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In iterative ensemble smoother approaches and ensemble methods in general, the

ensemble size governs the accuracy of the parameter estimates obtained. However,

employing large ensembles may be computationally infeasible in applications with

expensive forward solvers. Here, we reduce the computational cost of using large

ensembles in iterative ensemble smoothing through the use of a proxy solver. To correct

the proxy response for the corresponding model error, the latter of which can bias

posterior parameter estimates if left untreated, we propose a local basis approach. With

this approach, the discrepancy between the detailed and proxy solvers is learned for

a subset of the ensemble and collected in a dictionary that grows with each iteration.

For each ensemble member, the K-nearest neighbors in the dictionary are employed to

build an orthonormal basis which is used to identify the model-error component of the

residual by projection. The proposed methodology reduces the effects of overfitting the

data with the proxy solver, but may lead to underfitting of the data in the absence of a

sufficient number of dictionary entries, meaning that the number of ensemble members

relative to the number of detailed-solver runs cannot be inflated arbitrarily. We present

our approach in the context of the ensemble smoother with multiple data assimilations

(ES-MDA) algorithm, and show its successful application to a high-dimensional synthetic

example that involves crosshole ground-penetrating radar (GPR) travel-time tomography.

Keywords: ensemble methods, ES-MDA, proxy model, model error, inversion, uncertainty quantification

1. INTRODUCTION

Inverse problems commonly involve computationally expensive forward solvers and large
numbers of unknown parameters that are spatially distributed. For risk assessment and effective
environmental decision making, parameter uncertainties are required. These can be obtained
through, for example, Bayesian stochastic inversion whereby the corresponding posterior
distributions are typically sampled using Markov-chain-Monte-Carlo (MCMC) methods. The
Bayesian-MCMC framework offers the advantages of providing a natural quantification of
parameter uncertainties, as well as the flexibility to incorporate probabilistic information about
priors and measurement errors into the inverse problem (Robert and Casella, 2004). However,
depending on the forward solver and the dimensionality of the model-parameter space involved,
it can be extremely computationally expensive. In many real-world applications, for example,
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millions of forward model executions may be required to obtain
meaningful posterior statistics with Bayesian-MCMC methods
(Ruggeri et al., 2015). Although several recent modifications to
the standard Metropolis-Hastings algorithm have significantly
improved the computational efficiency of MCMC (e.g., Haario
et al., 2001; Hansen et al., 2012; Cotter et al., 2013; Chen et al.,
2016; Vrugt, 2016; Beskos et al., 2017), these modifications are
often still not enough to make such methods practically feasible
for many inverse problems.

One way to significantly reduce the computational cost of
stochastic parameter estimation is to employ ensemble-based
methods. With such methods, an initial ensemble of model
parameter sets, drawn from the Bayesian prior distribution,
is updated into posterior samples taking into account the
available data. The most popular ensemble-based method is the
ensemble Kalman filter (EnKF) (Evensen, 1994, 2007), which
was developed as a robust sequential data-assimilation technique.
A modification of the EnKF for solving parameter-estimation
problems is the ensemble smoother (ES), whereby all available
data are assimilated in one global update step rather than
sequentially. The underlying equations for both the EnKF and
ES may be derived from Bayesian statistics (e.g., van Leeuwen,
2001; Evensen, 2007). To deal with non-linear problems, iterative
ensemble techniques have been proposed (e.g., Reynolds et al.,
2006; Emerick and Reynolds, 2012b; Elsheikh et al., 2013; Stordal
and Elsheikh, 2015). The ensemble smoother with multiple data
assimilation (ES-MDA) is one of such techniques, in which the
single update step of ES is replaced with a number of smaller
updates (Emerick and Reynolds, 2012a). The large advantage of
ES methods over MCMC for stochastic parameter estimation is
that the executions of the forward solver can be parallelized in a
straightforward manner.

Despite the computational advantages of ensemble methods
over Bayesian-MCMC approaches, it is well known that
large ensembles are required for the most accurate parameter
estimates and predictions (e.g., Buizza and Palmer, 1998;
Chen and Zhang, 2006; Evensen, 2007). As a result, we still
have with ensemble methods the possibility that, for high-
dimensional inverse problems involving expensive forward
solvers, accurately sampling from the posterior distribution
will remain computationally prohibitive. In such cases, the
only solution is to employ an approximate forward solver or
proxy. Generating such a proxy can be achieved by simplifying
the physics of the problem (e.g., Scholer et al., 2012; Josset
et al., 2015a,b), by coarsening the forward model discretization
(e.g., Arridge et al., 2006; Calvetti et al., 2014), or by constructing
a surrogate model based on, for example, polynomial chaos
expansion, Gaussian processes, or neural network techniques
(e.g., Khu and Werner, 2003; Rasmussen and Williams, 2006;
Marzouk and Xiu, 2009; Goh et al., 2013). However, using a proxy
forward solver in the inversion introduces model error, which
has the potential to strongly bias posterior statistics (Laloy et al.,
2013) and can lead to highly overconfident estimates of the wrong
parameters (i.e., posterior collapse) if not accounted for.

