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The increased availability of publicly available data is, in many ways, changing our

approach to conducting research. Not only are cloud-based information resources

providing supplementary data to bolster traditional scientific activities (e.g., field studies,

laboratory experiments), they also serve as the foundation for secondary data research

projects such as indicator development. Indicators and indices are a convenient way to

synthesize disparate information to address complex scientific questions that are difficult

to measure directly (e.g., resilience, sustainability, well-being). In the current literature,

there is no shortage of indicator or index examples derived from secondary data with

a growing number that are scientifically focused. However, little information is provided

describing the management approaches and best practices used to govern the data

underpinnings supporting these efforts. From acquisition to storage and maintenance,

secondary data research products rely on the availability of relevant, high-quality data,

repeatable data handling methods and a multi-faceted data flow process to promote and

sustain research transparency and integrity. The U.S. Environmental Protection Agency

recently published a report describing the development of a climate resilience screening

index which used over one million data points to calculate the final index. The pool of

data was derived exclusively from secondary sources such as the U.S. Census Bureau,

Bureau of Labor Statistics, Postal Service, Housing and Urban Development, Forestry

Services and others. Available data were presented in various forms including portable

document format (PDF), delimited ASCII and proprietary format (e.g., Microsoft Excel,

ESRI ArcGIS). The strategy employed for managing these data in an indicator research

and development effort represented a blend of business practices, information science,

and the scientific method. This paper describes the approach, highlighting key points

unique for managing the data assets of a small-scale research project in an era of

“big data.”
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INTRODUCTION

The current literature shows that there is growing support from
the scientific community for using secondary or “found” data
in both theoretical and applied research (Niemeijer and de
Groot, 2008; Hampton et al., 2013; Davis-Kean et al., 2015).
The “big data” environment has proven to be fertile ground for
nurturing innovation in indicator research and development.
Easily accessible secondary data has given rise to new big data
technologies that can potentially increase the production of
robust and reproducible indicator products (Madin et al., 2007;
Mooney andWinstanley, 2007; Demchenko et al., 2013; Jha et al.,
2015). The concept of big data has been described in many ways.
However, no single statement serves as the de facto definition.
De Mauro et al. (2015) proposes an ontologically derived
definition based on an analysis of existing big data definitions.
The authors suggest that “Big Data represents the Information
assets characterized by such a High Volume, Velocity, and
Variety to require specific Technology and Analytical Methods
for its transformation into Value.” This description seems
aptly relevant as it emphasizes the enormity of the public
access landscape as well as the tools needed to work with big
data effectively.

The “information highway” moves over 35 terabits of data
per minute (roughly 1.1 billion double-sided print pages of
information every 60 s). New and upgraded submarine fiber optic
routes have increased data transfer capacity by 32% annually for
the last 5 years to support the growing digital load (Submarine
Telecoms, 2017, p. 17). In no small measure, the research
community has contributed to the proliferation of big data. Many
funding organizations now require that data generated through
publicly-funded research be made openly available if legally
and ethically possible. In the United States (U.S.), all federal
agencies investing in research must support increased access
to published research and resulting scientific data (Holdren,
2013, February 22). This continuous inflow of freely accessible
research products offers some broad reaching benefits not the
least of which is simply increasing research visibility (Piwowar
et al., 2007). For indicator research and development, big data
are playing an essential role in filling long-standing data gaps
in quantifying complex, multi-dimensional concepts such as
sustainability, resilience, and well-being measures (Smith et al.,
2013; Cutter et al., 2014; OECD, 2017; Buck et al., 2018; Summers
et al., 2018; Wendling et al., 2018; Helliwell et al., 2019).

The wealth of accessible information can be both rewarding
and challenging for science, especially in finding ways to manage
it. Scientific data management (SDM) has historically been a
challenge for research. A two-part commentary, “How to Manage
Data Badly Part 1 and 2” (Hale, 1999, 2000), highlighted existing
issues surrounding the management of research data in the field
of ecology. Although the publication described the lack of SDM
in the context of a single science discipline, themessage resonated
universally as few people could disagree with the observations
regarding the poor state of SDM practices 20 years ago. Since
then, data and information sciences have taken center stage as
organizations seek to build more robust and efficient ways to
collect, process, manage and curate big data (Gray et al., 2005;

Sansone et al., 2018). New technologies and expert solutions are
emerging to assist both private and public sectors in managing
big data (Pilat and Fukasaku, 2007; Cox and Pinfield, 2014;
Simms et al., 2016; Borycz and Carroll, 2018).

“Big science” research (i.e., high throughput, long-term or
high value) are often provided with enough resources to support
the technology and expertise needed to implement well-designed
SDM and curation frameworks (Crowston and Qin, 2011;
Berman and Cerf, 2013). On the other hand, “small science”
projects (i.e., small team, short-term or exploratory research)
often lack adequate SDM funding even though small-scale
research can collectively generate more data than their “big
science” counterparts (Crowston and Qin, 2011). Individual
researchers often bear the responsibility for managing the data
assets in smaller-scale science, yet many do not have practical
data management experience or access to relevant personnel
to process, document, and, eventually, curate big data-driven
research adequately (Lynch, 2008; Borgman, 2012). As research
funding ebbs and flows, smaller-scale efforts are increasingly
turning to big data to support research. Without sufficient
SDM support, big data collection and processing activities alone
can quickly overwhelm a project, making it difficult to curate
reproducible science (Lowndes et al., 2017). With a growing
universe of open research and the ease with which the data may
be acquired, it seems imperative that research institutions invest
in building the capacity for all research efforts to plan and execute
robust SDM, regardless of the size or perceived value (Everyone
Needs a Data-Management Plan, 2018)

There is a growing demand for science-based indicators
(Nardo et al., 2005) and indicator research is well-suited for big
data. By design, indicators and indices (summarized indicators)
are intended for a public audience. With the advent of the
open access initiatives, SDM planning guidelines and tools are
abundant, yet many of these resources lack the details and a
common set of standards to be meaningful (Dietrich et al., 2012).
Research data and the processes to manage them are iterative
and “mature” over time as the research progresses (Crowston
and Qin, 2011; Digital Curation Center, http://www.dcc.ac.uk/).
For large-scale or high-volume research efforts, highly automated
and detailed SDM policies may be most appropriate, but for
smaller research activities, a more straightforward infrastructure
that can evolve as the data mature may be the most beneficial
(Link et al., 2017).

