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The study aimed to investigate the most usable drinking water sources quality and

the dependent population’s exposure to potentially contaminated water. The specific

area chosen for the study was the coastal area in Satkhira district’s Tala Upazila.

Six hundred and fourty nine most usable drinking water sources were selected, that

included Deep Tubewell (DTW), Shallow Tubewell (STW) and Pond Sand Filter (PSF) for

drinking water sampling. Following standard sampling procedures, in-situmeasurements

were taken for seven important water quality parameters: Arsenic-As, Iron-Fe, Electrical

Conductivity-EC, Temperature-Temp, Total Coliform- TC, E-coli, and Fecal Coliform-FC.

In addition, semi-structured questionnaire surveys were conducted at corresponding

dependent households (HH). Weighted arithmetic water quality index (WQI) was used

to calculate the suitability of the derived water for drinking purposes. In the tested water

sources, As, Fe and EC range were found 0–500 µg/L, 0–18 mg/L, and 165–8,715

µS/cm, respectively. Of all the tested water sources, 74% exceeded the permissible limit

for As, 83% for Fe and 99% for EC, according to WHO standards. Comparatively higher

percentages of Point of Uses (PoU) were found to be more contaminated than Point of

Sources (PoS), such as TC found in 38% PoS and 54% of corresponding PoU, E. coli

found in 24% PoS and 35% of PoU and FC found in 45% PoS and 55% of PoU. WQI

suggested that themajority (72%) of most usable drinking water sources were found to be

unsuitable for drinking. Thus, 40% of the population (0.12 million) in the study area were

directly consuming contaminatedwater. Dependent householdmembersmost frequently

suffered from fever, diarrhea and high blood pressure, resulting in the average household

spending USD 3–13 per month/HH for health-related expenditures, which is higher than

national average. To acquire safe drinking water, the majority (58%) of the dependent HH

expressed willingness to pay USD 1 per month/ HHwhich is costly for them. The situation

can be improved by installing a deep tube well for safe drinking water, periodically

testing the water quality, educating the public for better hygiene practices, and providing

entrepreneurial incentives to help deliver safe water to the public at lower cost.

Keywords: water quality, most usable water sources, dependent households, water quality index, population

exposed, coastal area
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INTRODUCTION

The hydrological system in the coastal area is influenced by
seawater and hydro-geochemical processes that are leading to
deteriorating drinking water quality in groundwater systems
(Chidambaram et al., 2018). In the tidal delta plain of
south-western Bangladesh, high salinity and Arsenic (As)
concentrations in groundwater is a widespread problem (Ayers
et al., 2016). Safe drinking water is one of the most essential
requirements for a healthy population of people (Hossain et al.,
2014). Groundwater is the principal source of potable drinking
water for a significant percentage of the world’ population,
groundwater is considered safer to drink in comparison to
surface water (Singh et al., 2012). Groundwater is also an
important natural resource for domestic and industrial water
supply as well as agricultural purposes (Shrivastava et al.,
2014). In Bangladesh, about 130 million people (97% of total
population) obtain water from 10 million tube wells (TW)
(Mukherjee and Bhattacharya, 2001; van Geen et al., 2003; Yu
et al., 2003; Hossain et al., 2014). Most of the people are often
drinking untreated groundwater, which is a critical public health
risk. Therefore, providing a solution for safe and drinkable
groundwater in Bangladesh is an environmental health issue
of the highest priority (Bhattacharya et al., 1997). In several
Asian countries, including Bangladesh and West Bengal (an
adjacent Indian state), toxic elemental (e.g., As) concentration in
groundwater and its impact on human health has been widely
researched (Bhattacharya et al., 2002; Yu et al., 2003; van Geen
et al., 2008; Das et al., 2009; Shrivastava et al., 2014; Ghosh et al.,
2017), and it is considered the largest andmost important societal
and environmental problem in this region of the world at the
current time (Kapaj et al., 2006).

Groundwater with high concentrations of geogenic arsenic
(As) occurs naturally (Kapaj et al., 2006) and extensively in
the Holocene alluvial aquifers of Bangladesh (von Brömssen
et al., 2006). Biogeochemical and hydrologic processes at these
groundwater sites are presently affecting human activity (Fendorf
et al., 2010), as carcinogenic levels of dissolved As are seeping
into the groundwater system (van Geen et al., 2008). High
As concentration in groundwater is recognized as a severe
environmental problem in many parts of the world, because of
the potential risk when consumed. An estimated 150 million
people in more than 70 countries around the world are at
risk of developing serious health problems due to high As
concentration in their drinking water (Rahman et al., 2000;
Bhattacharya et al., 2002; Ravenscroft et al., 2005; Ahmed et al.,
2006; Kapaj et al., 2006). Bangladesh is one of the most severely
affected countries from As contamination because most of the
population depends on groundwater as their main sources of
drinking water, domestic water supplies, and other vital areas.
Because of this, As has been identified as a serious public
health concern in affected areas, such as Bangladesh (Lokuge
et al., 2014; Hossain, 2015). A national survey conducted by
BBS/UNICEF (2011) in 2009 reported that about half of the
population (53 million) in Bangladesh are exposed to elevated
As concentration in their drinking water from groundwater

