGENT
BASED MODELING

Empirically grounded agent-based models make it possible
to evaluate whether hypothesized processes are consistent
with empirically observed patterns of behavior (Poteete et al.,
2010, p. 211). Therefore, in contexts characterized by complex
feedback loops between resource use, agricultural productivity
and considerations of distributional equity (for example, favoring
well to do vs. poor consumers), posing the relevant question can
be a major challenge in devising a methodology for monitoring
a global goal on wastewater reuse. In this section we discuss
the approach to developing, validating and pilot-testing the
Wastewater Reuse Effectiveness Index (WREI)- an integrative

9The agriculture technology adoption initiative has begun addressing some of the

shortcomings of conventional RCT led approaches (see http://atai-research.org).
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modeling tool that supports data valorization and expert opinion
to elaborate upon the role of institutions in environmental
planning and management. At the outset it must be clarified that
an index is defined as an aggregate measure to monitor change.
The aggregatemeasure consists of indicators and variables.While
variables are directly measurable, an indicator while based on a
conceptual framework, can be converted into a variable.

Translating a Policy Concern Into a
Researchable Question
Three distinct circumstances10 defined the process by which
research on wastewater monitoring via a composite index
were framed. First, as part of a regional workshop on SDG
monitoring methodologies that was organized by the United
Nations, practitioners and scientists debated the state of the art on
indicators for target 6.3 of the SDG’s (Meyer and Kurian, 2016)?
Second, participants queried whether the objective of global
monitoring is to benchmark country performance on reuse or to
ultimately identify the incentives required that would make reuse
possible and build capacity to enable institutional change. Third,
during a field visit to a wastewater treatment plant in Hanoi,
workshop participants from five countries identified a common
policy concern. Our approach to the subsequent research was
influenced by the common policy concern that was articulated
as follows: which sewer system- combined vs. simplified was
better placed to facilitate wastewater reuse in the context of rapid
urbanization? (Kurian et al., 2016b).

Inter-operability of Monitoring Instruments
The workshop revealed that the indicators currently
being used by the UN to monitor SDG target 6.3 were
focussed on bio-physical aspects of wastewater use. Second,
the indicators did not explicitly consider the issue of
wastewater reuse. Third, the monitoring methodology was
biased toward reporting status on wastewater use and not
toward understanding the incentives that would facilitate
wastewater reuse. For this reason, a global monitoring
methodology that purports to improve the situation must
be interoperable. Inter-operability could mean: (a) the
methodology enables comparisons based on typologies of
indicators in response to a policy concern that has been validated
at appropriate regional/local scale and (b) the methodology
engages scientists and non-experts to construct composite
indices and facilitate data transformation and visualization
to enable knowledge translation that supports evidence-
based decision making (Endo et al., 2015). To do so the
Hanoi workshop resolved to construct a Wastewater Reuse
Effectiveness Index (WREI) based on a field visit to Indonesia
(OECD, 2008; Kurian et al., 2016b).

10Trans-disciplinary scholarship has emphasized that framing a policy relevant

research question usually results from a combination of factors: (a) circumstances

of research question framing, (b) priority accorded to different forms of evidence

and (c) consistency of language used by disciplines represented in a research

project (Harriss and Lyon, 2014).

Wastewater Reuse and
Associated Trade-Offs
Reused wastewater has an economic value and the establishment
of a reliable price is necessary to guarantee an efficient
allocation. Determining the Willingness-to-Use (WTU) and the
Willingness-to-Pay (WTP) for wastewater therefore highlights
several potential trade-offs. For example, while recycled
water, desalination and rainwater collection may contribute
to water security, they may increase energy requirements or
mitigate the risks of contamination of potable water through
improved treatment. Hernandez-Sancho and Sala-Garrido
(2008) emphasize that to encourage the use of recycled water,
its tariffs should be significantly smaller than those of drinking
water. They claim that the principle of cost recovery should
not be strictly applied on water reuse projects while drinking
water is being subsidized, as low drinking water rates make
reused water uncompetitive. Additionally, when setting the price
of recycled water, the cost of producing positive externalities
should be considered namely those related to the regeneration
of ecosystem service functions such as aquifer recharge11.
Educational campaigns to increase public awareness about
the advantages of reused water and to promote communities’
involvement in water management issues may reduce the
reluctance to use reclaimed water and increase the WTP
for it.

Lessons From Pilot-Testing a Composite
Index for SDG 6.3
In Kurian (2017) we reported on a prototype composite index
that was constructed based on a field visit to Indonesia. The
prototype Wastewater Reuse Effectiveness Index (WREI) relied
on review of documentation provided by UNHABITAT on
SDG 6.3, discussions with academics and policy makers and
a review of secondary literature. Expert opinion was sought
through discussions with a panel drawn from academia and
government agencies. Weights were subsequently accorded to
governance parameters with potential to explain effective reuse
of wastewater. The expert opinion revealed that governance
and political stability as measured by indicators such as levels
of corruption, fragmentation of water and sanitation sectors
and existence of a legal and policy framework was critical to
sustaining effective reuse of wastewater. Surprisingly, income
and charges as reflected in indicators such as average cost of
per cubic meter of wastewater to consumers relative to average
income of the country and recycled water charges relative to
those of drinking water were rated as having less influence on
effective reuse.

The overall approach used to construct WREI was validated
at a workshop involving eleven countries in the Arab region (in

11In situations where municipalities must meet advanced treatment standards

extra costs are not incurred on treatment of wastewater since the municipality

has this sunk cost to incur and there is no need to charge the user an “additional

cost” for treating water. Wastewater reuse therefore, becomes a convenient way for

disposal of effluent that in any case needs to be treated but with no additional cost

to the consumer.
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addition to Indonesia and Brazil)12. Based on an invitation from
the Ministry of Water Resources and Sanitation, data from the
State of Sao Paulo was employed to test the predictive capacity
of WREI. The pilot-testing revealed the importance of arriving at
an appropriate set of indicators before weights are assigned based
on expert opinion. Undertaken in the absence of expert opinion
the capacity for WREI to predict scope for effective wastewater
reuse in Sao Paulo was seriously curtailed13. WREI Expert panel
data from India was subsequently used to revise the WREI
model based on the comments received from Brazil14. In all
the three cases- Indonesia, Brazil and India reuse of wastewater
in agriculture was emerging as a policy and legislative priority,
especially to address water scarcity in urban areas.

Aggregation and Synthesis of Bio-Physical
and Institutional Data on Effective Reuse
Aggregation and synthesis of data from bio-physical and
institutional and governance domains in the form of a composite
index can be a useful tool for policy making. But existing
wastewater indices only include biophysical indicators; theWREI
index overcomes this limitation by analyzing how countries
fare given their political, institutional, and socio-economic
environment (OECD, 2008). The combination of bio-physical
and governance dimensions in an index portrays the difference
between theory and reality because conventional reuse indices
by emphasizing the bio-physical dimension fail to explain
the institutional conditions that would enable translation of
reuse potential into effective reuse of wastewater. To measure
effectiveness in wastewater reuse, the bio-physical component is
calculated by referring to the institutional and socio-economic
component of the index. In developing the Wastewater Reuse
Effectiveness Index (WREI) the following two approaches were
combined. The first, and most preferred, is to use regression
analysis. The second approach relies on experts to attribute
weights to each component of the institutional and socio-
economic framework. For this reason, we deliberately included
two components in construction of WREI. The first component
deals with the bio-physical aspects of wastewater, which has
three variables gleaned partly from the SDG 6.3 indicator list
which includes only two variables namely wastewater safely
treated and ambient water quality. To this we added a third
variable namely, wastewater reused to create the first component-
(WRI-BCI) it. The second component deals with socioeconomic,
environment and governance aspects (WRI-GSE)it. A normal or

12The validation was in the form of a joint communique issued by the United

Nations in Amman, Jordan dated March 23, 2017 and endorsed by 11 countries

from the Arab region including Indonesia and Brazil.
13The pilot-testing of WREI also revealed that as per the original formula the bio-

physical and institutional and socio-economic components did not complement

each other. Rather, both dimensions of the index tended to move upwards toward

a ratio of 100. But from the point of view of SDG monitoring the scope for

decision makers to rely on WREI to prioritize protection of bio-physical resources

or delivery of public services is limited since the original formula was set up to show

a movement for bio-physical and institutional and socio-economic components of

the index- moving upwards but in parallel.
14Feedback from the State Secretariat of Water Resources and Sanitation,

Sao Paulo was received in the form of an official communication dated 16

February 2018.