In 2017, the U.S. Environmental Protection Agency (EPA)
published the conceptual framework and demonstration of the
Climate Resilience Screening Index (CRSI) (Summers, J. K. et al.,
2017; Summers, K. et al., 2017; Summers et al., 2018). EPA
researchers were tasked with developing and demonstrating a
composite index that could characterize the resilience of the
U.S. in the context of potential natural hazard exposures—
in a 12-month time frame and using existing resources. The
CRSI framework is hierarchical (Figure 1). The overall index
is informed by five domain sub-indices that are described by
twenty indicators which are comprised of 117metrics. To bemost
useful, CRSI needed to be applicable to different geographical,
population, and temporal scales using the same cultivated data
set. A diverse ecosystem of secondary data representing 120
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FIGURE 1 | The CRSI conceptual framework (Summers, K. et al., 2017). Lines extending left and right of domain labeled boxes depict a theoretical range of

socio-economic and ecological recoverability factors that may influence the overall CRSI measure. Black arrows relate to indicators and color, diamond-ended lines

are assigned to domains highlighted by the same color.
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TABLE 1 | Elements addressed in the scientific data management (SDM) plan for the Climate Screening Resilience Index research.

SDM element Descriptive content

Research effort information Name of the research effort, name of research effort lead(s), and supervisory/management contacts.

Research effort team members Names of research team members, and data-related roles and responsibilities.

Metadata Metadata standard(s), metadata creation tools, data dictionary, and glossary.

Data storage Data characterization, data tracking tools, data storage needs and expected growth rate, and length of data

collection/generation.

Access and collaboration Data access permission management, unique or enhanced data security needs, and data labeling conventions.

Organization and control Data change control (e.g., automated auditing, dated prefix/suffix), version control related to data refresh and

updates, folder structure(s) (digital and paper), and file naming conventions.

Knowledge management Knowledge sharing and capture, especially when a member leaves the research team.

Data retention Records management compliance methods, long-term storage, and official research records retention/disposition

plan.

Data reuse Publication schedules (e.g., manuscripts, official reports), expected reuse by others, and public accessibility.

Monitor and review SDM plan review schedule.

unique data values were collected for 3135U.S. counties in 2000–
2015 time-period to quantify metrics.

The development of composite indices to describe complex
ideas is not new. The Better Life Index (BLI) (OECD, 2017),
Environmental Performance Index (EPI) (Wendling et al.,

2018), Human Development Index (HDI) (United Nations
Development Programme, 2018), andOceanHealth Index (OHI)

(Halpern et al., 2012) are a few notable examples. A composite
index is a communication tool that uses a collection of individual

metrics or indicators to translate data into information that
describes a multi-dimensional concept (Nardo et al., 2005). A

common trait shared across the example indices and CRSI is the

use and synthesis of economic, social and ecological secondary

data. BLI, EPI, HDI, and OHI offer reference materials, tools
and data in a readily accessible format (i.e., websites and web-

services) to help others reproduce the featured indices. All
four indicator research efforts are exemplar cases of transparent
and reproducible research in the end-stage or mature phase

of the full SDM cycle. The CRSI research, on the other hand,
is still “young” in the data maturation continuum and many
of the SDM systems are still evolving. Project researchers
rather than data professionals are responsible for planning and

implementing SDM. Most CRSI team members lack practical

SDM experience. The researchers are generally familiar with the
premise of SDM but not the common vernacular or specific
considerations associated with secondary resources. Like many
research institutions, SDM planning and open access research are
not new subjects at the U.S. EPA, although details vary widely
from one research project to another.

The perceived apathy toward indicator research SDM and

curation appears to be a recurring theme. Early stages in big
data SDM in particular are prone to be hectic and disorganized
since processes have yet to stabilize (Crowston and Qin, 2011).
What is lacking in the current SDM literature is a portrait

of SDM-life before all the data decisions have been made and
SDM processes are in flux. This paper describes the CRSI SDM

approach which offers an inside peek at SDM from the “small-
science” perspective. Highlighted are key strategies that have

proven helpful for managing the big data assets of CRSI
and addressing potential challenges that can impede successful
research outcomes.

APPROACH

The CRSI SDM Concept
SDM in the CRSI effort is an inclusive process where all
researchers are expected to participate in data collection,
assessment, processing, and storage. The SDM infrastructure
is adapted from past practices described in Hale et al. (2003)
which emphasizes a culture of “data sharing.” Additional queues
from Zook et al. (2017) helped inform CRSI SDM requirements
for capturing the copyright information (Carroll, 2015), data
provenance (Carlson and Anderson, 2007), and data ethics
(Floridi and Taddeo, 2016; Vayena and Tasioulas, 2016) that are
especially important to address when data are made publicly
accessible. U.S. EPA SDM guidelines recommend that a suite
of 10 topics should be addressed for thorough data asset
management planning (Table 1). Since principal investigators
lead and provide oversight in research projects, it seems natural
that improving SDMoutcomes begins with education and hands-
on experience for researchers. The CRSI SDM is a relatively
simple framework that embraces “better data management
through partnerships” concepts (Hale et al., 2003), adapted for
a small, co-located team. At its core, the CRSI SDM environment
is as much a training platform as it is an assemblage of data
management practices. The objectives of this “learn as you go”
SDM ethos is to adequately execute research asset management
while increasing the SDM knowledge and capabilities of the
research personnel. Governance of data collection, processing,
and curation is integrated into the science conversation, so
the language of research curation becomes as natural to the
researchers as the science. The SDM of the CRSI effort represents
a collaborative process in which all researchers have ownership.

Data Collection
Every member of the team participated in the literature,
secondary data, and metadata collection. A literature review was
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TABLE 2 | Data acceptance criteria used to identify and select secondary.

Data Characteristic Criterion

Availability and access Data are publicly available and easy to understand, access and extract.

Reliability and data credibility Data are vetted by the professional community and metadata, or similar documents are available.

Spatial unit Data are available at the county-level or census tract spatial resolution.

Coverage Data are available for all U.S. counties.

Historical and continued availability Data are collected consistently from 2000 to 2015, with reasonable expectation that the same or comparable data will be

available from the same source in the future.