systems found in 322 upazilas under 61 districts (out of 64 total
districts) in Bangladesh. In Bangladesh and West Bengal, high
As concentrations occur most commonly in shallow aquifers at
depths <100m (Bhattacharya et al., 1997; Ahmed et al., 2004;
Biswas et al., 2014; Hossain et al., 2015; Mahmud et al., 2017).
Several actions have already been taken to provide access to
safe drinking water in As contaminated areas of Bangladesh
through the installation of tube wells (TWs) at targeted deeper
depth aquifer (von Brömssen et al., 2006). Most of the tube
wells are classified as deep tube well (DTW) because their depth
typically goes beyond 150m. TW water has been shown to
significantly reduce the incidence of diarrheal diseases and sub-
sequent mortality in Bangladesh, because it provides access to
water with a lower concentration of As (Dey et al., 2017b). TW
water has achieved remarkable success in the supply of safe
drinking water (Hossain et al., 2015), even though in many areas,
people are still using As contaminated well water for drinking.
Escherichia coli (E. coli) and thermo-tolerant (Fecal) coliforms
(FC) bacteria are index organisms as microbial contaminants in
drinking water. Measures of E. coli and FC in drinking water
are important indicators for fecal contamination, water borne
pathogens, and the level of health risk in drinking water (Gruber
et al., 2014). Additionally, Water Quality Index (WQI) is one
of the most effective tools used to determine the suitability
of drinking water. WQI uses a rating reflection of composite
influence of different water quality parameters. The calculated
rating value is used to classify water quality and contamination
level in both surface and groundwater. WQI was first developed
by Horton in 1965. Since then, this tool has been used as a
comprehensive guideline for water resource management and
policies (Yisa and Jimoh, 2010).

The southern part (coastal areas) of Bangladesh
(approximately 29,000 km2) makes up about 20% of Bangladesh’s
total land area. This coastal area is specially affected by high
tidal waters, salinity intrusions, and cyclones/storm surges, etc.
(MoWR, 2005). Saline water intrusions significantly affect the
hydro-chemical composition of aquifer water (Chidambaram
et al., 2018), and 53% of the aquifers in the coastal region
of Bangladesh are affected by Bay of Bengal—saline water
intrusion (MoFDM, 2005). As well as that, shallow aquifers
in Meghna river basins and coastal plains are extremely
As enriched, as more than 80% TW are considered As
contaminated (Ahmed et al., 2004). Particularly in the Southern
part of Bangladesh, As concentration in shallow tube wells
are uniformly higher in comparison to other regions of
Bangladesh (van Geen et al., 2008). High Fe concentration,
turbidity and bacterial contamination are associated with
water sources found in the South-western coastal areas of
Bangladesh. Contaminated water negatively impacts many
species’ interactions in the food web of the aquatic ecosystem
and the people’s public health. According to WHO (2009), about
80% of human diseases are caused by contaminated water.
Excessive As and salinity levels in groundwater contaminates
drinking water sources and adversely affects human health,
especially people living in the floodplain of the Ganges
delta (Ravenscroft et al., 2005; Mahmud et al., 2017).
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In recent years, the coastal areas of Bangladesh have been
experiencing safe water scarcity and the deterioration of drinking
water quality (Saha et al., 2018). Many inhabitants are dependent
on a single water source for drinking water, because many
other nearby sources have become contaminated through natural
and anthropogenic influences. The severity is more severe in
the deltaic and alluvial deposits in the Southern coastal part
of Bangladesh. In the study area, high salinity, As and Fe in
groundwater were the major water quality contaminants found
in drinking water (Mahmud et al., 2017). Drinking water quality
found from the most popular drinking water sources in the study
area were not properly identified (Javed et al., 2014). To secure
public health, precise and appropriate information needs to be
collected following standard procedure (Talawat and Chandel,
2008). The overall aim of the study was to investigate the quality
of drinking water in the most usable point of sources and
to estimate the portion of the population that may be under
threat from toxic elements and coliform bacteria found in their
drinking water. The study’s findings should provide sufficient
and complete information about the drinking water quality in
the most usable PoS, which will help in formulating necessary
recommendations to identify alternative options for safe supply
of water in the study area.

MATERIALS AND METHODS

The Study Area
Tala Upazila of Bangladesh’s Satkhira district was selected as the
study area. The exact location of the study area is in the Southwest

coastal area of Bangladesh (22
◦

35′0
′′

to 22
◦

50′0
′′

N and 89
◦

5′0
′′

to

89
◦

20′0
′′

E). The total population of the study area is around 0.3
million (three hundred thousand), or 72,465 households with an
average of five household members. The literacy rate of the study
area is 50.9% for people 7 years and older, which is significantly
low (BBS, 2014).