TABLE 2 | Biophysical component index of wastewater reuse effectiveness index

developed based on data for India (WRI-BCI).

Indicator Measure Actual value

%

Weights

%

Weighted

value

Waste water safely treated % 25 25 6.25

Water bodies with good

ambient quality

% 37 25 9.25

Wastewater Reuse/total

wastewater#

% 20 50 10

WRI (BCI)it 27.3* 100 25.5+

*BCI with equal weights (simple average).+BCI with differential weights. # Estimate based

on the studies of various locations.

weighted index can be constructed depending on the context.
The finalized WREI composed of biophysical and governance
indicators was constructed using India data that is mainly drawn
from secondary sources15 to develop a typology of variables to
model effective wastewater reuse for India.

As mentioned variables of bio-physical component of
the index include: (i) proportion of wastewater treated; (ii)
proportion of water bodies with good ambient water quality;
and (iii) proportion of wastewater reused of the total. These
variables are taken on Zero to 100 scale after normalizing
i.e., by converting the absolute numbers into percentages. A
simple average of the three variables provides the bio-physical
component WRI (BCI)it. Similarly, a total of eleven variables
is included in constructing the WRI (GSE)it component. The
composite waste water reuse effectiveness index (WREI)it is
then constructed using the two component indices and can be
expressed mathematically as follows:

WREIjt = Ijt =
∑

IkjtWkjt+
∑

IljtWljt (1)

Where WREIjt is the wastewater reuse effectiveness index for
country ‘j’ in time ‘t’.

Ikjtis the index of component ‘k’ (BCI) of country ‘J’ in time
‘t’ and Iljt Index of component ‘l’ (GSE) of country ‘j’ in time ‘t’.
The weighted summation of the BCI and GSE components are
estimated separately for each country for a specific reference year.
Summation of the countries can provide the basis for regional
estimates and benchmarking of performance with reference to
the SDGs. Similarly, summation over the years can support
scenario analysis and inform discussions on incentive structures
and monitoring methodologies to achieve the SDGs. Using the
real time data (presented in Tables 2, 3) for India for the year
2015 the index is prepared using the equation 1 outlined above.

15Secondary sources are mainly data published by government agencies. In the

case of India, macro-economic variables like per capita income and literacy

are available from the annual economic survey published by the Ministry of

Finance, Government of India; information on wastewater is published by the

Central Pollution Control Board, Government of India; and the information on

governance variables is published by the Ministry of Panchayati Raj, Government

of India. The details about data sources are available in (CPCB, 2015; GoI, 2016).
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TABLE 3 | Governance and socioeconomic component index of wastewater

reuse effectiveness index developed based on data for India (WRI-GSE).

Component Indicator Measure Actual

value %

Weight

%

Weighted

value

Socioeconomic Per Capita GDP (PPP) % 24 10 0.2

People depending on

Waste water

% 02 10 0.2

Awareness about

waste water

% 47 05 2.35

Environment

and

sustainability

Population affected by

water borne and water

wash diseases

% 0.3 20 0.06

Extent of soil

degradation

% 29 05 1.45

Area irrigated by waste

water (potential)

% 3 20 0.6

Crops grown under

Wastewater

(subsistence or high

value)

% of

subsistence

crops

75 02 1.5

Governance Area under water /

waste water

management

institutions

% 22 05 1.1

Policy environment

(including water/waste

water policy)

% 50 10 5

Cost recovery % 10 03 0.3

Effectiveness of

decentralized

governance

% 31 10 3.1

WRI (GSE)it 26.7 100 15.9

Assigning Weights for Index Components: The Role

of Expert Opinion16

BCI measures the actual bio-physical situation of countries in
terms of target 6.3 of SDGs. The conceptual model is presented in
Figure 2. It was estimated that sewage generation in India in 2015
was 61, 754 million liters per day (MLD) the sewage treatment
capacity was only 22, 963 MLD (CPCB, 2015). Moreover, it was
observed that 40% of the STPs do not function and the remaining
function at 72% capacity. While some estimates indicate that
62.8% of the total sewage is discharged directly into nearby water
bodies, given the poor functioning of STPs the actual proportion
of total sewage discharged directly into water bodies was revised
to 75% i.e., 25% of the wastewater generated is effectively treated
(Kurian et al., 2013; CPCB, 2015).

Regarding wastewater reuse, the available estimates are based
on selected class I and class II cities (893 in all)17 and do not
consider the smaller towns and hence the estimate is revised
accordingly (20%). All these data are available readily and
in near real-time. WREI can be estimated in two ways i. e,

16Professor V. Ratna Reddy in his capacity as Alexander von Humboldt Fellow at

United Nations University Was invited to provide expert opinion on wastewater

management in India.
17Based on the CPCB (2015). It is important to note that classification of cities is

based on population size and periodically updated based on census reports.

one by assuming that all the variables are equally important
and carry the same weight and another that assumes that
some variables are more important than others and hence
carry different weights. In the case of equal weights, a simple
average would generate the WREI. But when weights are
accorded to each variable a weighted average is used to arrive
at WREI. The weights are determined either with the help
of regression analysis or expert opinion. Here, the weights
are determined using the expert opinion. Weights reflect the
relative importance of each variable in a country or regional
context (Figure 2).

Following equation (1) above the normal WRI (BCI)it
index with equal weights for India is 27.3 (Table 2). When
differential weights are used for each component the index is
estimated at 25.5. The indicator waste water reuse is given
a weight of 50% while the other two are given 25% each
to reflect the fact that reuse is the major component of
total wastewater that is used. It is no surprise, therefore,
that like in the case of Indonesia and Brazil reuse of
wastewater in agriculture was emerging as a policy and legislative
priority in India too, especially to address water scarcity in
urban areas.

Expert opinion is also crucial in allocation of weights for
the institutional component of the index (GSE). A total of
11 indicators are included in constructing the WRI (GSE)it
component. Different weights are given to each indicator
(Table 3). The socioeconomic sub-component is given a 25%
weight, while environment and sustainability component are
given 47%weight andGovernance sub-component is given a 28%
weight. In fact, weights are fixed for each indicator first and then
summed up by sub-component. These weights are fixed based
on a thorough review of literature on the subject and expert
opinion. For instance, per capita GDP and people depending on
waste water are given 10% weight and awareness is given a 5%
weight. We can deduce that higher GDP per capita can positively
influence wastewater reuse. But India is yet to acquire comparable
levels of per capita GDP and hence a modest weight is given.
Awareness about water quality risks are expected to put pressure
on policy makers to improve the situation. But at the same
time, given the multiple and competing developmental priorities
such as income and employment generation, wastewater reuse
receives low priority at the policy level given lower levels of per
capita GDP.