Supplemental information Data are accompanied by information such as units, spatial and temporal scales, survey design, and attribution

requirements to help determine the appropriate standardization method for the data (e.g., subjective or objective, positive or

negative context, random or targeted sampling).

conducted to describe the state of resilience indicator science
to provide the rationale for the development of the index and
to identify existing resilience indicator efforts that could inform
the research. Publications related to any resilience indicator or
index concepts including hazard exposures, natural disasters,
infrastructure, quality of life and governance were considered
as potential sources of contextual data for CRSI. Based on
the completed literature review, each researcher searched the
internet for sources of publicly available data to identify and
collect as candidate secondary data relevant for quantifying
CRSI indicators. Supplementary information such as licensing
documents, disclaimers, data catalogs, and users’ guides, was also
collected along with secondary data.

Data Acceptance
Data collection is, of course, at the core of indicator development.
Exploring big data can result in many secondary data resources,
some representing alternative choices for the same data.
Procedural guidelines were developed to help minimize bias
and improve selection relevancy during the literature and
secondary data collection process. To the extent possible, these
criteria served as the first-level evaluation for determining
the potential suitability of secondary data for use in CRSI
calculations. If a set of data appeared relevant but did not
meet every criterion, then a team consensus informed the final
determination on acceptability. The following (Table 2) briefly
describes each criterion.

Assessing CRSI Data Quality and Suitability
There is a persistent assumption that data retrieved from a
credible source are suitable for a research effort out of hand
(Boyd and Crawford, 2012). Cai and Zhu (2015) provide
thoughtful insight regarding the challenges of examining the
quality and suitability of big data. While reviewing data can
be straightforward, the suitability of the data for the research
is a bit more subjective and requires a way to conceptualize
the data in the context of intended use. While random subsets
of data were manually reviewed for quality and errors, a
100% assessment is nearly impossible with extensive sets of
data. Descriptive statistics were most helpful for assessing the
quality and suitability of the secondary data for CRSI. A full
complement of summaries was generated for each component
of the CRSI framework including the metrics. Histograms and

other visualizations assisted researchers with examining data for
anomalies and use-case weaknesses.

Tools for Literature and
Data Acquisition/Processing
Publish or Perish software (Harzing, 2007) was used to
assist with identifying literature for review. Clearly defined
keywords and phrases were used to search well-established
literature repositories (e.g., Scopus, Web of Science, JSTOR).
Responsibilities for conducting the literature review were
distributed across the research team. Each publication was
evaluated for relevance to the CRSI research. Electronic
publication files were downloaded and maintained in a
literature repository. Manual literature searches were conducted
to help fill any literature gaps resulting from the software-
driven prioritization.

For many, collected literature simply contribute to the
reference list in publications. However, in SDM, the decision
choices related to including or excluding a published work for
the research, is data. To that end, researches provided a summary
associated with each review using a template as an outline. The
outline captured information that could be used to drive queries
to produce literature-related statistics or reporting. Citations
along with review summaries were eventually uploaded to a
Microsoft (MS) Access (2016) database.

There is a movement that is rapidly spreading within the
research community—the use of open-source tools for processing
big data (e.g., R-Project, https://www.r-project.org/; Python,
https://www.python.org/; Apache Spark, https://spark.apache.
org/). Unfortunately, the skill sets available for processing CRSI
data ranged from practically non-existent to programming in
multiple languages. Each researcher used their tool of choice
for processing data. While this decision lacked robust technical
standardization, it offered a timely solution for completing data
collection and processing by helping to distribute the data
processing load. Allowing each researcher to work with the tool
most familiar to them also helped reduce data processing errors.
SAS, R-Project, SPSS, MS Excel, ESRI ArcGIS, and Python were
the dominant software packages used for processing the data.
A suite of secondary data was assigned to specific individuals
based on their level of data handling experience. Each researcher
was responsible for formatting, standardizing and harmonizing
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FIGURE 2 | Illustration of the CRSI file structure layout. Each block represents a separate subdirectory or folder. All elements organized under the “Data” block form

the primary data construct.

their selection of secondary data as well as documenting the
processing methods.

Organization and Storage of CRSI
Data Resources
Research data and other materials were physically stored on
a centralized network server housed within the U.S. EPA.
Hierarchically-nested subdirectories or folders contained all
information consisting of raw data, processed data, final research
results, and supplementary information. The physical storage
structures that comprised the framework mirrored the different
components of the CRSI research. This arrangement offered
a convenient way to compartmentalize the various stages of
the research data assets. Additionally, associating file structure
features with components of the research made it easier for
researchers to locate specific pieces of information. Figure 2
shows the CRSI data storage layout.

CRSI Data Construct
Central to the file storage structure was the CRSI data construct.
The data construct is a remnant of past practices that has worked
well-across different research efforts. Data assets were partitioned
relative to their processed status. The directory naming
conventions were consistent with past and concurrent research
activities helping to maintain data organization consistency.
Also, the data construct made it convenient for managing access
permissions and enforcing data policies, e.g., use constraints,
sensitive data access, and original data preservation. Apart from
raw geospatial data (Section Geospatial Data), the CRSI data

construct was used for the handling of raw, processed, and
production (research results) data. As depicted in Figure 1, the
D1 directory warehoused the raw secondary data in the form
provided by the source along with pertinent documentation (e.g.,
metadata, data dictionaries, users’ guides). Once all secondary
data were collected and vetted, the original downloaded files
were held sequestered while a copy operated as the functional
data platform for the remaining phases of data processing. The
D2 directory housed processed data (e.g., standardized) that
were accessed repetitively for CRSI data quality assessments and
analyses. Data quality assessment results and software code files
related to data processing or qualifying were maintained in the
D2 directory as well. The D3 structure held the CRSI results
in comma-delimited (∗.csv) format. Files produced in software-
specific form (e.g., ∗.sas7bdat, ∗.xlsx) were maintained as an
additional layer of data recoverability. Information housed in
the D3-level structure consisted of demonstration results, model
inputs, and map products.