Criteria for Selecting Drinking Water
Sources for Sampling
A total of 649 of the most frequently used drinking water point
of sources (PoS), including Deep Tubewell (DTW), Shallow
Tubewell (STW) and Pond Sand Filter (PSF), were selected for
water sampling. These PoS were selected from 50,819 operative
water sources, of which 31,624 sources were being used for
drinking purposes (C3ER, 2015). Some specific criteria were used
to select the PoS. These were: (1) Must be operating full year
round (Jakariya et al., 2007), (2) At least 20 households (HH)
must depend on the water source, and (3) The water source must
be mainly used for drinking purposes. Additionally, drinking
water samples from point of use (PoU) of the corresponding
dependent 260 HHs’ were collected for microbial analysis. Each
of the selected PoS for water sampling was being used by at least
20 to 1,000 HHs. Selected PoS were classified into four categories:
low (11–20 HHs), moderate (21–50 HHs), high (51–100 HHs),
and very high (101–1,000 HHs) use of drinking water sources.
The locations of sampling points for PoS and PoU are shown
in Figure 1.

Water Sampling and Testing of Water
Quality Parameters
Water samples were collected between August and September
2015 from selected 649 PoS. TW water (groundwater) samples
were collected from a final output device, after the well was
purged for the first 2min by hand pumping. PoU water
samples were collected from the last used drinking water glasses.
Seven important water quality parameters: Temperature (Temp),
Electrical Conductivity (EC), Total Iron (Fe), Arsenic (As), Total
Coliform (TC), E. coli, and Fecal Coliform (FC) were tested
in both PoS and PoU. Distribution of tested water quality
parameters in different water sources has been described in
Table 1. Temp, EC, Fe and As measurements were done at the
sampling site at PoS. Coliform bacteria (TC, E. coli, FC) were
tested for both PoS and PoU water samples. To analyze TC, E.
coli, and FC in the laboratory, each water sample was collected
in a transparent, white color, clean and sterilized 500ml plastic
bottle. Each bottle was immediately kept into a cooling box at
below 4

◦

C to maintain the quality of water sample. The indicator
organism (bacteria colony) were counted in 100mL water
samples and this was completed in the laboratory. Portable field
test kits and standard scientific methods were used to measure
water quality parameters. Coliform colonies were counted in the
laboratory. Temp and EC were measured using a Pocket Pro
High Range Conductivity Tester (Product #9531400; HACH Co.
USA), detection limit 0–50

◦

C for Temp and 0–1,990 µS/cm for
EC (resolution: 1 µS/cm); Fe by using Iron Test Kit (IR-18,
#146400, color disc 92799; HACH Co. USA), detection limit 0–
5 mg/L; As by using Hach EZ Arsenic Test Kit (Test Strip (EZ),
Dual Range, #2822800; HACH Co. USA), detection limit 0–4,000
µg/L, and Coliform Bacteria (TC, E. coli, and FC) by using a
PortableMicrobiology Test Kit (Membrane Filtration Technique;
HACH Co. USA), sensitivity 1 CFU/mL and indicator organism
(bacteria colony) were counted in 100mL water sample. For
EC, Fe and Coliform Bacteria measurement, some samples were
diluted with distilled water because of high concentration and,
after analysis, the obtained value was multiplied by the dilution
factor (Saha et al., 2018).

WQI Calculation
Weighted arithmetic index method was used to calculate WQI
(Yisa and Jimoh, 2010), as shown below:

qi = (Ci/Si)×100, where qi, Ci, Si indicated quality rating
scale, concentration of ith parameter and standard value of ith

parameter, respectively.
Relative weight (Wi) was calculated by the value inversely

proportional to standard (Si) value of the parameter: Wi= 1/Si.
The overall WQI was calculated by aggregated quality rating

(qi) with unit weight (Wi), and that was divided by the aggregated
unit weight (Wi) value using the relation (Yisa and Jimoh, 2010)
as seen below:

WQI =
6qiWi

6Wi

WQI was calculated at only most frequently used drinking water
sources (649 PoS), considering seven important drinking water
quality parameters (Temp, EC, Fe, As, TC, E. coli, and FC)
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FIGURE 1 | Location of water sampling PoS and corresponding PoU in Tala upazila of Satkhira district in Southwestern Bangladesh.

followed by the WHO drinking water guideline (Saha et al.,
2018). Individual water quality parameters and the drinking
water source’s WQI were computed.

Dependent Household Survey
A semi-structured questionnaire survey was conducted in
the corresponding dependent 260 HHs (Table 1). HH survey
was conducted during sampling from the selected different

types of drinking water sources. Major contents of the
questionnaire addressed Section 1: General information of water
sources and household locations; Section 2: Household disease
and socio-economic status (income and health expenditure);
Section 3: Drinking water condition and willingness to
pay; and Section 4: Water quality test result (laboratory
test result of coliform bacteria for the specific households)
(Supplementary Data Sheet).
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TABLE 1 | Distribution of tested drinking water sources, water quality parameters

and no. of surveyed dependent HH.