In the case of environment and sustainability sub-component
the population effected by waste water and area irrigated by
waste water are given a 20% weight. The reason being that
both these indicators directly affect the economy, viz., irrigated
agriculture contributes to food security and livelihoods and
health impacts of poor water quality can impose a burden on the
economy. In the case of Governance sub-component the policy
environment and decentralization are each given 10% weights.
This is because despite a conducive policy environment in India
[i.e., ‘swatch bharat’ (clean India) initiative], which focuses on
waste management, the mechanisms for policy enforcement
remain weak. Furthermore, while political decentralization is
theoretically known to play an important role in creating the
right set of incentives for effective wastewater reuse, the process
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FIGURE 2 | Typology of indicators used to model effective wastewater reuse in India. Figures in Brackets are the Weights based on the experience from India.

TABLE 4 | Wastewater reuse effectiveness index developed based on data for

India (WREI).

Scenarios WRI (BCI) it WRI (GSE) it WREIit

Normal Weighted Normal Weighted Normal Weighted

Without

weights

(50:50)

13.7 12.8 13.4 8.0 27.1 20.8

With weights

(SI: 60:40)

16.4 15.3 10.7 6.4 27.1 21.7

With weights

(SII: 70:30)

19.1 17.9 8.0 4.8 27.1 22.7

SI, Scenario one; S-II, Scenario two.

of decentralization and devolution of powers in India has been
slow (GoI, 2016).

The estimated normal WRI (GSE)it index component with
equal weights is 26.7 and the weighted index is 15.9 for India
(Table 4). The composite wastewater reuse effectiveness index
(WREIit) is then constructed using the component wise indices.
Two scenarios are developed: one with normal (equal weights)
and another with differentiating weights for each index. While
the normal index is estimated at 27.1, the weighted indices range
between 20.8 and 22.7 depending on weights i.e., 60:40/70:30
(Table 4). These indices can be compared across countries and
ranked. In the case of cross- country comparisons, the use
of a unified methodological framework and normalization of
indicators can prove to be critical.

Integrative modeling of trade-offs that incorporates
perspectives from both bio-physical and institutional domains

will highlight the role of the political economy in decision
making. Trade-off analysis will reflect the fact that policy and
management choices that operate at global, national and local
scales are guided by norms and agency and individual behavior
with regards to allocation of financial and human resources
and institutional capacity that can have an impact on the
goal of balancing bio-physical risks with institutional ones. The
systematic use of literature reviews and expert opinion to develop
and pilot-test composite indices raises the prospect of a data light
approach to monitoring SDGs; specifically, what are the merits of
relying on extensive survey data compared to composite indices
that are amenable to supporting benchmarking and scenario
analysis and can provide the insight needed to inform decision-
making and robust monitoring of global goals? (Kurian, 2017).

Global Monitoring Methodology That Incorporates

Benchmarking and Scenarios
Plotting the hypothetical component wise scores of WREI
for different countries/regions helps in understanding the role
of governance/institutions in mobilizing public action in the
form of finances, technology and skill sets to support an
effective response to challenges posed by the fact that planetary
boundaries are being reached. Such an approach to global
monitoring can present a clear picture of the constraints various
counties face and can serve as a basis for capacity building in
support of normative change. Figure 3 presents the hypothetical
scores categorizing countries into one of the four quadrants
(H:H); (L: L); (H: L) and (L:H). Quadrant one (Q1) represents
low BCI and GSE scores. The blue dots in this quadrant
(Q1) hypothetically represent countries (for example India: BCI:
17.9; GSE: 4.8). Quadrant four (Q4) represents high BCI and
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GSE scores where most developed countries are placed (H:H).
The arrows indicate the desired direction of movement of
the countries located in Q1; Q2 and Q3. From a monitoring
perspective it is desirable that countries move toward Q4 i.e.,
toward achieving effective reuse (SDG 6.3). It may be noted that
the countries in Q1 could achieve the goal (moving to Q4) either
through Q2 or Q3 depending on their socioeconomic and policy
environment. This hypothetical representation offers insights on
how important it is to understand local context to explain the
divergence between planetary scale imperatives of promoting
reuse of resources and the administrative scale opportunities and
constraints that would determine the scale and intensity of the
institutional response that will ultimately drive the achievement
of the SDGs.

We contend that the goal of global monitoring ultimately
is not to prescribe institutional change in the form of budget
allocations and staff reorganization but to consolidate the
normative basis for effective wastewater reuse that incorporates
a balanced view of both bio-physical dimensions associated
with planetary boundaries and institutional ones of effectively
delivering public services. The quadrants Q2 or Q3 as displayed
in Figure 3 could serve as a benchmark to predict effective
wastewater reuse within individual countries. WREI can help
to structure the discussion relating to the choice of norms,
indicators and methodologies for data collection, analysis and
synthesis and highlight the pressure this place on country nodal
agencies18 in terms of required capacities and skill sets for
monitoring effective reuse of wastewater. This is especially the
case in countries where data is not collected even for critical
indicators like the quantity of waste water generated. While
the Delphi technique could help in identifying the indicators,
especially qualitative ones, skills and capacities are required to
design and conduct Delphi studies at country level. Setting up
the panel of experts, building consensus and organizing and
validating the results prior to their use requires innovation in
didactics and pedagogy which can become an additional focus
of global public goods research undertaken by international
organizations (Hsu and Sandford, 2007).

POLITICAL ECONOMY OF PUBLIC
DECISION MAKING IN THE
WATER-ENERGY-FOOD NEXUS

In the introduction of this paper we referred to the urgency for
coupling global models of bio-physical change with models of
institutional change at appropriate administrative scale. In this
regard we pointed to the role of expert opinion in calibration
of model prototypes with the objective of promoting analyses
of dynamic socio-ecological systems. For this purpose, we
would like to argue that place-based observatories can play an
important role in developing and validating composite indices as
a mechanism for monitoring global goals. The continuous back

18From a monitoring perspective, nodal agencies could refer to entities that are

responsible for collection and synthesis of data at country level such as for example,

the bureau of statistics.

and forth that is required between theory, method and active
engagement with considerations of revenue and expenditure
that pre-occupy policy makers can be supported by online
learning platforms, co-curation of data and models19 and
co-design of research questions (Kurian et al., 2016a). In the
ensuing discussion we highlight some of the key insights of
transdisciplinary scholarship that characterized our search for a
robust monitoring methodology for SDG 6.3.

Interdependencies Based on
Characteristics of Public Infrastructure
Water services may take the form of water supply, irrigation
or wastewater treatment. Energy in the form of hydro-
power or bio-energy is required to pump water supplies or
treat wastewater. The costs of setting up “demand-driven”20

infrastructure depends upon extent of local tariff collection and
the type of technology that is chosen to provide the service.
Cereal or pulses is produced using water that is pumped
over long distances increasing both the risks and economies
of scale of serving a larger population. Nevertheless, it is
important to distinguish here between extension services and
public services that play enabling roles in food production.
Extension services are limited to information on crop varieties,
fallow techniques or plant operations in the case of wastewater.
Extension agencies also build “supply-driven” infrastructure to
deal with specific environmental challenges like soil erosion.
The durability of “supply-driven” infrastructure can have an
impact on the reliability and quality of public services such as for
example, hydro-power generation, water supply and irrigation
that have the potential to influence levels of food security. In
closed bounded21 contexts it is relatively easier to make decisions
based on a mapping of water, energy and food resources and
infrastructure. However, in rapidly urbanizing regions where
water, energy or food services may be procured from outside an
administrative jurisdiction, the institutional risks are heightened
because of increased uncertainties.

Differential Outcomes of Policy and Legal
Instruments; The Role of Administrative
Culture and Incentives
When decisions are made regarding water, energy and food
services, especially in unbounded contexts, laws and policies
must be implemented through recourse to instruments such
as notifications, directives, guidelines, standards and circulars.