Geospatial Data
Geospatial processing was used to derive natural environment
and natural hazard values based on the Multi-Resolution
Land Characteristics (MRLC) Consortium’s National Land
Cover Data Set (Homer et al., 2015), both with and without
additional secondary data overlays. Secondary data collected for
geoprocessing were archived in their original form. Base maps
and data downloads were migrated to a file geodatabase construct
for geospatial processing where secondary data were rendered as
feature classes. A file-based geodatabase was used for managing
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and querying the collection of CRSI-related spatial data. A file
geodatabase organizes data physically in a directory or folder
structure rather than in a single personal database file such as
those used with MS Access. Individual data files are accessed
directly using geospatial software such as ESRI ArcGIS (Version
10.5), the application used for CRSI. For this effort, the use of a
file geodatabase served multiple purposes:

• Eliminated the constraints of individual file sizes that are
associated with other GIS conventions (shapefiles).

• Allowed for the use of a standardized coordinate system
to ensure all imported data would be uniformly projected,
without further intervention.

• Kept related data together and organized during processing.

Values generated from geospatial processing were treated as
“found data” and folded into the D1 portion of the data construct.
Any further standardization or normalization treatment of
these data followed the same protocols as all other sources of
secondary data.

CRSI Data Security and Data
Operations Continuity
Existing enterprise-wide information security protocols served as
the primary access and data security defense for CRSI. However,
these measures could not safeguard data from inadvertent
deletions, modifications, or misplacements caused by well-
intentioned “insiders” (team researchers)—particularly in the

TABLE 3 | List of secondary data sources used in the CRSI indicator development research.

Source Data owner

Air Quality Index Report U.S. Environmental Protection Agency

American Community Survey U.S. Census Bureau

American Lung Association American Lung Association

Association of Religion Data Archives Association of Religion Data Archives

Bureau of Labor Statistics U.S. Department of Labor

Comprehensive Housing Affordability Strategy U.S. Department of Housing and Urban Development

County Total Housing Unit Estimates U.S. Census Bureau

Enforcement and Compliance History Online U.S. Environmental Protection Agency

Facility Registry Service U.S. Environmental Protection Agency

Federal Bureau of Investigation U.S. Department of Justice

Federal Emergency Management Agency U.S. Department of Homeland Security

Federal Highway Administration U.S. Department of Transportation

Forest Inventory and Analysis Database United State Forestry Service

Hazards and Vulnerability Research Institute University of South Carolina

Health Resources and Services Administration U.S. Department of Health and Human Services

Highway Access in North America ESRI

Homeland Infrastructure Foundation Level Data U.S. Department of Homeland Security

National Aquatic Resource Surveys U.S. Environmental Protection Agency

National Bridge Inventory U.S. Department of Transportation

National Broadband Map Datasets National Telecommunication and Information Administration

National Cancer Institute U.S. Department of Health and Human Services

National Drought Mitigation Center U.S. Department of Agriculture

National Highway Planning Network U.S. Department of Transportation

National Land Cover Dataset 2011 Multi-Resolution Land Characteristics Consortium

National Weather Service National Oceanic and Atmospheric Administration

Natural Resources Conservation Services U.S. Department of Agriculture

NOAA Sea Level Rise Predictions National Oceanic and Atmospheric Administration

Safe Drinking Water Information System U.S. Environmental Protection Agency

U.S. protected lands mismatch biodiversity priorities (Jenkins et al., 2015)

U.S. Department of Health and Human Services U.S. Department of Health and Human Services

U.S. Energy Information Administration U.S. Energy Information Administration

U.S. Geological Service U.S. Department of the Interior

Nuclear Regulatory Commission U.S. Nuclear Regulatory Commission

U.S. Postal Service U.S. Department of Housing and Urban Development

University of Wisconsin Population Health University Of Wisconsin Population Health Institute

Wildland Fire Information Database U.S. geological service

Source names are hyperlinked to internet location where data are located.

Frontiers in Environmental Science | www.frontiersin.org 7 June 2019 | Volume 7 | Article 72

https://www.epa.gov/outdoor-air-quality-data/air-data-aqi-plot
https://www.census.gov/programs-surveys/acs/
http://www.lung.org/our-initiatives/research/monitoring-trends-in-lung-disease/
http://www.thearda.com/Archive/browse.asp
https://www.bls.gov/data/
https://www.huduser.gov/portal/datasets/cp/CHAS/data_querytool_chas.html
https://www.huduser.gov/portal/datasets/cp/CHAS/data_querytool_chas.html
https://echo.epa.gov/
https://www.epa.gov/frs
https://ucr.fbi.gov/
https://www.fema.gov/data-feeds
https://www.fhwa.dot.gov/policyinformation/index.cfm
https://www.fia.fs.fed.us/
http://artsandsciences.sc.edu/geog/hvri/hvri-resources
https://datawarehouse.hrsa.gov/
https://www.arcgis.com/home/item.html?id=a9b7eb1652ce4ca7a1e87acde9cd304b
https://hifld-dhs-gii.opendata.arcgis.com/
https://www.epa.gov/national-aquatic-resource-surveys
https://www.fhwa.dot.gov/bridge/nbi.cfm
https://www.broadbandmap.gov/analyze
https://www.cancer.gov/research/resources/data-catalog
https://www.drought.gov/drought/data-source/national-drought-mitigation-center-ndmc
https://www.fhwa.dot.gov/planning/processes/tools/nhpn/
https://www.mrlc.gov/nlcd11_data.php
https://www.weather.gov/gis/
https://www.nrcs.usda.gov/wps/portal/nrcs/site/soils/home/
https://coast.noaa.gov/digitalcoast/tools/slr
https://www.epa.gov/enviro/data-downloads
https://biodiversitymapping.org/wordpress/index.php/home/
https://www.hhs.gov/about/agencies/omha/about/health-data-sets/index.html
https://www.eia.gov/
https://data.usgs.gov/datacatalog/#fq=dataType%3A(collection%20OR%20non-collection)&q=*%3A*
https://www.nrc.gov/data/
https://www.huduser.gov/portal/datasets/usps.html
https://wildfire.cr.usgs.gov/firehistory/data.html
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Harwell et al. Small-Scale Indicator Research Data Management

early stages of the research when processes are chaotic, and data
are most vulnerable. More specific data security steps were taken
to safeguard the CRSI research assets internally. A menu-driven

FIGURE 3 | (A) The CRSI-domain-indicator data tree that served to inform the

organization of different aggregates of indicator values. (B) A continuation of

the CRSI data tree depicting the relationship between one indicator and

associated metrics (processed data).

access portal developed in the MS Access data to serve as a
conduit between the research team and CRSI data. Querying
capability that mapped demonstration results (D3 level data)
to relevant D2 and D1 data and supplementary information
were developed. A series of reference tables linked data records
stored in the database to data resources only available outside
the database (e.g., raw secondary data), including information
about data origin and evolution (data provenance). Pre-defined
queries driven by interactive menus maintained within the
database provided a way for the research team to navigate
CRSI research assets while minimizing potential data mishaps.
In addition, a bibliographic index of literature was created to
act as an electronic card catalog for the literature repository.
Indexed references for both accepted and rejected publications
could be queried to return summary information created during
the literature review. Additionally, secondary-data sources were
linked to relevant publications so researchers could cross-
reference materials from either data point or an article.