To address the issue of model error arising from the
use of proxy models in stochastic inversion, researchers have
typically focused on two general approaches, both of which rely

upon pairs of detailed and proxy solver runs corresponding
to different sets of model parameters. In the first approach,
these pairs are used to construct a global error model, whose
statistics are incorporated into the estimation procedure through,
for example, the Bayesian likelihood function (e.g., Kaipio
and Somersalo, 2007; Lehikoinen et al., 2010; Schoups and
Vrugt, 2010; Evin et al., 2014; Hansen et al., 2014; Smith
et al., 2015; Piccolo and Cullen, 2016; Oliver and Alfonzo,
2018). Although this can be highly effective in some cases, we
have found that the model errors for many inverse problems
exhibit complex behavior that cannot be described in the
same way over the entire parameter space. With the second
approach, the aim is to construct a local error model, which
is generally accomplished through some kind of interpolation
between known model-error realizations (e.g., Kennedy and
O’Hagan, 2001; Xu et al., 2014; Josset et al., 2015a; Cui et al.,
2018). Although doing this effectively addresses the non-global
nature of the model errors, it is implicitly assumed that the
model-response surface is smooth enough for interpolation
to be effective, and problems may arise in regions of the
model parameter space that are not well-sampled by the
model-error realizations.

Recently, Köpke et al. (2018) presented a new approach to
account for model error arising from the use of proxy forward
solvers in Bayesian-MCMC inversion, whereby information
about the error is gathered during the inversion procedure
through occasional runs of the proxy and detailed solvers
together, the results of which are stored in a dictionary. In
contrast to the existing methods mentioned above, the approach
of Köpke et al. (2018) focuses on identifying by projection the
model-error component of the residual through the construction
of a local orthogonal model-error basis, rather than on the
development of a global or local error model. In this paper, we
adapt this methodology for use with ES parameter-estimation
methods. In particular, we incorporate the related ideas into the
ES-MDA algorithm, where for each ensemble member, the local
basis is created using the K-nearest-neighbor (KNN) entries in
the model-error dictionary. Doing this enables us to accurately
solve the parameter-estimation problem using large ensembles,
while at same time reduce computational costs through the use
of a proxy solver.

The paper is organized as follows: In section 2 we begin with
a short review of ensemble methods followed by the presentation
of our approach to account for model error. In section 3, we then
show the results of applying this methodology to the geophysical
inverse problem of estimating spatially distributed radar-wave
slowness from synthetic crosshole ground-penetrating radar
(GPR) travel-time data. In this regard, results are compared
with inversions based on the standard ES-MDA procedure for
reference. Based on these findings, we discuss in section 4 how
our results compare with standard MCMC sampling, the choice
of parameters in our algorithm needed to provide an optimal
balance between computational efficiency and accuracy, as well
as how the inversion results progress as a function of ES-MDA
iteration. Finally, in section 5, we conclude with some general
comments on the methodology and provide directions for future
research in this domain.
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2. METHODOLOGY

2.1. Ensemble Methods
In a generic formulation of the ensemble Kalman filter (EnKF),
the model state vector yn at data assimilation time step n is
updated after the state forecast step. The update from forecast f
to analysis a is carried out using the following equation (Emerick
and Reynolds, 2012a):

yn,aj = y
n,f
j + Kn(dnpert −H(y

n,f
j )), (1)

with Kalman matrix

Kn = C
n,f
YD (C

n,f
DD + Cn

D)
−1. (2)

Here, j = 1, 2, ..., ne, where ne is the number of ensemble

members; C
n,f
YD is the calculated cross-covariance matrix between

the forecast state vector y
n,f
j and the predicted data dnj = H(y

n,f
j )

obtained through the observation operator H(·); Cn,f
DD is the

calculated auto-covariance matrix of the predicted data; Cn
D is

the covariance matrix of the observed-data measurement errors;
and dnpert is the vector of perturbed observations. The latter is
obtained using dnpert ∼ N (dn

obs
,Cn

D), where dn
obs

denotes the
observed data.

The ensemble smoother (ES) is a variation of the EnKF update
formula presented in Equations (1) and (2) that is specifically
formulated for parameter estimation problems. The general
forward problem

dobs = F(mtrue)+ ǫd (3)

links a set of observed data dobs to a set of “true” model
parameters mtrue through the forward operator F(·) with
measurement errors ǫd ∼ N (0,CD). The corresponding ES
update equation is given by (Emerick and Reynolds, 2012a)

ma
j = m

f
j + K(dpert − F(m

f
j )), (4)

with

K = C
f
MD (C

f
DD + CD)

−1. (5)

Here, m
f
j and ma

j denote the forecast and analyzed model-

parameter vectors, respectively, which correspond to an update

from prior to posterior; C
f
MD is the cross-covariance matrix

betweenm
f
j and the predicted data dj = F(m

f
j ); C

f
DD is the auto-

covariance matrix of the predicted data; and dpert ∼ N (dobs,CD)
is again a vector of perturbed observations. The idea with
equations (4) and (5) is that, after defining an initial parameter
ensemble by drawing from the Bayesian prior distribution, the
ensemble members are updated to represent samples from the
posterior distribution in a single analysis step that incorporates
all of the available data.