19Bousquet et al. (2002) advanced the idea of companion modeling which

interactively combines agent-basedmodeling and role-playing games, and employs

the latter to acquire knowledge, build and validate the agent-based model and use

the model in the decision-making process.
20Demand driven infrastructure is infrastructure that is created to provide a service

delivery function- eg. transport water from treatment facility or dam to end user.

By contrast supply driven infrastructure refers to infrastructure that is created to

respond to a challenge such as soil erosion- eg. a catchment forestry plantation.
21 Bounded systems are where it is possible to procure resources such as water,

energy or food to meet demands for public services locally. By contrast, systems for

which resources such as water, energy or food have to be procured from outside a

pre-defined physical or administrative boundary (eg. river basin or municipality)

to meet demands for public services may be referred to as unbounded systems

(Gregersen et al., 1989).
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FIGURE 3 | A hypothetical ladder for monitoring effective wastewater reuse globally. Q1...4, Quadrant; L, Low; H, High; Arrows indicate direction of movement.

These instruments that could be developed for a range of
issues from technology choices to financing options could be
interpreted and executed differently in different locations of a
watershed, province or water user association (Agrawal, 2005).
There could for instance, be perverse incentives that encourage
public servants to construct water supply plants and wastewater
treatment facilities without following guidelines with regards to
operation and maintenance. In many instances administrative
culture may differ and discretion may be exercised to larger
or smaller degrees affecting program or project outcomes such
as public health or food security. Optimization principles of
reuse and recycle may be theoretically appealing but their actual
realization at administrative scale is determined by “allocative”
decisions, alignment of rules and existence of a critical mass of
networked functionaries within line departments responsible for
delivery of water, energy and food services (World Bank, 2004).
This could produce differential results in terms of enhancing
water, energy and food security (Dasgupta et al., 2005).

Financing Decisions and Institutional
Risk Thresholds
The concept of a Nexus trade-off purports not to eliminate
risks altogether be they institutional or bio-physical. Rather, the
concept emphasizes the need to manage a balance between bio-
physical and institutional risks. In other words, how to balance
the risk of extreme water scarcity with the risk of extreme
inequity in distribution of public services? By implication
institutional thresholds of risk are shaped by two factors:
(a) the quantum of environmental resources (e.g., Water or
energy) required to produce potable/treated wastewater and
(b) acceptable levels of distributional equity among consumers
required to produce a given level of public services. A larger
affected population could potentially lower institutional risk
through the effect that economies of scale can have on lower
costs of treating and transporting water (World Bank, 2006). On

the other hand, a larger affected population could necessitate
higher sunk costs for infrastructure which once created cannot be
easily be altered without generating higher levels of institutional
risk in the form of decaying infrastructure due to inability to
allocate revenues toward Operation and Maintenance (O&M)
(Savedoff and Spiller, 1999). In the absence of well-designed
central transfers and subsidy schemes institutional risk may
become pronounced (Annexure 3). The exact thresholds of
institutional risk would, however be influenced by local context.
For example, region specific rainfall patterns and locally
acceptable levels of water use given the nature of agro-
ecological conditions can define exact thresholds of institutional
risk (Weckenbrock and Alabaster, 2015).

Design of Field Trials for Impact
Evaluations of Food Production
At present NRM research is dominated by bio-physical
perspectives of environmental change. We concur with (Albrecht
et al., 2018) and others who have argued that the absence of
integrative analysis incorporating perspectives on constraints
and opportunities from the institutional domain leaves us with
an incomplete understanding of prospects for environmental
management. This incomplete view can lead us to over-
emphasize environmental risk and be overly optimistic about the
role of technology and financing in advancing sustainability. Our
analysis leads us to believe in the need for a renewed theory
of change focussed on adapting hypothesis and explanation to
insights gleaned from data and without being over ambitious
about fitting data to dominant models of environmental

change (see also Pearl and Mackanzie, 2018). Such a renewal
in scientific approach has implications broadly for how we

structure learning and capacity development to inform feedback

into governance structures and processes. One of the specific
ways in which feedback into governance processes can be
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beneficial is to improve design of Randomized Control Trials

(RCT’s) to support the validation of composite indices in

policy making.

Inaction and Siloes in Public
Decision Making
When coordination results in inaction with regards to

responding to well-established institutional or bio-physical

risks, the prospects of achieving water, energy and food security

are undermined. The recourse to food aid or extensive subsidies

will not improve the prospects of sustainable development
since they can undermine the development of local institutions

(Ostrom, 1990). When there is a tendency to invest in human
resource development at the cost of creating incentives for

individuals to cooperate across departmental silos then even
the largest expenditure programs will not result in sustainable

improvements in water, energy and food security (see Wichelns,
2017). Instead they are more likely to produce rebound effects

that entrench siloes in agricultural development and exacerbate

certain risks such as the depletion of organic carbon or nitrogen
in soils because of intensified agricultural practices.

Enabling the Development and Validation of Coupled

Models of Water-Energy- Food Interactions via

Place-Based Observatories22

Experiments repeatedly find that communication bolsters
cooperation, but do not explain why (Poteete et al., 2010,
p. 211). Stakeholder engagement is key to developing
models that can explain and possibly predict the behavior
of agents within a complex and changing political economy.
Therefore, a prerequisite for the development, calibration and
validation of coupled models of effective wastewater reuse
is the documentation of protocols in agent- based modeling
so that scholars can check and build upon each other’s work
(Poteete et al., 2010, p. 177). Place-based observatories by
supporting the development of such protocols could enable
the scaling up of results of research for use by decision
makers (Figure 4). In this connection, the development,
validation and pilot-testing of the WREI emphasized the
importance of organizing data and models related on
water resources, water quality, water reuse, administrative
decentralization, risk assessments and climate variability.
The exercise emphasized the imperative of downscaling
global environmental models to support local decision
making through provision of site-specific information
(e.g., rainfall and temperature) from regional networks of

22Hall and (Hall Tiropanis, 2012) outline several key principles that can guide the

management of place-based observatories: (a) access to distributed repositories

of data, open data, online social network data and web-archive, (b) harmonized

access to distributed repositories of visual/analytical tools to support quantitative

and qualtitative research methods that Are inter-operable With either public

and private data sets, (c) shared methodologies for facilitating the harvesting

of additional data sources and development of novel analytical methods and

visualization tools to address social challenges and promote innovation, (d) a

forum for discussion about an ethics framework on the archiving and processing

of web data and relevant policies and € a data-licensing framework for archived

data and the results of processing of those data.

independent researchers and institutes23. Second, place-based
observatories can foster cooperation among networks of
researchers and institutes to co-create a research question
based on a unified interpretation of a policy challenge. Third,
place-based observatories can support the development of
typologies based for a given development challenge: example,
salinization or soil erosion. Fourth, place-based observatories
can structure data sets, analytical methods24 and results in a
practical manner through use of knowledge translation tools
such as scenario analysis, agent-based modeling, composite
indices and performance benchmarking (Kanter et al., 2018;
Kurian et al., 2018). Finally, place-based observatories can
facilitate valorisation of data and models aimed at the design,
implementation, monitoring and evaluation of case studies
that pilot-test and validate Nexus typologies and thresholds in
development practice.

IMPLICATIONS FOR GLOBAL PUBLIC
GOODS RESEARCH

This paper by undertaking a critical examination of the recent
UN-WATER directive on SDG target 6.3 shows that synergies
are required to ensure coordination between UN agencies
(on norms and indicators), Member States (on coherence of
policy instruments) and consumers (on perceptions of safety and
affordability of services) to advance the achievement of the goal
of reuse of wastewater. In this paper we demonstrate how the
development, pilot-testing and validation of the Wastewater
Reuse Effectiveness Index (WREI) relied upon data valorization,
expert opinion and coupling of bio-physical and institutional
models of water-energy-food interactions. In doing so we
highlight the applications of the Nexus approach in managing
trade-offs and fostering synergies in environmental planning and
management. But, one swallow does not make a summer because
in the absence of future analyses that adopts a multi-dimensional
approach to monitoring of SDG’s the credibility of the global
monitoring framework itself can be undermined.