The inclusive SDM environment inherently provided
as a continuity of operations mechanism. Other practices
fostered knowledge exchange including SDM discussions
during team briefings and planning sessions as well as SDM
specific peer-to-peer training. The SDM plan, implementation
of SDM plan, routine research communication, and team
interactions collectively created a sustainable knowledge
management paradigm.

EXAMPLE OUTCOMES FROM
HIGHLIGHTED SDM PROCESSES

This section offers some “results” associated with the CRSI data
environment. Example CRSI data characteristics and quality

FIGURE 4 | A diagram illustrating the relationship of CRSI components and

their contribution to the over quantity of demonstration results.
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assessments are presented. Additionally, a general overview
describing the database design is briefly described.

Characteristics of the Reviewed Literature
and Secondary-Data
Literature summaries showed that 369 publications met at
least one keyword or key phrase criterion. Approximately
20% of the literature reviewed had a direct bearing on
the development of the CRSI framework. Another 4% of
CRSI references indirectly informed the conceptualization
of CRSI while 76% lacked vital factors of interest or
were duplicative.

Over 1.3 million secondary data values retrieved from thirty-
seven unique data providers (Table 3) served as the basis
for constructing CRSI. These data were comprised of annual
collections of available information from 2000 to 2015 for
3135 counties of the U.S. A complement of 383,713 averaged
secondary-data measures supported final CRSI calculations was

derived from the average of values for each data set across
all available years, resulting in. These data represented a range
of science disciplines (e.g., meteorology, geology, economics,
geography, social science, ecology). Information documenting
the intent, scope, quality, and refresh frequency was captured
for each set of secondary data sets as well as attribution and
copyright requirements.

Geospatially-derived secondary data were not available for
eight boroughs in Alaska nor could these data be imputed
with any reasonable level of confidence. Natural environment
metrics (e.g., land types, soil productivity, coastal condition,
natural hazards) were translated from ecologically relevant
spatial scales (e.g., 12-digit hydrologic unit codes, ecoregions)
to county-level boundaries. Metrics associated with natural
hazard and toxic exposures were population normalized then
modeled for the pertinent value if needed. Nearly one hundred
percent (99.7%) of counties were represented in the CRSI
metric inventory.

FIGURE 5 | Cumulative distribution function (CDF) analyses were performed for each suite of metrics, indicators, domains and CRSI values. Graphs were used to

identify possible processing errors and to understand how errors influence the different aggregates of results: (A) the stair-step pattern of the “Before Correction” CDF

suggests that a problem existed in the suite of Community Rating System metrics while the “After Correction” CDF shows the more expected distribution pattern;

(B) demonstrates the level of influence a single metric can exert on an indicator; (C) illustrates the difficulty in identifying the metric error at the domain-level of CRSI

calculations; and (D) shows that the metric-level error is virtually undetectable in the final index (CRSI) values.
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FIGURE 6 | (A) The histogram shows severely right-skewed results in the

distribution of calculated CRSI scores. A review of the results found that

pattern was due to CRSI values for 12 of 22 boroughs in Alaska were far

outside the 3rd quartile range rather than any specific data processing error.

(B) After qualifying these 12 CRSI results as outliers, the histogram reflects a

distribution pattern that was expected with the 12 outlier values were

removed. Publications using the final CRSI measures report results, both with

and without these qualified outliers.

CRSI Results: Index, Domains, Indicators,
and Metrics
The CRSI demonstration results were produced at four
hierarchically-related aggregation levels (Figures 3A,B)—
metrics, indicators, domains, and indices—which collectively
represent 448,305 individual results (Figure 4). Metrics were
derived directly from processed secondary data and were
the most abundant. The summary of county-level metrics
quantified indicators, indicators were summarized to domains,
and domains informed the equation for the final CRSI values.

Data Quality Assessments
Statistical summaries, cumulative distribution functions (CDFs),
and histograms were created using final CRSI values and
each metric, indicator, and domain component to aid in the
data quality assessments. If the descriptive statistics or data
visualizations presented an unexpected value or data pattern, a

review of each step of the data handling process was conducted
to determine if an error occurred because of the data processing.
Corrective actions were taken on detected errors, but if no error
was detected, then the value remained. A series of CDFs are
offered to demonstrate the value of this data quality assessment
exercise. Figure 5A shows the distribution pattern related to one
set of metric-level data found with an “suspected” error and the
distribution of these same metrics after the error is corrected.
Figures 5B–D show the relative influence of this single metric
across a full spectrum of derived CRSI components, both before
and after error correction takes place.

Histograms of CRSI values initially presented a right-skewed
distribution pattern (Figure 6A). Several boroughs in the state of
Alaska were the primary driver. After results and processing steps
were verified, each record was qualified in the D3-level CRSI data
set. When extreme outliers were removed, CRSI results appeared
better distributed, aligning more with expectations (Figure 6B).
Qualified results were kept in the final set of CRSI results.

CRSI Data Warehouse
The CRSI database was constructed using an MS Access (2016)
database and designed to serve as a data warehouse. Leveraging
features and functions available in MS Access, menus, forms, and
reports were created to assist researchers in navigating the CRSI
data warehouse. A switchboard (e.g., menu system) operated as
the primary user interface. Forms provided interactive filtering
capabilities to customize the information displayed from the
various data tables held within the warehouse. Pre-defined
queries joined relevant information from across the CRSI data
management framework. Pre-defined report formats presented
query results. Filtering functions were also offered in reports
to refine the information offered for print. The general flow of
data and information to and from the CRSI data warehouse is
presented in Figure 7.