2.2. The ES-MDA Algorithm
ES offers an efficient tool to solve parameter-estimation problems
under the assumptions that the prior parameter distribution
is Gaussian and the forward operator F(·) is linear. If these
conditions are not satisfied, then ES can lead to unacceptable
data matches and unphysical results (Aanonsen et al., 2009).
To deal with this issue, we focus in this paper on a recent
development by Emerick and Reynolds (2012a), namely the
ensemble smoother with multiple data assimilation (ES-MDA).
With this approach, one standard ES step, which is comparable to
a single Gauss-Newton iteration when maximizing the posterior
probability of the model parameters (Tarantola, 2005), is replaced
by a number of smaller update steps (or assimilation iterations)
based on a Kalman matrix and perturbed data vector that are
recalculated at each iteration. In order to correctly sample from
the posterior distribution, the measurement-error covariance
matrix CD must be inflated in this procedure. Typically this is
done by scaling CD by the number of assimilation iterations;
however, more generalized inflation coefficients may be used
(Emerick and Reynolds, 2012a). For linear forward solvers, the
ES-MDA algorithm is theoretically equivalent to standard ES
(Emerick and Reynolds, 2012b). For non-linear problems, it can
be shown that the methodology has links to annealed importance
sampling (Stordal and Elsheikh, 2015).

Algorithm 1 outlines the steps involved in the ES-MDA
procedure where, for simplicity, the measurement-error
covariance matrix is assumed diagonal with entries σ

2 and
the corresponding inflation coefficient α is set to equal the
number of assimilation iterations niter . To estimate the inverse
of matrix (CDD + α · CD) we use the truncated singular value
decomposition (TSVD) and retain 99% of the total energy of the
singular values (Emerick and Reynolds, 2012a).

Algorithm 1: Standard ES-MDA

1 set CD = σ
2 I; α = niter

2 draw prior ensemblem containing ne sets of model
parameters

3 for i = 1, ..., niter do
4 perturb observations dpert ∼ N (dobs,α · CD)
5 for j = 1, ..., ne do
6 compute predicted data dj = F(mj)
7 end

8 compute Kalman matrix K = CMD · (CDD + α · CD)
−1

9 for j = 1, ..., ne do
10 compute residual rj = dpert − dj
11 update ensemblemj = mj + K rj
12 end

13 end

2.3. Model Error
When working with a perfectly known forward solver F(·)
in the ES-MDA procedure outlined above, the residual rj
corresponding to the jth ensemble member mj, which quantifies
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the misfit between the perturbed observations and the predicted
(forward-calculated) data, is given by

rj = dpert − F(mj)

= F(mtrue)− F(mj)
︸ ︷︷ ︸

parameter-error
component

+ ǫ̃d, (6)

where ǫ̃d denotes the sum of the measurement errors and
perturbation noise. In the case where mj = mtrue, we see from
Equation (6) that the parameter-error term, which represents the
component of the residual related to being at the wrong set of
model-parameter values, will be zero and that the residual energy
will tend to be minimized. In the case where a proxy forward
solver F̂(·) is used in the ES-MDA algorithm, however, the latter
does not generally hold true because

rj = dpert − F̂(mj)

= F(mtrue)− F̂(mj)+ ǫ̃d

= F(mtrue)− F(mj)
︸ ︷︷ ︸

parameter-error
component

+ F(mj)− F̂(mj)
︸ ︷︷ ︸

model-error
component

+ ǫ̃d. (7)

Indeed, the presence of an additional model-error component in
Equation (7) compared to Equation (6) means that the residual
energy may be minimized for model parameter vectors mj that
are substantially different from mtrue, as such parameter sets
well tend to compensate for the model errors. As mentioned
previously, this can lead to strongly biased and overconfident
posterior statistics.

In order to deal with model error in the ES-MDA procedure
arising from use of a proxy solver, we build on the methodology
presented in Köpke et al. (2018) for Bayesian-MCMC inversion,
which focuses on identifying the model-error component of
the residual using a projection-based method. We refer the
reader to that paper for details beyond those given here.
Algorithm 2 outlines the steps involved in our modified ES-MDA
methodology, again assuming that α = niter and CD = σ

2 I

for simplicity, where I is the identity matrix. In addition we
introduce nd, defined as the number of detailed solver runs used
to learn about the model error, and set it to a value to less than or
equal to the number of ensemble members ne.

In themodified ES-MDA algorithm, initial ensemblemembers
mj are drawn from the prior parameter distribution and the

corresponding predicted data d̂j = F̂(mj) are computed using
the proxy solver. In each assimilation iteration, a subset of
the ensemble members having size nd is randomly chosen, for
which the detailed forward responses dj = F(mj) are also

calculated. The resulting nd model-error vectors (i.e., dj− d̂j) and
corresponding parameter setsmj are stored in the dictionariesD

E

and DM , respectively. As DM and DE are further enriched with
nd entries in each ES-MDA iteration, more detailed information
about the model error around the posterior solution is gathered.

