
ORIGINAL RESEARCH
published: 22 August 2019

doi: 10.3389/fenvs.2019.00113

Frontiers in Environmental Science | www.frontiersin.org 1 August 2019 | Volume 7 | Article 113

Edited by:

Philippe C. Baveye,

AgroParisTech Institut des Sciences et

Industries du Vivant et de

L’environnement, France

Reviewed by:

Daniela Businelli,

University of Perugia, Italy

Estelle Couradeau,

Lawrence Berkeley National

Laboratory, United States

*Correspondence:

Michiel Rutgers

michiel.rutgers@rivm.nl

Specialty section:

This article was submitted to

Soil Processes,

a section of the journal

Frontiers in Environmental Science

Received: 05 March 2019

Accepted: 01 July 2019

Published: 22 August 2019

Citation:

van Leeuwen JP, Creamer RE,

Cluzeau D, Debeljak M, Gatti F,

Henriksen CB, Kuzmanovski V,

Menta C, Pérès G, Picaud C,

Saby NPA, Trajanov A,

Trinsoutrot-Gattin I, Visioli G and

Rutgers M (2019) Modeling of Soil

Functions for Assessing Soil Quality:

Soil Biodiversity and Habitat

Provisioning.

Front. Environ. Sci. 7:113.

doi: 10.3389/fenvs.2019.00113

Modeling of Soil Functions for
Assessing Soil Quality: Soil
Biodiversity and Habitat Provisioning

Jeroen P. van Leeuwen 1, Rachel E. Creamer 2, Daniel Cluzeau 3, Marko Debeljak 4,

Fabio Gatti 5, Christian B. Henriksen 6, Vladimir Kuzmanovski 4, Cristina Menta 5,

Guénola Pérès 7, Calypso Picaud 8, Nicolas P. A. Saby 9, Aneta Trajanov 4,

Isabelle Trinsoutrot-Gattin 10, Giovanna Visioli 5 and Michiel Rutgers 11*

1Mathematical and Statistical Methods Group, Department of Plant Sciences, Wageningen University and Research,

Wageningen, Netherlands, 2 Soil Biology Group, Department of Environmental Sciences, Wageningen University and

Research, Wageningen, Netherlands, 3UMR EcoBio, University of Rennes, Paimpont, France, 4Department of Knowledge

Technologies, Jozef Stefan Institute, Ljubljana, Slovenia, 5Department of Chemistry, Life Sciences and Environmental

Sustainability, University of Parma, Parma, Italy, 6Department of Plant and Environmental Sciences, Faculty of Science,

University of Copenhagen, Taastrup, Denmark, 7UMR SAS, Agrocampus Ouest, INRA Rennes, Rennes, France, 8 INRA

Observatoire du Développement Rural, Toulouse, France, 9 INRA Infosol, Orléans, France, 10UniLaSalle, AGHYLE, Rouen,

France, 11National Institute for Public Health and the Environment, Bilthoven, Netherlands

Soil biodiversity and habitat provisioning is one of the soil functions that agricultural land

provides to society. This paper describes assessment of the soil biodiversity function

(SB function) as a proof of concept to be used in a decision support tool for agricultural

land management. The SB function is defined as “the multitude of soil organisms and

processes, interacting in an ecosystem, providing society with a rich biodiversity source

and contributing to a habitat for aboveground organisms.” So far, no single measure

provides the full overview of the soil biodiversity and how a soil supports a habitat for

a biodiverse ecosystem. We have assembled a set of attributes for a proxy-indicator

system, based on four “integrated attributes”: (1) soil nutrient status, (2) soil biological

status, (3) soil structure, and (4) soil hydrological status. These attributes provide

information to be used in a model for assessing the capacity of a soil to supply the SB

function. A multi-criteria decision model was developed which comprises of 34 attributes

providing information to quantify the four integrated attributes and subsequently assess

the SB function for grassland and for cropland separately. Themodel predictions (in terms

of low—moderate—high soil biodiversity status) were compared with expert judgements

for a collection of 137 grassland soils in the Netherlands and 52 French soils, 29

grasslands, and 23 croplands. For both datasets, the results show that the proposed

model predictions were statistically significantly correlated with the expert judgements.