The size limitation associated with MS Access databases
(2 GB; Microsoft support https://support.office.com) proved
problematic for housing secondary data but accommodated all
of the results (D3). A set of relational tables were created
to link CRSI metrics with original data download files,
relevant literature, and supplementary material. Results could
be displayed graphically and downloaded so team members can
reuse the data without compromising the resources that support
the research. Figure 8 provides a detailed illustration of the CRSI
data warehouse framework.

DISCUSSION

Big data have ushered in the promise of new research possibilities.
In indicator research and development, big data has most
assuredly found a home. This wealth of publicly accessible
information has helped advance indicator research. Big data helps
small research efforts like CRSI flourish and prove relevant on
the global stage. However, broader discussions regarding best
research data management and sharing practices are needed
(Borgman, 2012). The apparent lack of consistent SDM standards
and the impact this has on research reproducibility is driving
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FIGURE 7 | A visual representation depicting the general flow of CRSI data using the CRSI data warehouse as the avenue for the CRSI research team to access

results, literature, and secondary data information.

FIGURE 8 | The CRSI data warehouse framework depicting the flow of data and information; access controls; outputs generated; and research asset monitoring and

management loop.
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the development of new technologies for managing enterprise-
wide research assets. Methods and technology continue to evolve
potentially offering more scalable data management solutions for
research efforts of all sizes (Davidson et al., 2014; Zook et al.,
2017; Peng et al., 2018). Given the SDM inequities between “big
science” and “small-science,” even these newer approaches may
remain beyond the grasp of small-scale research (Borycz and
Carroll, 2018).

The SDM strategies described in this paper may be self-
evident, but an abundance of literature seems to suggest that
Hale’s (1999,2000) observations regarding the poor state of SDM
persists even after two decades of data technology and knowledge
advancements. The scientific community runs the risk of losing
access to valuable research assets over time if SDM continues
to lag in smaller-scale research (Crowston and Qin, 2011). The
CRSI SDM illustration suggests that “small-science” does not
necessarily equate to “small data.” On the contrary, big data
assures us that vast amounts of data are available with just a
mouse-click, even if the SDM infrastructure tomanage them does
not exist.

The CRSI SDM approach demonstrates one potential model
for managing big data needs in a small-scale research setting. The
CRSI SDM framework is easy to understand and offers ample
opportunity to increase a research team’s SDM capacity when
data expertise is limited or unavailable. Big data management
can be messy. Lowndes et al. (2017) describes the transitioning

of the OHI SDM data processing methods for calculating
the index from a plodding and inefficient process to a cost-
effectiveness and highly functional data processing supported
research reproducibility and accessibility better. Open-source
tools such as freely available software packages (e.g., R-Project,
Python), collaboration and workflow platforms (e.g., GitHub,
Project Jupytr) and database engines (e.g., SQLite, MongoDB)
are a few tool-kits that may be considered for evolving the
CRSI SDM. Each enhancement would represent progress in
SDM life-cycle and a step toward best SDM practices. The
CRSI SDM approach could serve as starting point for small-
scale indicator research projects to successfully leverage big
data resources.

The current release of CRSI and domain sub-index measures
are available for 3135 counties in Portable Document Format
(PDF) as Appendix B in Summers, K. et al. (2017). An updated
suite of CRSI results are being reviewed presently. The next
release of CRSI data will be made available as a downloadable file
through the Data.gov portal (https://www.data.gov/) when the
review is complete.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

REFERENCES

Berman, F., and Cerf, V. (2013). Who will pay for public access to research data?

Science 341, 616–617. doi: 10.1126/science.1241625

Borgman, C. L. (2012). The conundrum of sharing research data. J. Am. Soc.

Inform. Sci. Technol. 63, 1059–1078. doi: 10.1002/asi.22634

Borycz, J., and Carroll, B. (2018). Managing digital research objects in an

expanding science ecosystem: 2017 conference summary. Data Sci. J. 17:16.

doi: 10.5334/dsj-2018-016

Boyd, D., and Crawford, K. (2012). Critical questions for big data: provocations for

a cultural, technological, and scholarly phenomenon. Inform. Commun. Soc. 15,

662–679. doi: 10.1080/1369118X.2012.678878

Buck, K. D., Summers, J. K., Smith, L. M., and Harwell, L. C. (2018).

Application of the human well-being index to sensitive population divisions:

a children’s well-being index development. Child Indicators Res. 11, 1249–1280.

doi: 10.1007/s12187-017-9469-4

Cai, L., and Zhu, Y. (2015). The challenges of data quality and data quality

assessment in the big data era. Data Sci. J. 14:2. doi: 10.5334/dsj-2015-002

Carlson, S., and Anderson, B. (2007). What are data? The many kinds of data and

their implications for data re-use. J. Comp. Mediated Commun. 12, 635–651.

doi: 10.1111/j.1083-6101.2007.00342.x

Carroll, M. W. (2015). Sharing research data and intellectual property law: a

primer. PLoS Biol. 13:e1002235. doi: 10.1371/journal.pbio.1002235

Cox, A. M., and Pinfield, S. (2014). Research data management and libraries:

current activities and future priorities. J. Librarianship Inform. Sci. 46, 299–316.

doi: 10.1177/0961000613492542

Crowston, K., and Qin, J. (2011). A capability maturity model for scientific data

management: evidence from the literature. Proc. Am. Soc. Inform. Sci. Technol.

48, 1–9. doi: 10.1002/meet.2011.14504801036

Cutter, S. L., Ash, K. D., and Emrich, C. T. (2014). The geographies

of community disaster resilience. Global Environ. Change 29, 65–77.

doi: 10.1016/j.gloenvcha.2014.08.005

Davidson, J., Jones, S., Molloy, L., and Kejser, U. B. (2014). Emerging

good practice in managing research data and research information within

UK Universities. Proc. Comp. Sci. 33, 215–222. doi: 10.1016/j.procs.2014.

06.035

Davis-Kean, P. E., Jager, J., and Maslowsky, J. (2015). Answering developmental

questions using secondary data. Child Dev. Perspect. 9, 256–261.

doi: 10.1111/cdep.12151

DeMauro, A., Greco,M., andGrimaldi,M. (2015). “What is big data? A consensual

definition and a review of key research topics,” in AIP Conference Proceedings

Vol. 1644 (Madrid), 97–104.

Demchenko, Y., Grosso, P., De Laat, C., and Membrey, P. (2013). “Addressing big

data issues in scientific data infrastructure,” in Collaboration Technologies and

Systems (CTS), 2013 International Conference on. IEEE, 48–55.