For each ensemblemembermj, themodel-error component of
the residual is identified and used to correct the proxy response
in order to mimic the detailed forward solver. To this end,

the current model-parameter dictionary DM is searched for
the K-nearest-neighbor (KNN) parameter sets to mj using a
standard Euclidean distance measure (e.g., Hastie et al., 2009).
An orthonormal basis Bj for the model error at mj is then
constructed from these parameter sets using the Gram-Schmidt
technique (e.g., Strang et al., 1993). We assume in our work that
the data-measurement-error and parameter-error components of
the residual are orthogonal to the model-error component, and
therefore cannot be well represented by the basis. An estimate
of the model error ẽj is thus obtained by projecting the residual
onto Bj

ẽj = Bj · BT
j · rj. (8)

This result, which represents the details missing in the proxy
solution, is then added to the proxy response to obtain a corrected
forward response

d̃j = d̂j + ẽj (9)

with corresponding corrected residual

r̃j = dpert − d̃j. (10)

The corrected forward responses for all of the ensemble members
are used to compute the corrected Kalman matrix

K̃ = CMD̃ · (CD̃D̃ + α · CD)
−1 (11)

which is used with the corrected residuals to update the ensemble.
Under the stated assumptions and with appropriate choices

of ne, nd, and K, Algorithm 2 allows us to effectively reduce
the computational cost of ES-MDA when considering large
ensembles through the use of a proxy solver. The dimensionality
of the parameter-estimation problem and the difference in
computational cost between the proxy and detailed forward
solutions determine how much computational benefit is derived
from this methodology.We refer the reader to Köpke et al. (2018)
for a detailed discussion of the orthogonality assumption between
the model-error and other components of the residual.

3. APPLICATION TO CROSSHOLE GPR
TOMOGRAPHY

3.1. Experimental Design and Forward
Models
As an example, we now apply our modified ES-MDA algorithm
with model-error correction to the crosshole GPR travel-
time tomography inverse problem. A transmitter and receiver
antenna, located in two adjacent boreholes, are used to obtain
the travel times of radar energy between the holes for different
antenna positions. These times are linked to the spatial
distribution of subsurface radar-wave velocity, the estimation of
which is the goal of the inverse problem. Crosshole GPR travel-
time tomography represents an excellent test problem for our
purposes because (i) it has been extremely well-studied, most
notably from a stochastic inverse standpoint (e.g., Giroux et al.,
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Algorithm 2: ES-MDA with model-error correction

1 set CD = σ
2 I; α = niter ; nd ≤ ne; l = 0

2 draw prior ensemblem containing ne sets of model
parameters

3 for i = 1, ..., niter do
4 perturb observations dpert ∼ N (dobs,α · CD)
5 select random subsetmr ofm with r = 1, ..., nd
6 for j = 1, ..., ne do
7 compute predicted data using proxy solver

d̂j = F̂(mj)
8 if mj ∈ mr then

9 l = l+ 1
10 compute predicted data using detailed solver

dl = F(mj)

11 enrichmodel-error dictionaryDE
l
= dl − d̂j

12 enrich corresponding model-parameter dictionary

DM
l

= mj

13 end

14 end

15 for j = 1, ..., ne do

16 search dictionaryDM for K-nearest neighbors tomj

17 take corresponding entries fromDE and place in set

DK(mj)

18 build orthonormal basis B having span{DK(mj)}
19 compute residual rj = dpert − d̂j
20 project rj onto B to estimate model error

ẽj = B · BT · rj
21 correct proxy response d̃j = d̂j + ẽj
22 end

23 compute Kalman matrix K̃ = CMD̃ · (CD̃D̃ + α · CD)
−1

24 for j = 1, ..., ne do

25 compute residual r̃j = dpert − d̃j

26 update ensemblemj = mj + K̃r̃j
27 end

28 end

2007; Looms et al., 2008; Scholer et al., 2012; Hansen et al.,
2013; Linde and Vrugt, 2013); (ii) it involves a high-dimensional
and spatially distributed set of model parameters that must be
estimated; and (iii) the forward problem can be solved in a variety
of different ways using different physical approximations.

GPR travel times are linked to the spatial distribution of
electrical properties between the two boreholes, predominantly
the dielectric permittivity, through Maxwell’s equations.
Numerical solution of these equations represents the most
accurate means of calculating the travel times, but at the same
time it is highly computationally expensive. To reduce the
computational cost, the physics of the electromagnetic wave
propagation can be approximated using ray theory, whereby
the effects of frequency are ignored and we solve the eikonal
equation (e.g., Nowack, 1992). To decrease the computational
cost even further, the straight-ray approximation may also

be considered, which means that the ray paths that connect
transmitter and receiver locations are assumed to be straight
lines (e.g., Cordua et al., 2008). The latter approximation is
typically applied in cases where contrasts in velocity do not
exceed 10%; however it is only truly valid when the subsurface
is homogeneous. Here, we consider the eikonal equation
to be our detailed forward solver F(·) and the straight-ray
approach to be our proxy solver F̂(·). This choice was made
for demonstration purposes, as it allows us to compare the
results of ES-MDA inversions obtained using our approach to
those obtained using standard ES-MDA, as well as MCMC,
based on the detailed solver alone. That is, the eikonal solution
is fast enough to allow it to be used in the standard ES-MDA
algorithm with a large number of ensemble members, as
well as for MCMC posterior sampling. Note that, instead
of estimating directly velocity from GPR travel times in our
analysis, we focus on the estimation of subsurface slowness (the
reciprocal of velocity) which makes the straight-ray forward
problem linear.