Water sources types’/

parameters

Temp EC Fe As TC E. coli FC

Based on Hh dependency (no of water sources)

Fairly usable 162 162 162 162 136 136 136

Moderately usable 230 230 230 230 111 111 111

High usable 180 180 180 180 89 89 89

Very high usable 77 77 77 77 41 41 41

Total 649 649 649 649 377 377 377

Types of point of sources (no of water sources)

DTW 323 323 323 323 103 103 103

STW 309 309 309 309 257 257 257

PSF 17 17 17 17 17 17 17

Total 649 649 649 649 377 377 377

Types of corresponding point of uses and no. of dependent

HH surveyed for specific drinking water sources)

DTW – – – – 69 69 69

STW – – – – 180 180 180

PSF – – – – 11 11 11

Total – – – – 260 260 260

“–” is not tested. Temp, Temperature; EC, Electrical Conductivity; Fe, Total Iron; As,

Arsenic; TC, Total Coliform; FC, Fecal Coliform.

Several steps were followed to calculate the number of HH
and identify the HHs regarding specific water sources (Table 1
described the below listed numbers):

1. A total 649 most usable PoS were identified for sampling in
the study area

2. Temp., EC, Fe and As were tested at 649 PoS including DTW,
STW and PSF (Supplementary Table 1)

3. TC, E. coli, and FC were tested at 377 PoS (out of 649 PoS) that
was 58% of total PoS

4. TC, E. coli, and FC were tested at 260 corresponding PoU
(Supplementary Table 2) that was 68% of the PoS where
coliform bacteria were tested

5. That corresponding 260 HH were surveyed where 69 HH
(67%) were selected out of 103 DTW dependent HH, 180 HH
(70%) were selected out of 258 STW dependent HH and 11
HH (65%) were surveyed out of 17 PSF dependent HH

6. Based on the above specification, households were selected
randomly for survey.

Standardization of Reference Values
Seven important water quality parameters were analyzed to
determine the concentration levels. These parameters were
compared with the WHO and Bangladesh Drinking Water
Standards (BDWS) values to calculate the number of water
sources that failed to meet drinking water standards. Selected
TWs for drinking water sampling were classified into two types:
one is DTW (depth ≥ 150m), and the other is STW (depth ≤

150m) (Ahmed et al., 2004). According to WHO and BDWS
guideline, the limit values for drinking water quality parameters
were, respectively, 10 and 50 µg/L for As; 0.3 and 1.0 mg/L for
Fe; 250 and 600 µS/cm for EC; 25

◦

C for Temp; 0 CFU/100mL

for TC, 0 CFU/100mL for E. coli and 0 CFU/100mL for FC
(for Coliform Bacteria WHO and BDWS were same) (Singh
et al., 2012; Gruber et al., 2014; Hossain et al., 2015; Akter et al.,
2016). Yisa and Jimoh (2010) categorized WQI values into five
types: excellent (<50), good (50–100), poor (101–200), very poor
(201–300), and unsuitable (>300) for drinking.

Descriptive Statistical Analysis
Descriptive statistical analysis (range, mean, standard deviation,
and frequency distribution), WHO BDWS experimental values
and matrix of linear correlation were calculated and compared
to test the interrelationship among each of the water quality
parameters. The calculation and comparisons were completed
using STATA 12.0. ArcGIS 10 was used for preparing the
location map and indicating the sampling points in the study
area. Calculation of WQI and potential exposure number of the
population and the respective tables, graphs, and figures were
prepared using Microsoft Office Excel 2013 (Saha et al., 2018).

RESULTS

Water Quality Status at the PoS
Water temperature ranged from 25.8 to 36.6

◦

C (SD ± 1.38),
meaning every water source in the study area failed meeting the
WHO and BDWS standard (Table 2). The range of Electrical
Conductivity (EC) was found to be between 165 and 8,715µS/cm
(mean 2494.14), with very high variability (SD ± 2192.95). All
tested PoS exceeded WHO standards, and according to BDWS,
96% of all water sources crossed the recommended value for
drinking. In terms of addressing Fe in drinking water sources,
the range was found to be 0–18 mg/L (mean 3.07), with variation
among the sources being not so high (SD ± 2.90). According to
WHO and BDWS, most water sources (83 and 61%, respectively)
failed to meet drinking water standards. In all of the tested
usable drinking water sources, minimum and maximum As
concentration was found to be between 0 and 500 µg/L (mean
61.69), and the variation of tested results was found to be quite
high (SD ± 67.66). According to WHO standard, three-fourths
(74%) of the most frequently used drinking water sources were
found to be As contaminated, but according to BDWS standards,
only 36% of the water sources exceeded the permissible limit of
As concentration for drinking water. The permissible limit for
Coliform bacteria (TC, E. coli, and FC) were the same, according
to both WHO and BDWS standards. The range of TC was found
to be 0–208 CFU/100mL, with high variability (SD± 32.67), and
38% of the tested water sources exceeded BDWS. Based on HH
dependency, a comparatively higher proportion of low (30%) and
moderate (40%) usable water sources, almost all PSF and half of
STW (50%) failed to meet safe TC level. E. coli was found in all
types of sources with the range 0–160 CFU/100mL, variability
wasn’t found to be very high (SD± 15.79) and 24% of all drinking
water sources exceeded the permissible E. coli limit. The majority
of STW (60%) and low usable (50%) drinking water sources
contained E. coli. Besides, FC bacteria test results indicated that
45% of all water sources were contaminated, with the FC range
being found to be 0–212 CFU/100mL, with wider variability (SD
± 44.97) amongst water sources. Almost all low and moderately
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usable water sources and most of the STW water sources were
found to contain FC bacteria.