Dietrich, D., Adamus, T., Miner, A., and Steinhart, G. (2012). De-mystifying

the data management requirements of research funders. Issues Sci. Technol.

Librarianship 70. doi: 10.5062/F44M92G2

Everyone Needs a Data-Management Plan (2018). Nature 555:286. [Editorial].

Available oniline at: https://www.nature.com/articles/d41586-018-03065-z

(accessed July 10, 2018)

Floridi, L., and Taddeo, M. (2016). What is data ethics? Phil. Trans. R. Soc. A 374:

20160360. doi: 10.1098/rsta.2016.0360

Gray, J., Liu, D. T., Nieto-Santisteban, M., Szalay, A., DeWitt, D. J., and Heber, G.

(2005). Scientific data management in the coming decade. Acm Sigmod Record

34, 34–41. doi: 10.1145/1107499.1107503

Hale, S. S. (1999). How to manage data badly (part 1). Bull. Ecol. Soc. Am.

80, 265–268.

Hale, S. S. (2000). How to manage data badly (part 2). Bull. Ecol. Soc. Am. 81,

101–103. doi: 10.1890/0012-9623(2000)086[0101:C]2.0.CO;2

Hale, S. S., Miglarese, A. H., Bradley, M. P., Belton, T. J., Cooper, L. D., Frame, M.

T., et al. (2003). “Managing troubled data: coastal data partnerships smooth

data integration,” in Coastal Monitoring through Partnerships (Dordrecht:

Springer), 133–148.

Frontiers in Environmental Science | www.frontiersin.org 12 June 2019 | Volume 7 | Article 72

https://www.data.gov/
https://doi.org/10.1126/science.1241625
https://doi.org/10.1002/asi.22634
https://doi.org/10.5334/dsj-2018-016
https://doi.org/10.1080/1369118X.2012.678878
https://doi.org/10.1007/s12187-017-9469-4
https://doi.org/10.5334/dsj-2015-002
https://doi.org/10.1111/j.1083-6101.2007.00342.x
https://doi.org/10.1371/journal.pbio.1002235
https://doi.org/10.1177/0961000613492542
https://doi.org/10.1002/meet.2011.14504801036
https://doi.org/10.1016/j.gloenvcha.2014.08.005
https://doi.org/10.1016/j.procs.2014.06.035
https://doi.org/10.1111/cdep.12151
https://doi.org/10.5062/F44M92G2
https://www.nature.com/articles/d41586-018-03065-z
https://doi.org/10.1098/rsta.2016.0360
https://doi.org/10.1145/1107499.1107503
https://doi.org/10.1890/0012-9623(2000)086[0101:C]2.0.CO;2
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Harwell et al. Small-Scale Indicator Research Data Management

Halpern, B. S., Longo, C., Hardy, D., McLeod, K. L., Samhouri, J. F., Katona, S.

K., et al. (2012). An index to assess the health and benefits of the global ocean.

Nature 488:615. doi: 10.1038/nature11397

Hampton, S. E., Strasser, C. A., Tewksbury, J. J., Gram, W. K., Budden, A. E.,

Batcheller, A. L., et al. (2013). Big data and the future of ecology. Front. Ecol.

Environ. 11, 156–162. doi: 10.1890/120103

Harzing, A. W. (2007). Publish or Perish. Available online at: http://www.harzing.

com/pop.htm (accessed August 22, 2018)

Helliwell, J., Layard, R., and Sachs, J. (2019). World Happiness Report 2019.

New York, NY: Sustainable Development Solutions Network. Available online

at: http://worldhappiness.report/ed/2019/

Holdren, J. P. (2013, February 22). Increasing Access to the Results of

Federally Funded Scientific Research. Washington, DC: Executive Office

of the President, Office of Science and Technology Policy. Available

online at: https://obamawhitehouse.archives.gov/sites/default/files/microsites/

ostp/ostp_public_access_memo_2013.pdf

Homer, C. G., Dewitz, J. A., Yang, L., Jin, S., Danielson, P., Xian, G., et al. (2015).

Completion of the 2011 National Land Cover Database for the conterminous

United States-Representing a decade of land cover change information.

Photogr. Eng. Remote Sensing 81, 345–354.

Jenkins, C. N., Van Houtan, K. S., Pimm, S. L., and Sexton, J. O., (2015). U.S.

protected lands mismatch biodiversity priorities. Proc Natl Acad Sci USA. 112,

5081–5086. doi: 10.1073/pnas.1418034112

Jha, M., Jha, S., and O’Brien, L. (2015). “Integrating big data solutions into

enterprize architecture: constructing the entire information landscape,” in

The International Conference on Big Data, Internet of Things, and Zero-Size

Intelligence BIZ2015 (Kuala Lumpur), 8–10.

Link, G. J., Lumbard, K., Conboy, K., Feldman, M., Feller, J., George, J., et al.

(2017). Contemporary issues of open data in information systems research:

considerations and recommendations. Commun. Assoc. Inform. Syst. 41:25.

doi: 10.17705/1CAIS.04125

Lowndes, J. S. S., Best, B. D., Scarborough, C., Afflerbach, J. C., Frazier, M.

R., O’Hara, C. C., et al. (2017). Our path to better science in less time

using open data science tools. Nat Ecol Evol. 1:0160. doi: 10.1038/s41559-01

7-0160

Lynch, C. (2008). Big data: how do your data grow? Nature 455:28.

doi: 10.1038/455028a

Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., and Villa, F.

(2007). An ontology for describing and synthesizing ecological observation

data. Ecol. Inform. 2, 279–296. doi: 10.1016/j.ecoinf.2007.05.004

Mooney, P., and Winstanley, A. C. (2007). “Improving environmental research

data management,” in EnviroInfo 2007. Paper presented at the 21st International

Conference for Environmental Protection Part 1, Warsaw, Poland, 12-14

September, eds O. Hryniewicz, J. Studzinski, andM. Romaniuk (Aachen: Shaker

Verlag), 473–477.

Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., and Giovannini, E.

(2005).Handbook on Constructing Composite Indicators: Methodology and User

Guide, OECD Statistics Working Papers, OECD Publishing, Paris.