The survey configuration for our synthetic experiments
consists of two boreholes that are 8-m deep and 4-m apart
(Figure 1). Transmitter and receiver antenna positions are
distributed equally in depth every 0.2 m down the left and right
boreholes, respectively. Sending a radar pulse from all transmitter
positions to all receiver positions yields 1,600 travel-time data.
We consider a pixel-based parameterization of the subsurface
whereby the region between the boreholes by discretized into
20 × 40 square cells of constant-slowness and side length
0.2 m. The synthetic “true” subsurface and initial prior ensemble
members are generated by sequential Gaussian simulation using
the GSLIB software package (Deutsch and Journel, 1992). The
mean slowness is set to 10 ns/m and an exponential auto-
covariance kernel having a standard deviation of 1.7 ns/m
is assumed, with horizontal and vertical correlation lengths
of 6 m and 1.5 m, respectively. The corresponding synthetic
observed data are generated by solving the eikonal equation and
adding measurement errors, the latter of which are simulated as
Gaussian randomnoise having covariancematrixCD = σ

2 Iwith
standard deviation σ = 0.2 ns.

3.2. ES-MDA Results
Our goals in this analysis are to (i) study the effects of model
error on ES-MDA inversions; (ii) investigate the influence of
the ensemble size on the accuracy of the results obtained;
and (iii) explore how the parameters of our modified ES-
MDA procedure with model-error correction can be chosen to
provide an optimal balance between computational efficiency
and accuracy. To this end, we compare parameter-estimation
results for different numbers of ensemblemembers when (i) there
is no model error, meaning that the detailed (eikonal-equation)
forward solver is used within the standard ES-MDA procedure
(Algorithm 1); (ii) model error is present but not accounted
for, meaning that the proxy (straight-ray) forward solver is used
within the standard ES-MDA procedure; and (iii) model error
is present and accounted for through the use of Algorithm 2. In
each case, we examine the combined results from 10 ES-MDA
inversions obtained using different initial ensembles and niter =
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FIGURE 1 | Considered crosshole GPR survey configuration with boreholes

shown as black lines. Transmitter and receiver positions are shown as white

dots and distributed every 0.2 m down the boreholes.

8 assimilation iterations. Ensemble sizes of ne = 20, 40, 80, 160,
320, and 640 are considered in our analysis.

To assess the quality of the inversion results, we consider two
metrics. The average root-mean-square (RMS) travel-time misfit,
which quantifies globally the ability of the posterior ensemble
to represent the observed data, is defined for ES-MDA run i
(i = 1, 2, ..., 10) as follows:

MT
i = 1

ne

ne∑

j=1

1
√
nT

∥
∥dobs − di,j

∥
∥
2
. (12)

where nT is the number of travel-time data. For the case where
model error is absent and data errors are zero-mean andGaussian
distributed with covariance matrix CD = σ

2I, the expected value
of MT

i will be σ . Note that, in the case where model error is
present but not accounted for, the detailed forward solver di,j in

equation (12) is replaced with the proxy solver d̂i,j.
We also consider in our analysis the average RMS slowness

misfit, defined by

MS
i =

1

ne

ne∑

j=1

1
√
nT

∥
∥mtrue −mi,j

∥
∥
2
, (13)

where nS is the number of slowness cells. This metric quantifies
how well the posterior ensemble captures the true underlying
model parameters, and can only be employed in the case of
synthetic data where the true subsurface slowness distribution is
known. In addition to the twometrics in Equations (12) and (13),
we plot the mean slowness fields over all ensemble members and

all ES-MDA runs in order to visually compare them with the true
slowness distribution.

Figure 2 summarizes the parameter-estimation results
obtained for the case where there is no model error. In Figure 2A

we observe that the average RMS travel-time misfit decreases
consistently with larger numbers of ensemble members toward
the expected value of σ = 0.2 ns which reflects the prescribed
data errors. After around 320 ensemble members, adding
more members is seen to only slightly further improve the
results. Figure 2B shows that the slowness misfit also decreases
consistently as a function of ensemble size. This is supported
by Figure 2C, which shows that the mean slowness fields
become increasingly detailed and similar to the true subsurface
distribution as the number of ensemble members increases.
The increasing overall accuracy of the ES-MDA results with
larger ensemble size is based on the reduction of sampling
errors following the central limit theorem (Evensen, 2007).
We can conclude that larger ensembles combined with the
detailed forward solver enable us to obtain more reliable
posterior parameter estimates, but at the cost of significantly
greater computational effort when the detailed solver is
computationally expensive.