A sensitivity analysis indicated that the soil nutrient status, defined by attributes such

as pH and organic carbon content, was the most important integrated attribute in the

assessment of the SB function. Further progress in the assessment of the SB function

is needed. This can be achieved by better information regarding land use and farm
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management. In this way we may make a valuable step in our attempts to optimize the

multiple soil functions in agricultural landscapes, and hence the multifaceted role of soils

to deliver a bundle of ecosystem services for farmers and citizens, and support land

management and policy toward a more sustainable society.

Keywords: ecosystem service, soil function, soil biodiversity, land management, qualitative modeling, Europe,

habitat provisioning

INTRODUCTION

Soil is an extremely valuable resource for life on our
planet. Soils contribute essentially to agricultural productivity,
the environmental cycling of energy, carbon and nutrients,
water regulation, climate regulation, disease suppressiveness,
natural attenuation and purification, and the provision of
biodiverse communities below–and aboveground. Ongoing
human activities form severe threats to our soils, in terms of land
use change, soil contamination, soil degradation, desertification,
and soil sealing leading to the loss of the soils functionality
for ecosystems and mankind (JRC, 2010a; FAO ITPS, 2015;
Orgiazzi et al., 2016).

In the last decades, starting with a monodimensional view on
soil health (e.g., Doran and Zeiss, 2000), soil quality has been
increasingly approached by expressing it in terms of the capacity
of the soil to deliver multiple ecosystem services (e.g., Lavelle
et al., 2006; Dominati et al., 2010; Mulder et al., 2011; Robinson
et al., 2013; Schulte et al., 2014; Baveye et al., 2016; Keesstra
et al., 2016; Vogel et al., 2018). The reason to do so lies in our
ambition to use, protect and manage our soils in such a way that
the soil sustainably delivers the ecosystem services we request.
This approach implies that in order tomake our soil management
effective and successful, we should have measurable indicators
of the soil’s contribution to independently deliver a suite of
ecosystem services, in this study we use the term soil functions.
For some soil functions relatively easy indicators can be used,
for example agricultural yield for the agricultural productivity
service. For other soil functions it becomes more difficult. For
example, soil as environmental buffer for nutrients should be
based on the multidimensional complex of nutrient pools and
fluxes present in soil at several spatial and temporal scales, and
the interplay among them.

A soil function that poses also a challenge for defining
measurable and understandably indicators of the provision of
ecosystem services by the soil is the so-called habitat function,
i.e., the provision of habitats for species rich communities, below
as well as aboveground. Belowground, soils harbor an incredible
amount of organisms with a vast diversity exceeding that in all
other environmental compartments (Orgiazzi et al., 2016). The
soil biota are seen as key players in many soil functions, such as
nutrient cycling and carbon sequestration, but are thought to be
also important for the soil as habitat for aboveground biological
diverse communities (Lavelle et al., 2006; Mulder et al., 2011).

In the H2020 project LANDMARK (Land Management:
Assessment, Research, Knowledge base), “Soil biodiversity and
habitat provision” (SB) is one of the five soil functions that
is considered as part of sustainable land management (Schulte