The WREI offers a refreshingly novel perspective on
monitoring SDG target 6.3 by pointing out that effective
reuse of wastewater can emerge only when a threshold of
bio-physical risk (e.g., for water quality or precipitation) is
crossed that is backed by governance / institutional resources
in the form of financing, trained functionaries and networks
for information sharing within public agencies. This makes
the WREI not only effective but also sustainable in the
long run, as technologies and policies may not sustain in

23Future research can clarify the role of observatories for global monitoring

by pursuing the following questions: (a) what steps are involved in supporting

data valorization through collection, sharing, analysis, decision making and

coordinated action? (b) how can composite indices be developed to support

interpolation between points of global/regional data and (c) how can interpolated

fields be developed to support documentation of larger scale influences and

enhance feedback into institutional and policy structures and processes? (see

Schonberger and Cuker, 2013).
24For a recent example of methodological innovation with reference to use of

multi-way modeling and self-organizing maps to study wastewater irrigation (see

Jampani et al., 2018).

Frontiers in Environmental Science | www.frontiersin.org 13 March 2019 | Volume 7 | Article 32

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Kurian et al. WEF Siloes, Trade-Offs and Synergies

FIGURE 4 | A stylized computing workflow for an observatory. Adapted from Kurian et al. (2018).

the absence of good governance viz., appropriate institutions
and enforcement mechanisms. To monitor effective reuse a
composite index would leave the selection of indicators for bio-
physical and institutional components to entities at appropriate
administrative scale but ensure that the indicators/variables once
identified through rigorous local vetting and discussions would
support comparative analysis. An iterative process of designing,
validating and pilot-testing of composite indices can overcome
the challenge of attributing research results to policy outcomes
which has proved to be the bane of global public goods research
(see Renkow, 2018).

In this paper we argue that robust monitoring must encourage
discussions of indicators, variables, data gathering and incentives
that have the potential to generate sustainable improvements
on-the-ground. The construction of the Wastewater Reuse
Effectiveness Index (WREI) was guided by the goal of clarifying
the basis for normative change- in other words how can
wastewater reuse be effectively promoted to respond to global
concerns of water scarcity, poverty and climate change? The
adoption of a Nexus framework for the analysis highlighted
crucial trade-offs both among environmental resources (for
example- water, soil and waste) and delivery of public services
(for example- irrigation, water supply, wastewater treatment)
with potential to address the challenge of water, energy and food
security. For example, while recycled water, desalination and

rainwater collection may contribute to water security, they may
increase energy requirements and the risks of contamination of
potable water with consequences for public health. Furthermore,
the predicted reduction in demand for potable water due to
the implementation of alternative solutions may be smaller than
expected precisely because for example, cost savings may drive
up demand for services by consumers. The fact that all these
effects are highly context specific in turn makes them difficult to
predict. It is in this connection that place-based observatories can
play an important role in supporting trans-disciplinary research
by downscaling global environmental models, developing nexus
typologies of a developmental challenge and supporting data
valorization and knowledge translation.

Our analysis makes us skeptical about the prospects of
global public goods research when it comes to advocating for
institutional in contrast to normative change. This is because
the effect of proposals for reform of budgetary strategies, plans
for staff retrenchment and organizational re-structuring on
policy outcomes can be multi-dimensional, recursive and non-
monotonic (Bardhan and Dayton-Johnson, 2002). Therefore,
taking a different approach we return to two questions that
were raised on page 5 of this paper: how do decision makers
forecast future developments? and (b) what do decision makers
believe or ignore? Both these questions have implications for the
political economy of public-decision making and future Nexus
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research is underway or being proposed to more rigorously test
the hypotheses outlined below:

Hypothesis 1: Focussing on Norms and Intention of Agents
with reference to Resource Reuse & Recovery

• Countries/regions that are successful with effective reuse of

wastewater are more likely to be already successful with
delivering public services; the quantum of available financing,

skills and technology need not a-priori be a constraint and,

Hypothesis 2: Focussing on Observatories as Mechanisms for
Knowledge Translation with reference to Wastewater Reuse
in Agriculture

• Countries/regions that do not pursue effective reuse of
wastewater in agriculture despite compelling environmental
pressures in the form of for example, water scarcity or

declining water quality may benefit from impact evaluations
that support the development and pilot-testing of policy
instruments (guidelines, notifications, standards, circulars,
and directives) with the potential to aid uptake of technical
options (for example, conservation agriculture, integrated
soil fertility management, alternate wet-drying, micro-
dosing or agro-forestry) based on a robust typology of
wastewater management and integrative Nexus thresholds to
public action.

AUTHOR’S NOTE

This hypothesis and theory article is the culmination of 6 years of
multi-country and trans-disciplinary collaboration on theWater-
Energy-Food (WEF) Nexus involving partners at the United
Nations University (UNU-FLORES), United Nations Human
Settlements Programme (UNHABITAT), University of Arizona,
USA, Livelihoods and Natural Resources Management Institute,
India, University of São Paulo, Brazil, Texas A&M University,
USA and Bogor Agricultural University, Indonesia.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

Core budget of UNU-FLORES, Dresden, Germany for Capacity
Development and Governance (CDG) Unit, 2013-18 (project
numbers: 2389 and 9371).

ACKNOWLEDGMENTS

The preparation of this paper was funded by the UNU-FLORES
projects titled development, validation and pilot-testing of
monitoring methodology for SDG 6.3 (project code: 9371)
and Nexus Observatory- data, monitoring and governance
(project code: 2389). The corresponding author acknowledges
the support of Reza Ardakanian (founding Director of
UNU-FLORES), UNU-FLORES Ph.D. Cohorts, Manfred
Buchroithner and Christian Bernhofer (TuD), Andrew Noble
(SEI), Claudia Ringler (IFPRI), Stephan Huelsmann, Lulu
Zhang, Rachel Ahrens, Mahesh Jampani, Andrea Mueller,
Sekela Twisa, Solomon Gebrechorkos, Kristin Meyer, Yohannas
Subhagadis, Ministry of Construction, Vietnam, Institute
of Global Environmental Strategies, Japan, Arab Countries
Water Utilities Association, Jordan, Ministry of Environment,
Indonesia, Ministry of Water Resources and Sanitation,
Sao Paulo, Brazil, Linda Veiga (University of Minho), GIZ,
Belmont/H2020 Nexus Consortium and the Alexander von
Humboldt Foundation, Bonn in developing some of the
ideas contained in this paper. Earlier iterations of this paper
also benefitted from discussions at the Chapel Hill Nexus
Conference at University of North Carolina and the Consultative
Group on International Agriculture Research (CGIAR) Science
Forum 2018 organized by the Independent Science Partnership
Council (ISPC), FAO, Rome for which the authors are grateful
to Leslie Lipper and Preet Lidder. Three reviewers and Yu
Kojima offered critical comments on an earlier draft of
the paper.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fenvs.
2019.00032/full#supplementary-material

REFERENCES

Abelson, P. (2003). Public Economics- Principles and Practice, Sydney: Applied

Economics. Canberra, ACT.

Agarwal, B. (2001). Participatory exclusions, community forestry and gender: an

analysis for South Asia and a conceptual framework.World Dev. 29, 1623–1648.

doi: 10.1016/S0305-750X(01)00066-3

Agrawal, A. (2005). Environmentality: Technologies of Government and the Making

of Subjects. Durham: Duke University Press.