Figure 3 summarizes the parameter-estimation results
obtained for the case where model error is present but not
accounted for. In Figure 3A we observe that, in accordance
with Figure 2A, the travel-time misfit consistently decreases
with larger ensemble size. However, it approaches a stable
value that is well above the target value of σ = 0.2 ns, because
the presence of model error does not allow data fitting to a
level that is in accordance with the prescribed data errors.
In addition, unlike in Figure 2B, the slowness misfit now
decreases only until ne = 40, after which it increases again
(Figure 3B). For ne ≤ 40, we do not have enough ensemble
members to resolve the details of the posterior distribution
and therefore only the posterior mean can be represented in
the parameter estimation results (Chen and Zhang, 2006).
Conversely, when ne > 40, the solution moves toward a biased
posterior distribution. That is, with more ensemble members
the parameters have the ability to compensate for the model
error and the data become over-fitted, meaning that a better
data match is achieved but the parameters do not represent the
true subsurface model. The mean slowness fields in Figure 3C

allow us to see how the model error introduces bias in the
parameter-estimation results as ne increases; strong artifacts are
clearly observed in these fields for ensemble sizes larger than
160.

Finally, we examine the inversion results obtained for the
case where model error is present and accounted for through
our modified ES-MDA approach. We first consider inversions
where nd = 20 detailed solver runs per iteration are used
to build the model-error dictionary and K = 20 KNN from
this dictionary are used to construct the model-error basis for
each ensemble member. The corresponding results are shown in
Figure 4. Note that, in the case with ne = 20, the detailed solver
is executed for each ensemble member, which corresponds to the
standard ES-MDA procedure in Algorithm 1. In Figures 4A,B

we see that both the travel-time and slowness misfit decrease
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FIGURE 2 | Results of 10 standard ES-MDA runs for the case of no model error. Shown as a function of the number of ensemble members, ne, are (A) box plots of

the average RMS travel-time misfit [ns]; (B) box plots of the average RMS slowness misfit [ns/m]; and (C) the mean posterior slowness fields [ns/m]. Added to the box

plots are the mean (circles), and minimum and maximum values (crosses). The dashed horizontal line in (A) represents the expected value of the travel-time misfit

assuming that the residuals follow the prescribed Gaussian distribution for the data errors.

from ne = 20 until they reach a minimum at around 80–160
ensemble members. This demonstrates that the consideration
of larger ensembles through use of a proxy solver combined
with our model-error correction can lead to more accurate

results compared to standard ES-MDA based on small ensembles
and the detailed forward solver. These results are confirmed in
Figure 4C, where we observe that the bias is largely removed
from the mean slowness fields for ne ≤ 160 in comparison to
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FIGURE 3 | Results of 10 standard ES-MDA runs for the case where model error is present but not accounted for. Shown as a function of the number of ensemble

members, ne, are (A) box plots of the average RMS travel-time misfit [ns]; (B) box plots of the average RMS slowness misfit [ns/m]; and (C) the mean posterior

slowness fields [ns/m]. Added to the box plots are the mean (circles), and minimum and maximum values (crosses). The dashed horizontal line in (A) represents the

expected value of the travel-time misfit assuming that the residuals follow the prescribed Gaussian distribution for the data errors.

Figure 4C. However, for ensemble sizes larger than around 160,
the travel-time and slowness misfit are seen to again increase,
meaning that the data become under-fitted. That is, the ensemble
size becomes too large compared to the number of detailed solver

calculations for the model error to be well represented in the
dictionary, meaning that projection onto the model-error basis
will not properly identify the model-error component of the
residual. This has the effect of introducing bias into the inversion
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FIGURE 4 | Results of 10 runs of our modified ES-MDA algorithm to account for model error, with 20 detailed solver calculations and 20 KNN. Shown as a function of

the number of ensemble members, ne, are (A) box plots of the average RMS travel-time misfit [ns]; (B) box plots of the average RMS slowness misfit [ns/m]; and (C)

the mean posterior slowness fields [ns/m]. Added to the box plots are the mean (circles), and minimum and maximum values (crosses). The dashed horizontal line in

(A) represents the expected value of the travel-time misfit assuming that the residuals follow the prescribed Gaussian distribution for the data errors.

results, which is clearly seen in the mean slowness fields in
Figure 4C when ne > 160.

To explore the latter findings, we consider again Algorithm 2,
but this time using nd = 40 detailed solver runs per iteration and

K = 40 KNN to build the model-error dictionary and construct
the model-error basis, respectively. Here, when ne = 40, the
detailed solver is executed for each ensemble member, which
again corresponds to the standard ES-MDA procedure. Similar
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FIGURE 5 | Results of 10 runs of our modified ES-MDA algorithm to account for model error, with 40 detailed solver calculations and 40 KNN. Shown as a function of

the number of ensemble members, ne, are (A) box plots of the average RMS travel-time misfit [ns]; (B) box plots of the average RMS slowness misfit [ns/m]; and

(C) the mean posterior slowness fields [ns/m]. Added to the box plots are the mean (circles), and minimum and maximum values (crosses). The dashed horizontal line

in (A) represents the expected value of the travel-time misfit assuming that the residuals follow the prescribed Gaussian distribution for the data errors.

to before, we observe in Figures 5A,B that the travel-time and
slowness misfit decrease from ne = 40 until a minimum is
reached. Although it is difficult to determine the exact position

of this minimum due to the limited discretization, we see that
it falls somewhere around 160 ensemble members. After the
minimum value, the travel-time and slowness misfit are again
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seen to increase and the data become under-fitted. This behavior
is well reflected in the mean slowness fields in Figure 5C, which
show good agreement with the true field for ne ≤ 320, but clearly
contain model-error-related artifacts when ne = 640.