Toxic Elements and Coliform Bacterial
Contamination Pathways From PoS to PoU
In the study area, the people did not typically treat their
water before drinking. Thus, if PoS were contaminated by high
elemental concentration and coliform bacteria, then dependent
HHs will be likely exposed to contaminated water. In all the PoU,
the range of TC was found to be between 0 and 220 CFU/100mL
(mean 27.47) (Table 2), and the proportion of contaminated PoU
(54%) was found to be much higher than the corresponding PoS
(38%) (Figure 2). The minimum and maximum value of E. coli
in PoU were found to be 0–166 (mean 5.17), while variation of
E. coli was to be not very high. E. coli contaminated PoU (35%)
were found to be slightly higher than the corresponding value for
PoS (24%). As well, in all the dependent HH’s PoU, FC range
was found to be between 0 and 228 CFU/100mL (mean 32.05),
with high variability and percentages of contaminated PoU (55%)
found to be slightly higher than the corresponding contaminated
PoS (45%).

Relationship Among Water
Quality Parameters
Simple correlation co-efficient was determined to find the degree
of association amongst the seven water quality parameters within
PoS and the coliform bacterial interrelationship between PoS
and PoU. In PoS, weak positive relationships existed among Fe
and As; E. coli and TC; FC and TC. Good positive correlations
were found between TC and E. coli; TC, and FC (Table 3).
Furthermore, for both PoS and corresponding PoU, a weak

TABLE 2 | Basic statistics of water quality parameters in PoS and PoU.

Water quality

parameters

Unit Range Mean ± SD Exceed

standard (%)

WHO BDWS

Most usable drinking water PoS

Temp ◦C 25.8–36.6 30.53 ± 1.38 100 100

EC µS/cm 165–8,715 2494.14 ± 2192.95 100 94

Fe mg/L N.D. −18 3.07 ± 2.90 83 61

As µg/L N.D. −500 61.69 ± 67.66 74 36

TC CFU/

100mL

0–208 16.81 ± 32.67 38 38

E. coli CFU/

100mL

0–160 3.90 ± 15.79 24 24

FC CFU/

100mL

0–212 25.25 ± 44.97 45 45

Corresponding dependent HHs’ PoU

TC CFU/

100mL

0–220 27.47 ± 42.72 54 54

E. coli CFU/

100mL

0–166 5.17 ± 15.03 35 35

FC CFU/

100mL

0–228 32.05 ± 46.21 55 55

N.D., Below detection limit.

positive relationship was observed among TC, E. coli, and FC.
Noticeable positive correlations were found between PoS TC and
PoU TC; and also PoS TC and PoU FC (Table 4).

WQI Calculation at Most Usable Drinking
Water Sources
At the time of WQI calculation, it was assumed that all of the
seven parameters had an influence on the determinedWQI value.
However, high WQI value were found to be mainly caused by
high concentrations of As, Fe and EC. The range for calculated
WQI values was found to be between 0.8 and 7,352 (mean 200),
and the individual parameter wise range of computed values in

FIGURE 2 | Contamination pathway of Coliform bacteria from PoS to PoU.

TC, Total Coliform; FC, Fecal Coliform.

TABLE 3 | Pearson correlations among different water quality parameters at PoS

(Obs 377).

Parameter Tem EC Fe As TC E. coli FC

Temp 1

EC 0.0448 1

Fe 0.0092 −0.3391 1

As −0.1182 −0.1129 0.2686 1

TC 0.0563 −0.1844 0.1388 0.057 1

E. coli −0.033 −0.0466 0.0839 0.0252 0.4386 1

FC 0.0715 −0.1542 0.1946 0.0653 0.4579 0.1771 1

Temp, Temperature; EC, Electrical Conductivity; Fe, Total Iron; As, Arsenic; TC, Total

Coliform; FC, Fecal Coliform.

TABLE 4 | Pearson correlations among different coliform bacteria at PoS and

corresponding PoU (Obs 260 in both side).

Parameter PoS TC PoS E. coli PoS FC PoU TC PoU E. coli PoU FC

PoS TC 1

PoS E. coli 0.3342 1

PoS FC 0.4012 0.1433 1

PoU TC 0.4431 0.2548 0.3264 1

PoU E. coli 0.2077 0.1985 0.1221 0.2535 1

PoU FC 0.3372 0.292 0.4525 0.3781 0.1822 1

PoS, Point of Sources; PoU, Point of Uses; TC, Total Coliform; FC, Fecal Coliform.
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different steps are described in Table 5. In all the tested water
sources, 89 (14%) were determined as excellent, 90 (14%) as
good, 41 (6%) as poor, 27 (4%) as very poor and 402 (62%) as
unsuitable for drinking. HH dependency basis analysis suggested
that excellent to good and poor to unsuitable water sources were
found to be, respectively, 10 and 90% in low dependent water
sources, 30% and 70% in moderately dependent water sources,
32 and 68% in high dependent water sources, and lastly 45 and
55% in very high dependent drinking water sources (Figure 3).
According to the type of water sources, more than half of DTW
(52%) were found to be good to excellent and almost all STW
(98%) and PSF (94%) were found to be poor to unsuitable
drinking water sources.