Albrecht, T., Crootof, A., and Scott, C. A. (2018). The water-energy-food nexus:

a systematic review of methods for nexus assessments. Environ. Res. Lett. 13,

48–56. doi: 10.1088/1748-9326/aaa9c6

Bardhan, P., and Dayton-Johnson, J. (2002). “Unequal irrigators: heterogeneity

and commons management in large-scale multivariate research,” in The Drama

of the Commons, ed National Research Council (Washington, DC: National

Academy Press), 51–67.

Barreteau, O., Bots, P. W. G., and Daniell, K. A. (2010). A framework for clarifying

“participation” in participatory research to prevent its rejection for the wrong

reasons. Ecol. Soc. 15, 1. doi: 10.5751/ES-03186-150201

Bates, R. H. (1995). “Social dilemmas and rational individuals: an assessment of

the New Institutionalism, in Harriss,” in The New Institutional Economics and

Third World Development, eds J. J. Hunter and C. Lewis (London: Routledge),

27–48.

Batley, R. (2004). The politics of service delivery reform. Dev. Change 35, 31–56.

doi: 10.1111/j.1467-7660.2004.00341.x

Bleischwitz, R., Spataru, C., VanDeveer, S., Obersteiner, M., Van der Voot,

E., Johnson, C., et al. (2018). Resource nexus perspectives on the

united nations sustainable development goals. Nat. Sustainabil. 1, 737–743.

doi: 10.1038/s41893-018-0173-2

Bousquet, F., Barreteau, O., Aquino, P., Etienne, M., Boissau, S., Aubert, S., et al.

(2002). “Multi-agent systems and role games: collective learning processes

for ecosystem management,” in Complexity and Ecosystem Management: The

Frontiers in Environmental Science | www.frontiersin.org 15 March 2019 | Volume 7 | Article 32

https://www.frontiersin.org/articles/10.3389/fenvs.2019.00032/full#supplementary-material
https://doi.org/10.1016/S0305-750X(01)00066-3
https://doi.org/10.1088/1748-9326/aaa9c6
https://doi.org/10.5751/ES-03186-150201
https://doi.org/10.1111/j.1467-7660.2004.00341.x
https://doi.org/10.1038/s41893-018-0173-2
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Kurian et al. WEF Siloes, Trade-Offs and Synergies

Theory and Practice of Multi-Agent Systems, ed M. Janssen (Cheltenham, UK:

Edward Elgar), 248–85.

Brohman, J. (1996). Popular Development: Rethinking the Theory and Practice of

Development. Cambridge, MA: Blackwell Publishers.

Cai, X., Wallington, D., Shafiee-Jood, M., and Marston, L. (2017).

Understanding and managing the water-energy-food nexus- opportunities

for water resources research. Adv. Water Resour. 111, 259–273.

doi: 10.1016/j.advwatres.2017.11.014

Campbell, B., Beare, D., Bennett, E., Hall-Spencer, J., Ingram, J., Jaramillo, F.,

et al. (2017). Agricultural production as a major driver of the earth system

exceeding planetary boundaries. Ecol. Soc. 22:8. doi: 10.5751/ES-09595-2

20408

CPCB (2015). Assessment of Performance of Sewerage Treatment Plants in India.

New Delhi: Central Pollution Control Board.

Craig, P. (2015). Synthetic Controls: A New Approach to Evaluating Interventions.

Glasgow: What Works Scotland; Working Paper.

Dasgupta, S., Deichmann, U., Meisner, C., and Wheeler, D. (2005). Where

is the poverty-environment nexus? Evidence from Cambodia, Lao PDR

and Vietnam. World Dev. 33, 617–638. doi: 10.1016/j.worlddev.2004.

10.003

Destouni, G., Jaramillo, F., and Prieto, C. (2013). Hydroclimatic shifts driven

by human water use for food and energy production. Nat. Clim. Change 3,

213–217. doi: 10.1038/nclimate1719

Dhehibi, B., Werner, J., and Qaim, M. (2018). Designing and Conducting

Randomized Controlled Trials (RCTs) for Impact Evaluations of Agricultural

Development Research: A Case Study from ICARDA’s ‘Mind the Gap’ Project

in Tunisia. Manuals and Guidelines 1. Beirut: The International Center for

Agricultural Research in the Dry Areas (ICARDA).

Dombrowsky, I., and Hesengerth, O. (2018). Governing the water-energy-

food nexus related to hydropower on shared rivers- the role of regional

organizations. Front. Environ. Sci. 6:153. doi: 10.3389/fenvs.2018.00153

Dorward, A., Kydd, J., Morrison, J., and Poulton, C. (2005). Institutions, markets

and economic coordination: linking development policy to theory and practice.

Dev. Change 36, 1–25. doi: 10.1111/j.0012-155X.2005.00400.x

Eggertsson, T. (1990). Economic Behaviour and Institutions. New York, NY:

Cambridge University Press.

Endo, A., Burnett, K., Orencio, P., Kumazawa, T., Wada, C., Ishii, A., et al.

(2015). Methods of the water-Energy-Food nexus. Water 7, 5806–5830.

doi: 10.3390/w7105806

Food and Agriculture Organization (2014). The State of Food Insecurity in

the World: Strengthening the Enabling Environment for Food Security and

Nutrition. Rome: FAO.

Gilbert, N., and Bullock, S. (2014). Complexity at the social science interface.

Complexity 19, 1–4. doi: 10.1002/cplx.21550

GoI (2016). Where is Local Democracy and Devolution in India is Heading

Towards?Ministry of Panchayati Raj. New Delhi: Government of India.

Gregersen, H., Draper, S., and Dieter, E. (1989). People and Forests: EDI Seminar

Series. Washington DC: The World Bank.

Gregory, R. (1997). “Political rationality or incrementalism?” in The Policy Process-

A Reader, ed M. Hill (Essex: Prentice Hill), 175–191.

Hall and Tiropanis (2012). Web evolution and web science. Comput. Netw. 56,

3859–3865. doi: 10.1016/j.comnet.2012.10.004

Harriss, F., and Lyon, F. (2014). Transdisciplinary environmental research: a

review of approaches to knowledge co-production. Nexus Network Think Piece

Series, Paper, November, 2.

Harriss, J., Hunter, J., and Lewis, C. (1995). The New Institutional Economics and

Third World Development. London: Routledge.

Harwood, S. (2018). In search of a WEF nexus approach. Environ. Sci. Policy 83,

79–85. doi: 10.1016/j.envsci.2018.01.020

Hazell, P. (2017). “Global trends in urbanization, agriculture and smallholder

farming,” in Agri-Food Systems into 2050: Threats and Opportunities, eds P.

Pingali and R. Serraj (Rome: World Scientific).

Hernandez-Sancho, F., and Sala-Garrido, R. (2008). “Cost modeling in waste water

treatment processes: an empirical analysis for Spain," in Dangerous Pollutants

(Xenobiotics) in Urban Water Cycle. NATO Science for Peace and Security

Series, eds P. Hlavinek, O. Bonacci, J. Marsalek, and I. Mahrikova (Dordrecht:

Springer), 219–226. doi: 10.1007/978-1-4020-6795-2_20

Howarth, C., and Monasterolo, I. (2016). Understanding barriers to decision

making in the UK energy-food-water nexus. Environ. Sci. Policy 61, 53–60.

doi: 10.1016/j.envsci.2016.03.014

Hsu, C. –C., and Sandford, B. A. (2007), “The delphi technique: making sense of

consensus,” in Practical Assessment, Research and Evaluation, Vol. 12. Available

online at: http://pareonline.net/getvn.asp?v=12&n=10.