4. DISCUSSION

We saw above that use of the modified ES-MDA approach
described in Algorithm 2 can allow for a significant reduction in
posterior bias when employing a proxy forward solver compared
to the standard ES-MDA procedure. This offers the possibility
of considering large ensemble sizes within ES-MDA, which can
be computationally prohibitive in the context of an expensive
detailed forward solver. One issue requiring further discussion,
however, is the balance between (i) the number of ensemble
members considered ne, which in the case of no model error
controls the accuracy of the results obtained; and (ii) the number
of detailed solver runs nd, which determines the success of the
model-error correction. We saw in Figure 4 that, when nd = 20
detailed solver runs per iteration were considered in the modified
ES-MDA procedure, use of ensemble sizes between 40 and 160
allowed for an improvement in parameter estimates compared
to standard ES-MDA based on the detailed solver with ne =
20. When nd = 40 detailed solver runs per iteration were
considered, on the other hand, a corresponding improvement
was found for ensemble sizes between 80 and 320. These results
suggest that, at least for the application presented in this paper,
Algorithm 2 can be successfully applied only for ensembles
having size less than 8 times the number of detailed solver runs
per iteration. Past this number, there will not be enough entries
in the model-error dictionary to allow for an accurate correction
of the model error for all ensemble members, and the benefits
of using an approximate solver with model-error correction will
be compromised. Further exploration of these findings in the
context of other inverse problems is required.

Another issue in need of some discussion is how the results of
using the standard and modified ES-MDA algorithms presented
in Figures 2–5 compare with samples from the “true” posterior
distribution, the latter of which we assume to be available through
MCMC sampling based on the detailed forward solver. To
this end, we show in Figure 6 five randomly chosen posterior
slowness realizations obtained via MCMC sampling based on
the eikonal equation (Figure 6A); standard ES-MDA based
on both the eikonal equation and straight-ray approximation
(Figures 6B,C); and our modified ES-MDA procedure with nd =
20 and nd = 40 (Figures 6D,E). The point-wise posterior mean
and standard deviation, computed over all available samples,
are also shown for reference. The results in Figure 6A were
obtained using the sequential geostatistical simulation technique
(e.g., Ruggeri et al., 2015), where after burn-in, the results of
140,000 MCMC iterations were thinned to provide 140 posterior
samples. For Figures 6B–E, the number of ensemble members
considered was chosen to be the maximum investigated value
(ne = 640) for standard ES-MDA, whereas for our modified ES-
MDA procedure it was set equal to 8 times the number of detailed
solver runs, as discussed above.

In comparing the posterior realizations in Figures 6A,B,
we see that they are highly similar, which suggests that ES-
MDA based on the detailed forward solver and using a large
number of ensemble members allows for adequate sampling of
the Bayesian posterior distribution. The corresponding standard
deviation images generally show a pattern that reflects the
degree of ray coverage; regions of higher slowness contain a
smaller ray density. However, the ES-MDA solution is seen to
contain more variability, which may arise because the 140,000
MCMC iterations utilized were not enough to adequately explore
the posterior space. In examining the stochastic realizations
in Figure 6C, the proxy-related bias in this solution is clearly
apparent. Here, the symmetric pattern of variability reflects
variations in ray density that are controlled solely by the antenna
locations in the straight-ray case. Finally, in comparing the
results in Figures 6D,E with those in Figure 6A, we see that our
modified ES-MDA algorithm largely removes the proxy-related
bias and allows for the generation of posterior samples that are
close in appearance to the MCMC solution, which again validates
our approach. These samples do, however, show a slightly
higher degree of variability with less correlation compared to
Figures 6A,B, with the nd = 40 solution providing a better
match than the nd = 20 solution. As discussed above, with a
fixed number of detailed solver runs per iteration, there is an
upper limit to the number of ensemble members that can be
effectively considered in our procedure, which in turn may not
be enough to characterize exactly the posterior distribution (see
Figure 2). More accurate results would thus likely require greater
numbers of detailed solver runs to allow for an increase in the
ensemble size. The higher degree of variability in these results
may also reflect imperfect removal of the model error, or the
lesser number of samples used to compute the point-by-point
mean and standard deviation.