TABLE 5 | Range of computed value in different steps during WQI calculation in

tested PoS.

Parameters Experimental

Value (Ci)

WHO

Standard (Si)

qi =

(Ci/Si) × 100

Wi = 1/Si qiWi

As 0–500 10 0–5,000 0.1 0–500

Fe 0–18 0.3 0–6,000 3.333 0–20,000

EC 165–8,715 250 66–3,486 0.004 0.264–13.944

TC 0–208 0 0–20,800 ∞ 0–20,800

E. coli 0–160 0 0–16,000 ∞ 0–16,000

FC 0–212 0 0–21,200 ∞ 0–21,200

Temp 25.8–36.6 25C 103.2–146.4 0.04 4.12–5.85

FIGURE 3 | Classification of WQI in PoS based on HH dependency and types

of water sources: (A) % of water sources types, (B) % of dependent HH, and

(C) % of overall WQI status.

Population Exposed to Potential Health
Risk and Mitigation
According to WQI, the most frequently used PoS were found
to be poor to unsuitable for drinking, and HH dependency
basis calculation suggested that about 0.12 million people
(40% population of the study area) were directly consuming
contaminated water (Table 6). As a consequence, a massive
number of the population are at a potential health risk for acute
and chronic waterborne diseases. Dependent HH survey results
indicated that, in the last 15 days of survey date, HH members
most frequently suffered from fever, diarrhea, dysentery, colds,
and high blood pressure. Dependent HH regularly spend a
significant amount of money (USD 3–13 per month/HH) for
health-related expenditures, even though about half of HHs were
struggling financially, living on monthly incomes <USD 70 and
annual incomes <USD 850). Besides, 164 (63%) surveyed HH
(out of 260 HH) considered themselves as poor and ultra-poor,
comparing other HHs in their village. To acquire safe drinking
water, most of the dependent HH population (62%) expressed
willingness to pay for safe drinking water. Among the HHs
whom expressed willingness to pay, 58% HH said they would
be willing to pay up to USD 1 per month/HH, while 20% of
HHs said they would be willing to pay up to USD 2.6 per
month/HH. Dependent HHs were also searching for various
facilities to purchase safe drinking water, such as going to piped
water facilities and carrying bottled or canteen water back to their
home. Some HH sought to collect safe water from a fixed place.

DISCUSSION

In the study area, groundwater systems contained a high
concentration of As, salinity, and iron. There is an increasing
scarcity of safe drinking water sources, and an increasing number
of people are depending on a single drinking water source
for drinking uncontaminated water, because nearby drinking
water sources were found to be chemically (As, Fe, EC, etc.) or
microbiologically (TC, E. coli, and FC) contaminated.

Temperature is an important indicator of physic-chemical and
biological activities of drinking water (Morrison et al., 2001). In
the present study, drinking water temperature of tested sources
were not found so high. If the water temperature elevated to
25◦C or above, then the temperature could significantly affect
the solubility of dissolved oxygen and amplify the taste and odor
of drinking water (Singh et al., 2012). Electrical Conductivity
(EC) is a good measure of dissolved solids in water. EC depends
on the concentration of ions and nutrients in the water. Purer
drinking water generally has a comparatively low EC value (100–
2,000 µS/cm) (Ijeh and Udoinyang, 2013; Cronin et al., 2017).
In the study area, almost all the drinking water sources failed
to meet the drinking water standard for EC, with the data
found also containing a high range. In a recent study (Dey
et al., 2018), it was found that, in the coastal area of South-
west Bangladesh, over 94% of TW contain a higher EC value
than the Bangladesh standard. In 2010, Bahar and Reza (2010)
found that, in the coastal area, groundwater systems were mostly
alkaline e.g., EC range were found to be between 962 and 9,370
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TABLE 6 | Calculation of population exposed to potential water borne diseases in study area.

Water sources dependency/

exposed population

No of PoS based on WQI No of dependent

HH

Population exposed

(5 per HH)

Population exposed

(in million)
Poor Very poor Unsuitable Total (Poor-Unsuitable)

Low 1 1 144 146 1,941 9,705 0.01

Moderate 14 10 136 160 5,013 25,065 0.03

High 17 8 97 122 8,507 42,535 0.04

Very high 9 8 25 42 7,975 39,875 0.04

Total 41 27 402 470 23,436 117,180 0.12

µs/cm. Saha et al. (2018) mentioned that, in the Tala Upazila
of Satkhira district, high levels of salinity were found in the
greater depth aquifers (256 to 411m), and salinity concentrations
were found to be six times or more than the recommended
levels. This finding also matches with Khanom and Salehin
(2012). High EC values indicate poor quality drinking water that
threatens environmental and public health (Bangladesh Water
Act, 2013; Minar et al., 2013; Chidambaram et al., 2018). The
present investigation revealed that most drinking water sources
contained high concentrations of Fe. Excess Fe is responsible
for the poor taste of drinking water. Fe is regarded as non-
toxic, and acute and chronic health impacts have not been widely
documented (Merrill et al., 2011). However, in the human body,
the absorption of high amounts of Fe may be responsible for
pancreas, spleen, heart and vital organ damage, especially the
liver when Fe concentration exceeds 200 mg/L.