Jampani, M., Huelsmann, S., Liedl, R., Sonkamble, S., Ahmed, S., and

Amerasinghe, P. (2018). Spatio-temporal distribution and chemical

characterization of groundwater quality of a wastewater irrigated system: a case

study. Sci. Total Environ. 636, 1089–1098. doi: 10.1016/j.scitotenv.2018.04.347

Jaramillo, F., and Destouni, G. (2015). Comment on “planetary boundaries:

guiding human development on a changing planet”. Science 348:1217.

doi: 10.1126/science.aaa9629

Jimenez, B., and Asano, T. (eds.). (2008). Introduction. Water Reuse: An

International Survey of Current Practice, Issues and Needs. Scientific and

Technical Report No. 20. International Water Association (The Hague).

Kanter, D., Musumba, M., Wood, S., Palm, C., Antle, J., Balvanera, P., et al. (2018).

Evaluating agricultural trade-offs in the age of sustainable development. Agric.

Syst. 163, 73–88. doi: 10.1016/j.agsy.2016.09.010

Kurian, M. (2010). “Making sense of Human-environment Interaction- Policy

Guidance under conditions of Imperfect Data,” in Peri-Urban Water and

Sanitation Services- Policy, Planning and Method, eds M. Kurian and P.

McCarney (Dordrecht: Springer). doi: 10.1007/978-90-481-9425-4_9

Kurian, M. (2017). The Water-Energy-Food Nexus- trade-offs, thresholds and

trans-disciplinary approaches to sustainable development. Environ. Sci. Policy

68, 97–108. doi: 10.1016/j.envsci.2016.11.006

Kurian, M. (2018). “The water-energy-food nexus and agriculture research for

development: the case for integrative modeling via place-based observatories,”

in Background Paper, Consultative Group on International Agriculture Research

(CGIAR) Science Forum (Stellenbosch).

Kurian, M., and Ardakanian, R. (2015). Governing the Nexus- Water, Soil and

Waste Resources considering Global Change. Dordrecht: Springer.

Kurian, M., Ardakanian, R., Veiga, L., and Meyer, K. (2016a). Resources, Services

and Risks- How Can Data Observatories bridge the Science-Policy Divide in

Environmental Governance? Dresden: Springer.

Kurian, M., and Dietz, T. (2013). Leadership on the commons: wealth

distribution, co-provision and service delivery. J. Dev. Stud. 49, 1532–1547.

doi: 10.1080/00220388.2013.822068

Kurian, M., Portney, K., Rappold, G., Hannibal, B., and Gebrechorkos, S.

(2018). “Governance of the water-energy-food nexus: a social network analysis

to understanding agency behaviour,” in Managing Water, Soil and Waste

Resources to Achieve Sustainable Development Goals, eds S. Huelsmann and R.

Ardakanian (Cham: Springer), 125–147.

Kurian, M., Ratna Reddy, V., Dietz, T., and Brdjanovic, D. (2013). Wastewater

reuse for peri-urban agriculture- a viable option for adaptive water

management? Sustainabil. Sci. 8, 47–59. doi: 10.1007/s11625-012-

0178-0

Kurian, M., Veiga, L., Boer, R., and Alabaster, G. (2016b). Wastewater Reuse

Effectiveness Index (WREI)- Monitoring Methodology for SDG Target 6.3.

Dresden: UNU-FLORES.

Larson, S., and Smajgl, A. (2006). Conceptual framework for the water use benefit

index in the Great Barrier Reef region. J. Sustainab. Dev. Planning 1, 157–169.

doi: 10.2495/SDP-V1-N2-157-169

Liu, J., Hull, V., Godfray, C., Tilman, D., Gleick, P., Hoff, H., et al. (2018). Nexus

approaches to global sustainable development. Nat. Sustainabil. 1, 466–476.

doi: 10.1038/s41893-018-0135-8

Meyer, K., and Kurian, M. (2016). “Water-wastewater nexus in urbanizing Asia:

building capacity for monitoring water quality risks,” in Proceedings, Regional

Consultation Workshop, (Hanoi).

Miller-Robbie, L., Ramaswami, A., and Amerasinghe, P. (2017). Wastewater

treatment and reuse in urban agriculture: exploring the food, energy,

water and health nexus in Hyderabad, India. Environ. Res. Lett. 12:075005.

doi: 10.1088/1748-9326/aa6bfe

Niblett, R. (2018). Rediscovering a sense of purpose: the challenge of western think

tanks.Int. Affairs 94: 1409–1430. doi: 10.1093/ia/iiy199

North, D. (1990). Institutions, Institutional Change and Economic Performance.

New York, NY: Cambridge University Press.

Frontiers in Environmental Science | www.frontiersin.org 16 March 2019 | Volume 7 | Article 32

https://doi.org/10.1016/j.advwatres.2017.11.014
https://doi.org/10.5751/ES-09595-220408
https://doi.org/10.1016/j.worlddev.2004.10.003
https://doi.org/10.1038/nclimate1719
https://doi.org/10.3389/fenvs.2018.00153
https://doi.org/10.1111/j.0012-155X.2005.00400.x
https://doi.org/10.3390/w7105806
https://doi.org/10.1002/cplx.21550
https://doi.org/10.1016/j.comnet.2012.10.004
https://doi.org/10.1016/j.envsci.2018.01.020
https://doi.org/10.1007/978-1-4020-6795-2_20
https://doi.org/10.1016/j.envsci.2016.03.014
http://pareonline.net/getvn.asp?v=12&n=10
https://doi.org/10.1016/j.scitotenv.2018.04.347
https://doi.org/10.1126/science.aaa9629
https://doi.org/10.1016/j.agsy.2016.09.010
https://doi.org/10.1007/978-90-481-9425-4_9
https://doi.org/10.1016/j.envsci.2016.11.006
https://doi.org/10.1080/00220388.2013.822068
https://doi.org/10.1007/s11625-012-0178-0
https://doi.org/10.2495/SDP-V1-N2-157-169
https://doi.org/10.1038/s41893-018-0135-8
https://doi.org/10.1088/1748-9326/aa6bfe
https://doi.org/10.1093/ia/iiy199
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Kurian et al. WEF Siloes, Trade-Offs and Synergies

OECD (2008). Handbook of Constructing Composite Indicators-Methodology and

User Guide. Paris: Organisation for Economic Cooperation and Development.

Ostrom, E. (1990). Governing the Commons: The Evolution of Institutions for

Collective Action. Cambridge: University Press Princeton.

Pearl, J., and Mackanzie, D. (2018). The Book of Why: The New Science of Cause

and Effect. London: Allen Lane.

Pollitt, C., and Bouckeart, G. (2000). Public Sector Management: A Comparative

Analysis. Oxford: University Press Oxford.

Portney, K., Vedlitz, A., Sansom, G., Berke, P., and Daher, B. (2018).Governance of

theWater-Energy-FoodNexus: The Conceptual andMethodological Foundations

of the San Antonio Case Study. Current Sustainable Renewable Energy

Report, Springer.

Poteete, A., Janssen, M., and Ostrom, E. (2010). Working Together- Collective

Action, the Commons and Multiple Methods in Practice. Princeton, NJ:

Princeton University Press.

Renkow, M. (2018). “A Reflection on Impact and Influence of CGIAR Policy-

Oriented Research,” in Standing Panel on Impact Assessment (SPIA), CGIAR

Independent Science and Partnership Council (ISPC) (Rome), 34.

Rijsberman, F. (2004). “Sanitation and access to clean water,” in Global Crises, Gl,al

Solutions, ed B. Lomborg (London: Cambridge University Press), 498–540.

Rockstrom, J., Steffan, W., Noone, K., Persson, A., Chapin, F., Lambin, E.,

et al. (2009). A safe operating space for humanity. Nature 461, 472–475.

doi: 10.1038/461472a

Saith, A. (1992). The Rural Non-Farm Economy- Policy and Process. Geneva:

International Labour Organization.