Lastly, we wish to elaborate on the number of internal ES-
MDA assimilation iterations considered in our approach, which
was held constant at a value of niter = 8 for all of the results
presented section 3.2. To this end, we study in Figure 7 the
travel-time and slowness misfit as a function of iteration for
an ensemble size of ne = 160 when (i) no model error is
present; (ii) model error is present but not accounted for; and
(iii) model error is present and accounted for using nd =
40 detailed solver runs per iteration and K = 40 KNN.
We observe overall that the first assimilation iteration has the
largest influence on reducing the travel-time and slowness misfit
from prior to posterior. This arises because of the linearity
of the proxy (straight-ray) solver and the weak non-linearity
of the detailed (eikonal) solver in our travel-time tomography
application. Indeed, Emerick and Reynolds (2012b) proved that,
for linear problems, one ES update using the measurement noise
covariance matrix is equivalent to multiple ES-MDA updates
using the inflated covariance matrix. When using the detailed
solver in the inversion where there is no model error, for
example, Figures 7A,D show a large decrease in travel-time and
slowness misfit after one iteration and a slow decrease from
iterations 2–8. In this case 4 iterations would be enough to
obtain similar parameter-estimation results to those obtained
using 8 iterations.Whenmodel error is present but not accounted
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FIGURE 6 | Five randomly chosen posterior slowness realizations along with the point-wise mean and standard deviation [ns/m] obtained via (A) MCMC sampling

based on the detailed eikonal solver (140 samples total); (B) standard ES-MDA based on the detailed eikonal solver with ne = 640 (Figure 2; 6,400 samples total);

(C) standard ES-MDA based on the proxy straight-ray solver with ne = 640 (Figure 3; 6,400 samples total); (D) our modified ES-MDA algorithm with 20 KNN,

nd = 20, and ne = 160 (Figure 4; 1,600 samples total); and (E) our modified ES-MDA procedure with 40 KNN, nd = 40, and ne = 320 (Figure 5; 3,200 samples

total).

for, we see in Figure 7B that a good travel-time data match
is achieved and no further improvement is observed after one
iteration. However, Figure 7E shows that the corresponding
slowness misfit is still large after one iteration compared to
Figure 7D, which arises because of overfitting; that is, the
inversion attempts to fit the model error. Applying our proposed
method, we see in Figure 7C that the travel-time misfit is again
primarily reduced in the first iteration and behaves similarly to
the case where no model error is present (Figure 7A). More
importantly, over-fitting is significantly reduced (Figure 7F)
and the slowness misfit after only 4 iterations is similar to
that seen in Figure 7B. This again confirms that employing
our proposed approach can effectively remove proxy-related
bias and allow the ES-MDA procedure to yield results that
are comparable to inversions when no model error is present.

Although it may be possible to arrive at these results in less
iterations than the 8 considered in this paper, it is difficult to
know in advance how the combined approach of proxy solver
and model-error correction behaves in terms of the internal
ES-MDA iterations.

5. CONCLUSIONS

We have presented in this paper an approach that builds on
the work of Köpke et al. (2018) in order to remove the bias
associated with the use of proxy forward solvers in ES-MDA
inversions. This allows for the consideration of larger ensemble
sizes, which help to improve the accuracy of the parameter
estimates obtained. Instead of constructing a local or global error
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FIGURE 7 | Box plots showing the results of 10 ES-MDA runs using 160 ensemble members, as a function of the number of assimilation iterations, for the cases of

(A,D) no model error; (B,E) model error present but not accounted for; and (C,F) model error present and accounted for using Algorithm 2 with 40 detailed solver

calculations and 40 KNN. Added to the box plots are the mean (circles), and minimum and maximum values (crosses). The dashed horizontal line in (A–C) represents

the expected value of the travel-time misfit assuming that the residuals follow the prescribed Gaussian distribution for the data errors.

model, our approach importantly aims to identify the model-
error component of the residual during the ES-MDA procedure,
which is used to correct the proxy forward response. This is
accomplished through construction of an orthonormal model-
error basis for each ensemble member and at each iteration based
on a prescribed number of KNN entries selected from a model-
error dictionary. The latter is created as the inversion proceeds,
and thus no prior information about the model error is required
before running the procedure.

With regard to the considered example problem of estimating
the spatial distribution of subsurface slowness from crosshole
GPR travel times, we saw that our modified ES-MDA approach
allows us to obtain accurate posterior estimates characteristic
of large ensembles with a computational cost comparable to a
small number of runs of the detailed forward solver. The results
did show, however, that the success of the approach depends
on the ratio between the number of ensemble members and the
number of detailed solver runs per iteration used to learn about
themodel error. In particular, for the crosshole GPR tomographic
example considered, this ratio should not exceed a value of
approximately 8.

Despite the successful application of our model-error
approach, there remain a number of topics that should be
investigated further. For example, in the work presented here,
we set the number of KNN equal to the number of detailed
solver runs per ES-MDA iteration used to learn about the model

error. In this case, the same model-error basis is constructed
in the first iteration for each ensemble member. In subsequent
iterations and with a growing dictionary, for each ensemble
member the KNN are used to extract local information about
the model error from the model-error dictionary and a local
model-error basis is calculated, respectively. However, this choice
could be validated and optimized to improve the identification of
the model-error component of the residual. Further, we assume
with our method that the latter is approximately orthogonal
to the data-measurement and parameter-error components,
which allows for its identification using a projection approach.
Although we have found this assumption to yield acceptable
results for a range of test problems examined so far, it requires
further investigation.
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