High level of As concentration were found in the most
frequently used drinking water sources. In a recent study (Dey
et al., 2018), it was found that in the coastal region of Bangladesh,
over one-third of high dependent drinking water sources (TW)
were As contaminated. High As concentration could be the result
of the after-product of natural geo-chemical processes. The lower
portion of the Ganges-Brahmaputra river system is considered
to be moderately to severely As enriched (Ahmed et al., 2004;
Saha et al., 2018). Dietary intake of water and food (through
irrigation with arsenic contaminated groundwater) have been
identified as one of the major pathways for As exposure and as
a potential health hazard of people (Yu et al., 2003; Kapaj et al.,
2006; Rahman et al., 2008; Khan et al., 2014). As is transported
by blood to different organs in the body, mainly in the form of
monomethylarsonic acid. Bladder cancer risk can be increased by
up to 2.7 times if As concentrations exceed 10 µg/L in drinking
water (Lokuge et al., 2014; Akter et al., 2016). Inauen et al. (2013)
found that 21% of all mortality occurred in the As contaminated
sub-districts in Bangladesh. Thus, high As contamination could
be responsible for high risks of morbidity and mortality in
exposed populations (Yu et al., 2003; Kapaj et al., 2006; Flanagan
et al., 2012; Shrivastava et al., 2014; Hossain, 2015).

Diarrhea is the third leading cause of death. Microbial
pathogens (coliform bacteria) are mainly responsible for
waterborne diseases (Javed et al., 2014). Based on the Colony
Forming Unit (CFU), Gruber et al. (2014) categorized water
samples into five types including safe (0 CFU), low risk (1–
10 CFU), intermediate risk (11–100 CFU), high risk (101–1,000

CFU), and very high risk (more than 1,000 CFU). Present
findings indicate that a higher percentage of corresponding point
of use (PoU) contain a higher number of coliform bacteria
than point of sources (PoS). Saha et al. (2018) and Dey et al.
(2017a) found that shallow aquifers are more microbiologically
contaminated than greater depth aquifer. Around 40% of shallow
tubewells in Tala Upazila (the same study area), were found
to be contaminated with fecal organisms (Saha et al., 2018).
Generally, groundwater is much less likely to contain microbial
pathogens in comparison to surface water (Fendorf et al., 2010;
Saha et al., 2018). Contaminated water bodies pose a high risk
to human health via waterborne pathogens (Harwood et al.,
2014). Poor sanitation conditions could be one of the major
causes of microbial contaminations in shallow depth aquifers.
Biological pollutant load (Coliform Bacteria) at PoS could be
attributed to storage of HH’s waste, contaminated stagnant
water, and latrine pit being situated at a shorter distance
from PoS (<10m) (Dey et al., 2017b). Agricultural runoff
and ground storage of high organic content matter could be
responsible for pathogenic content at PoS (Khanna et al., 2013).
Exposure to coliform bacteria could cause many severe adverse
effects on overall public health, such as such as urinary tract
infections, cystitis, and kidney infections. These bacterium are
also responsible for environmental degradation, as some types of
E. coil have been found to be responsible for damaging vegetables
(Javed et al., 2014).

A positive correlation between parameters indicates the
parameters likely share a common source, while negative
correlation likely means the parameters share a different source
(Nwankwoala et al., 2014). In this study, a positive relationship
was found between closely related parameters of the same
sources and a negative relationship was found between different
parameters of different sources. The interrelationship could be
dependent on environmental conditions, particularly the nature
of the elements (Davies et al., 2005). Linear relationship of
different parameters, such as As, Fe, and EC, could be attributed
to natural activity, and the interrelationship of TC, E. coli, and
FC could be attributed to biological activity. In the coastal
Bangladesh (Bengal basin), As showed a significant correlation
with Fe (Ghosh et al., 2017). In a recent study, Chidambaram
et al. (2018) mentioned that association of Fe with other elements
is the major controlling factor of groundwater chemistry in the
coastal area of Bangladesh and India (West Bengal). However,
in this study, most of the most frequently used drinking water

Frontiers in Environmental Science | www.frontiersin.org 8 May 2019 | Volume 7 | Article 57

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Saha et al. Geogenic Arsenic and Microbes in DWS

sources in the study area were found to be unsuitable for
human consumption, because of the high WQI value (Yisa and
Jimoh, 2010; Khanna et al., 2013). Thus, a large percentage of
the population depends on poor to unsuitable drinking water
sources, and scarcity of safe drinking water sources is reflected
in the study area. This is one of the most serious health issues in
the coastal region of Bangladesh, believed to be mainly caused by
the combined effect of arsenic and salinity (Abedin et al., 2014).
Dependent populations of unsuitable drinking water sources
are facing high adverse risk to their health due to exposure to
highly toxic elements and pathogens, causing them to suffer
from various waterborne diseases (Flanagan et al., 2012). The
exposure pathways of contaminants may vary from region to
region, depending on factors such as human activity, geological
composition of the aquifer and more. Also, various climatic and
geomorphic conditions such as rainfall, runoff, infiltration rate,
groundwater level and fluctuation, groundwater flow pattern,
distribution pattern of toxic elements, and many more, can
influence exposure pathways (Bhattacharya et al., 2002, 2011;
Shrivastava et al., 2014).