Niemeijer, D., and de Groot, R. S. (2008). A conceptual framework

for selecting environmental indicator sets. Ecol. Indicators 8, 14–25.

doi: 10.1016/j.ecolind.2006.11.012

OECD (2017). How’s Life? 2017: Measuring Well-being. Paris: OECD Publishing.

Peng, G., Privette, J. L., Tilmes, C., Bristol, S., Maycock, T., Bates, J. J., et al. (2018).

A conceptual enterprise framework for managing scientific data stewardship.

Data Sci. J. 17:15. doi: 10.5334/dsj-2018-015

Pilat, D., and Fukasaku, Y. (2007). OECD principles and guidelines for

access to research data from public funding. Data Sci. J. 6, OD4–OD11.

doi: 10.2481/dsj.6.OD4

Piwowar, H. A., Day, R. S., and Fridsma, D. B. (2007). Sharing detailed

research data is associated with increased citation rate. PLoS ONE 2:e308.

doi: 10.1371/journal.pone.0000308

Sansone, S.-A., Cruse, P., and Thorley, M. (2018). High-quality science

requires high-quality open data infrastructure. Sci. Data 5:180027.

doi: 10.1038/sdata.2017.27

Simms, S., Strong, M., Jones, S., and Ribeiro, M. (2016). The future of data

management planning: tools, policies, and players. Int. J. Digital Curation 11,

208–217. doi: 10.2218/ijdc.v11i1.413

Smith, L. M., Case, J. L., Smith, H. M., Harwell, L. C., and Summers, J. K. (2013).

Relating ecosystem services to domains of human well-being: foundation for a

US index. Ecol. Indicators 28, 79–90. doi: 10.1016/j.ecolind.2012.02.032

Submarine Telecoms (2017). Industry Report 6th Edition. Issuu. Available online

at: https://issuu.com/subtelforum/docs/stfindustryreportissue6final (accessed

October 15, 2017).

Summers, J. K., Harwell, L. C., Smith, L. M., and Buck, K. D. (2018). Measuring

community resilience to natural hazards: the natural hazard resilience

screening index (NaHRSI)—development and application to the United States.

GeoHealth 2, 372–394. doi: 10.1029/2018GH000160

Summers, J. K., Smith, L. M., Harwell, L. C., and Buck, K. D. (2017).

Conceptualizing holistic community resilience to climate events:

foundation for a climate resilience screening index. GeoHealth, 1, 151–164.

doi: 10.1002/2016GH000047

Summers, K., Harwell, L., Buck, K., Smith, L., Vivian, D., Bousquin, J., et al. (2017).

Development of a Climate Resilience Screening Index (CRSI): An Assessment

of Resilience to Acute Meteorological Events and Selected Natural Hazards.

Washington, DC: U.S. Environmental Protection Agency.

United Nations Development Programme (2018).Human development indices and

indicators: 2018 Statistical update. Available online at: http://hdr.undp.org/en/

content/human-development-indices-indicators-2018-statistical-update

Vayena, E., and Tasioulas, J. (2016). The dynamics of big data and human

rights: the case of scientific research. Phil. Trans. R. Soc. A, 374:20160129.

doi: 10.1098/rsta.2016.0129

Wendling, Z. A., Emerson, J. W., Esty, D. C., Levy, M. A., de Sherbinin, A., et al.

(2018). 2018 Environmental Performance Index. New Haven, CT: Yale Center

for Environmental Law & Policy. Available online at: https://epi.yale.edu/

Zook, M., Barocas, S., Crawford, K., Keller, E., Gangadharan, S. P., Goodman, A.,

et al. (2017). Ten simple rules for responsible big data research. PLoS Comput.

Biol. 13:e1005399. doi: 10.1371/journal.pcbi.1005399

Disclaimer: The views expressed in this manuscript are those of the authors

and do not necessarily represent the views or policies of the U.S. Environmental

Protection Agency. Any mention of trade names, products, or services does

not imply an endorsement by the U.S. Government or the U.S. Environmental

Protection Agency. The EPA does not endorse any commercial products, services,

or enterprises.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Harwell, Vivian, McLaughlin and Hafner. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Environmental Science | www.frontiersin.org 13 June 2019 | Volume 7 | Article 72

https://doi.org/10.1038/nature11397
https://doi.org/10.1890/120103
http://www.harzing.com/pop.htm
http://www.harzing.com/pop.htm
http://worldhappiness.report/ed/2019/
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/ostp_public_access_memo_2013.pdf
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/ostp_public_access_memo_2013.pdf
https://doi.org/10.1073/pnas.1418034112
https://doi.org/10.17705/1CAIS.04125
https://doi.org/10.1038/s41559-017-0160
https://doi.org/10.1038/455028a
https://doi.org/10.1016/j.ecoinf.2007.05.004
https://doi.org/10.1016/j.ecolind.2006.11.012
https://doi.org/10.5334/dsj-2018-015
https://doi.org/10.2481/dsj.6.OD4
https://doi.org/10.1371/journal.pone.0000308
https://doi.org/10.1038/sdata.2017.27
https://doi.org/10.2218/ijdc.v11i1.413
https://doi.org/10.1016/j.ecolind.2012.02.032
https://issuu.com/subtelforum/docs/stfindustryreportissue6final
https://doi.org/10.1029/2018GH000160
https://doi.org/10.1002/2016GH000047
http://hdr.undp.org/en/content/human-development-indices-indicators-2018-statistical-update
http://hdr.undp.org/en/content/human-development-indices-indicators-2018-statistical-update
https://doi.org/10.1098/rsta.2016.0129
https://epi.yale.edu/
https://doi.org/10.1371/journal.pcbi.1005399
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	Scientific Data Management in the Age of Big Data: An Approach Supporting a Resilience Index Development Effort
	Introduction
	Approach
	The CRSI SDM Concept
	Data Collection
	Data Acceptance
	Assessing CRSI Data Quality and Suitability

	Tools for Literature and Data Acquisition/Processing
	Organization and Storage of CRSI Data Resources
	CRSI Data Construct
	Geospatial Data

	CRSI Data Security and Data Operations Continuity

	Example Outcomes from Highlighted SDM Processes
	Characteristics of the Reviewed Literature and Secondary-Data
	CRSI Results: Index, Domains, Indicators, and Metrics
	Data Quality Assessments
	CRSI Data Warehouse

	Discussion
	Author Contributions
	References