Salome, A. (2010). “Wastewater management under the Dutch Water Boards:

any lessons for developing countries?” in Peri-Urban Water and Sanitation

Services- Policy, Planning and Method, eds M. Kurian and P. McCartney

(Dordrecht: Springer), 111–131.

Savedoff, W., and Spiller, P. (1999). Spilled Water: Institutional Commitment

in the Provision of Water Services. Washington DC: Inter-American

Development Bank.

Schonberger, V., and Cuker, K. (2013). Big Data: A Revolution ThatWill Transform

HowWe Live, Work and Think. London: John Murray.

Scott, C., Albrecht, T., De Grande, R., Teran, A., Varady, R., and Thapa, B. (2018).

Water security and the pursuit of earth systems resilience.Water Int. 82, 1–20.

doi: 10.1080/02508060.2018.1534564

Scott, C. A., Kurian, M., and Wescoat, J. L. Jr. (2015). “The water-energy-

food nexus: enhancing adaptive capacity to complex global challenges,” in

Governing the Nexus: Water, Soil and Waste Resources Considering Global

Change, eds M. Kurian and R. Ardakanian (Cham: Springer International),

15–38.

Shiva, V. (2010). Staying Alive: Women, Ecology and Survival in India. New Delhi:

Kali for Women.

Smajgl, A., and Ward, J. (2013a). A framework for bridging Science and Decision

making. Futures 52, 52–58. doi: 10.1016/j.futures.2013.07.002

Standing, G. (2017). Basic Income and How Can We Make it Work? London:

Atlantis Books.

Stevenson, J., and Vlek, P. (2018). Assessing the Adoption and Diffusion of Natural

Resource Management Practices: Synthesis of a New Set of Empirical Studies.

CGIAR Standing Panel on Impact Assessment Synthesis Report.

Stirling, A. (2014). Transforming power: social science and the politics of energy

choices. Environ. Res. Soc. Sci. 1, 83–95. doi: 10.1016/j.erss.2014.02.001

Thaler, R. (2015).Misbehaving- The Making of Behavioural Economics. New York,

NY: Penguin Books.

Tian, H., Lu, C., Pan, S., Yang, J., Miao, R., Ren, W., et al. (2018). Optimizing

resource use efficiencies in the food-energy-waternexus for sustainable

agriculture: from conceptual model to decision support tool. Curr. Opin.

Environ. Sustainabil. 33, 104–113. doi: 10.1016/j.cosust.2018.04.003

Tomich, T., Lidder, P., Coley, M., Gollin, D., Dick, R., Webb, P., et al. (2018). Food

and agricultural innovation pathways for prosperity. Agric. Syst. 172, 1–15.

doi: 10.1016/j.agsy.2018.01.002

Uden, D., Allen, C., Munoz-Arriolo, F., Ou, G., and Shank, N. (2018). A framework

for tracing socio-ecological trajectories and traps in intensive agricultural

landscapes. Sustainability 10:1646. doi: 10.3390/su10051646

UN-Water (2015). Consolidated Metadata Note from UN Agencies for SDG 6

Indicators onWater and Sanitation. New York, NY: UN-Water.

UN-Water (2018). Sustainable Development Goal 6: Synthesis Report onWater and

Sanitation. New York, NY: United Nations.

Weckenbrock, P., and Alabaster, G. (2015). “Designing sustainable wastewater

reuse systems: towards an agroecology of wastewater irrigation,” in Governing

the Nexus- Water, Soil and Waste Resources under Global Change, eds M.

Kurian and R Ardakanian (Dordrecht: Springer).

Weitz, N., Strambo, C., Kemp-Benedict, E., and Nilsson, M. (2017).

Closing the governance gaps in the water-energy-food nexus: insights

from integrative governance. Glob. Environ. Change 45, 165–173.

doi: 10.1016/j.gloenvcha.2017.06.006

White, H. (2009). “Theory based impact evaluations: principles and practice,” in

Working Paper No. 3, International Initiative for Impact Evaluation (NewDelhi:

Global Development Network).

WHO and UNICEF (2015). Methodological Note: Proposed Indicator Framework

for Monitoring SDG Targets on Drinking Water, Sanitation, Hygiene and

Wastewater, World Health Organization and United Nations International

Children’s Education Fund (Geneva).

Wichelns, D. (2017). The water-energy-food nexus: is the increasing attention

warranted, from either a research or policy perspective? Environ. Sci. Policy 69,

113–123. doi: 10.1016/j.envsci.2016.12.018

World Bank (2004). Making Services Work for the Poor. Washington, DC: World

Development Report.

World Bank (2006). Urban infrastructure finance from private operators: what

have we learned from recent experience?World Bank Policy Research Working

Paper 4045, November.

World Bank (2009). Output Based Aid (OBA)- A Compilation of Lessons

Learned and Best Practice Guidance. Washington, DC: GPOBA and IDA-

IFC Secretariat.

Yang, Y., Sungwook, W., Ray, P., Brown, C., and Khalil, A. (2016). The future

nexus of the brahmaputra river basin: climate, water, energy and food

trajectories. Glob. Environ. Change 37, 16–30. doi: 10.1016/j.gloenvcha.2016.

01.002

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The handling editor and reviewer RGL declared their involvement as co-editors in

the Research Topic, and confirm the absence of any other collaboration.

Copyright © 2019 Kurian, Scott, Reddy, Alabaster, Nardocci, Portney, Boer and

Hannibal. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org 17 March 2019 | Volume 7 | Article 32

https://doi.org/10.1038/461472a
https://doi.org/10.1080/02508060.2018.1534564
https://doi.org/10.1016/j.futures.2013.07.002
https://doi.org/10.1016/j.erss.2014.02.001
https://doi.org/10.1016/j.cosust.2018.04.003
https://doi.org/10.1016/j.agsy.2018.01.002
https://doi.org/10.3390/su10051646
https://doi.org/10.1016/j.gloenvcha.2017.06.006
https://doi.org/10.1016/j.envsci.2016.12.018
https://doi.org/10.1016/j.gloenvcha.2016.01.002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	One Swallow Does Not Make a Summer: Siloes, Trade-Offs and Synergies in the Water-Energy-Food Nexus
	Introduction
	Governing the Nexus of Water, Energy and Food: The Case of Wastewater Reuse in Agriculture
	Planetary vs. Administrative Scale Perspectives of Environmental Change
	Trade-Off Analysis and Rebound Effects of Water-Energy-Food Interactions
	Synergies: A Function of Legal and Policy Frameworks
	Coupling Bio-Physical and Institutional Models of Water-Energy-Food Interactions
	Methodologies for Evaluating Nexus Typologies of Resource Recovery and Reuse

	Monitoring Sustainable Development Goal (SDG) Target 6.3 on Wastewater Reuse: Method, Data and Applications of Agent Based MODELING
	Translating a Policy Concern Into a Researchable Question
	Inter-operability of Monitoring Instruments
	Wastewater Reuse and Associated Trade-Offs
	Lessons From Pilot-Testing a Composite Index for SDG 6.3
	Aggregation and Synthesis of Bio-Physical and Institutional Data on Effective Reuse
	Assigning Weights for Index Components: The Role of Expert Opinion
	Global Monitoring Methodology That Incorporates Benchmarking and Scenarios


	Political Economy of Public Decision Making in the Water-Energy-Food Nexus
	Interdependencies Based on Characteristics of Public Infrastructure
	Differential Outcomes of Policy and Legal Instruments; The Role of Administrative Culture and Incentives
	Financing Decisions and Institutional Risk Thresholds
	Design of Field Trials for Impact Evaluations of Food Production
	Inaction and Siloes in Public Decision Making
	Enabling the Development and Validation of Coupled Models of Water-Energy- Food Interactions via Place-Based Observatories


	Implications for Global Public Goods Research
	Author's Note
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