Alternative safe water management plan is highly essential
to protect public health, especially in the study area. In a
recent study conducted in the Tala Upazila of Satkhira district,
Saha et al. (2018) identified safe TW installation sites based on
calculating the WQI for drinking water sources, and GIS-based,
geo-statistical, and spatial analysis. By using these techniques,
before installation, it will be easy to explore suitable sites with
the depth necessary for discovering high quality drinking water.
However, in an arsenic hotspot area in Bangladesh, people are
using pond sand filter (PSF), rain water harvester (RWH), surface
water filter membrane, and arsenic removal filter (ARF) as
alternative drinking water sources. Most people prefer arsenic-
safe tubewell because of its easy operation and availability of
water year-round (Hossain et al., 2015). In the study area, most
dependent populations expressed willingness to pay for safe
drinking water, despite poor living standards. This willingness to
pay coincided with Dey et al. (2018) study’s findings where 75% of
surveyed households, in a coastal Upazila of Bangladesh, showed
“willingness to pay USD 0.25 per week for 20 L of safe drinking
water per day”. In 2013, Harun and Kabir (2013) mentioned that,
in the coastal region of Bangladesh, affected communities have
increased willingness to pay for sustainable safe drinking water
technologies like PSF and RWH. In the study area, installation
of water treatment plans, such as arsenic removal plants and
desalination plants, could be better alternative options to fight
against this water contamination crisis. To minimize financial
costs, Public Private Partnership (PPP) or Build, Operate and
Transfer (BOT) business structures would be ideal options for
the installation and effective operation of water treatment plans
(Basar, 2012). People are preferring tubewell (TW), usually deep
TW as a safe drinking water. One of the major concerns is that
when we are using greater depth aquifer for extracting drinking
water, that aquifer could be more contaminated. Before installing
TW, testing aquifer is essential. The Sida-SASMIT provided
unique examples to get safe drinking water, such as targeting red
sand aquifer and intermediate aquifer, which could be feasible

for extracting As, Fe, and Mn (manganese) free safe water
(SASMIT Concept Note, 2014).

To improve this situation, certain steps need to be taken to
ensure safe drinking water. These steps include installation of
safe TW; near water bodies need to be protected from water
pollution; keeping safe distance (>10m) between water sources
and contamination sources (pit latrine); periodical and long
term monitoring periods of drinking water sources need to be
implemented; hygiene behavior needs to be taught and practiced,
as well as practicing using safe drinking water sources; and
a sufficient water treatment plan needs to be established, etc.
(Rahman et al., 2000; Bhattacharya et al., 2011; Cronin et al.,
2017; Dey et al., 2017b). However, in terms of the Water Safety
Planning (e.g.,WHO, 2009) approach, appropriate strategies, and
effective and socially accepted frameworks for water resources
management, are also necessary for communities to reduce the
risk of contamination of water (Flanagan et al., 2012; Cronin
et al., 2017; Bhattacharjee et al., 2019). Thus, ensuring the
availability and sustainability of water sources are highly essential
for public health and meeting target of Sustainable Development
Goals (SDGs).

CONCLUSION

The study area in Bangladesh has been experiencing deteriorating
drinking water quality in groundwater systems due to increased
salinity and high As concentration. Day by day, increasing
numbers of people are becoming dependent on a single drinking
water source. Most of these drinking water sources contain an
unacceptable level of As, Fe and Salinity, with point of uses
containing a very high number of coliform bacteria. According
to WQI, three quarters of the most frequently used drinking
water sources are found to be “poor to unsuitable” for drinking
water purposes. In the study area, 40% of the population (0.12
million) have been consuming contaminated water and facing
harmful health risks through the transfer of acute and chronic
waterborne diseases. Dependent HH members on contaminated
water sources suffered from several diseases, such as fever,
diarrhea, dysentery, colds, high blood pressure and more. HH
members seem to spendUSD 3 to 13 permonth for health-related
expenditures, which is significantly higher than the national
average spending for health-related expenditure. Most dependent
HHs expressed willingness to pay USD 1 per month/HH to
acquire safe drinking water. To improve this situation, certain
steps need to be taken to ensure safe drinking water. These
steps include the installation of deep tubewell (DTW) for safe
water, the periodical testing of water quality, increased awareness
and practice of hygienic behavior, entrepreneurial development
and incentive to allow business to supply safe water at low
cost. Appropriate water safety planning and strategies are also
necessary at the household level to reduce the risk of geogenic
and microbial contamination. Further research is needed to
acquire a better understanding of the individual health risks
associated with being dependent on contaminated drinking
water sources.
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