et al., 2014). One of the aims of the LANDMARK project is
to come up with science based sustainable soil management
schemes, with the development of five indicators for the various
soil functions. In this issue, these indicators are presented in a
set of articles.1 The fifth soil function indicator was published
earlier (Schröder et al., 2016). Up until now no formula or
index to quantify soil biodiversity that is universally accepted
and applicable (Bastida et al., 2006; Bünemann et al., 2018) and
no comprehensive decision-support model for the assessment
of SB is available (Havlicek, 2012). This is due to the lack of
a clear and accepted definition of the SB function, to the low
standardization in soil biological methods, and to the difficulties
in addressing spatial scale (Bastida et al., 2006). Hence we lack
affordable, yet robust and reliable, proxy-indicator systems for
the SB function that capture the different dimensions of the
SB function, such as presence, abundance and activity of the
soil organisms, soil ecosystem process rates, and the provision
of habitats for aboveground species rich communities (Maes
et al., 2016; Yu et al., 2017). Many contributions in the field of
soil ecology have only focused on separate species of functional
groups of organisms, for instance earthworms (Lavelle et al.,
2006), micro-arthropods (Parisi et al., 2005; Menta et al., 2011,
2018), nematodes (Yeates et al., 1997), microorganisms (Winding
et al., 2005; Bloem et al., 2006; Romaniuk et al., 2011). On
the other side of the scientific spectrum, there have been built
complex models for soil functioning and biodiversity which need
a vast amount of essential soil attribute information, making
these models less appropriate for routine analysis (De Ruiter
et al., 1993; Mulder et al., 2011). An exception is the approach
by Lima et al. (2013) who showed practical options to reduce
the number of indicators while retaining enough discriminatory
power to assess soil quality. This analysis did however only
include a small part of soil biodiversity (microbes, earthworms)
neglecting the presence and abundance of e.g., nematodes and
micro-arthropods, which makes it, in our view, less appropriate
for the assessment of the SB function. In addition, important
aspects of soil management were not assessed in the analysis.

The present paper describes a novel approach to assess the SB
function and its first application on two soil datasets covering
information on soil biodiversity, soil ecosystem functioning, and
soil management. These datasets comprise of 137 grassland soils
in the Netherlands and 52 soils in France (Brittany), of which 29
grasslands and 23 croplands.

1This issue of Frontiers in Environmental Science will contain all or a selection
of the following papers on soil function models from the H2020 LANDMARK
project: Debeljak et al. (2019), Sandén et al. (2019), Delgado et al. (submitted), Van
de Broek et al. (submitted).
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BOX 1 | The multitude of soil organisms and processes, interacting in an

ecosystem, making up a signi�cant part of the soil’s natural capital and

providing society with a wide range of ecosystem services.

Dissecting the definition:

1. Multitude of soil organisms: this comprises communities, populations,

species, genes, molecules and enzymes. It is focusing specifically on the

living parts of the soil.

2. Processes: this comprises ecological processes.

3. Interacting in an ecosystem: together with 1 and 2 this comprises

dynamics, food webs, trophic interactions, non-trophic interactions, and

soil habitat characteristics.

4. Natural capital: this links the soil function to the stocks of soil biodiversity

and to contributions to the habitat for above ground organisms

(Maes et al., 2013).

5. Providing society with soil-related ecosystem services: this configures the

soil function for usage in National Ecosystem Assessments (Maes et al.,

2013), and contributes to solving the Sustainable Development Goals

(Dominati et al., 2010; Mulder et al., 2011; Robinson et al., 2013; Baveye

et al., 2016; Keesstra et al., 2016).

Basic in the proposed approach is our working definition of
SB as “the multitude of soil organisms and processes, interacting
in an ecosystem, providing society with a rich biodiversity
source and contributing to a habitat for above ground
organisms” (Box 1).

The approach toward the SB function will be specifically
focused on the community of soil organisms, including trophic
and non-trophic interactions of soil organisms, together with
habitat modifying properties such as nutrient availability,
and physical and chemical soil conditions. In this way the
definition of the SB function also captures aboveground
biodiversity, e.g., in terms of diversity in plant communities
(e.g., De Deyn and Van Der Putten, 2005), or bird populations
(e.g., Roodbergen et al., 2008).

The search for an indicator for the SB function has recently
gained momentum given the goals of the Convention on
Biological Diversity (CBD) and the Sustainable Development
Goals (SDGs) (Keesstra et al., 2016). In addition, the recently held
UN-CBD meeting (COP 14) has requested the FAO to perform a
world-wide assessment of soil biodiversity by 2020.

Our methodology will approach the SB function by gathering
information on soil biodiversity in a multi-attribute manner. In
our approach we assembled attributes for an indicator system of
the SB function using a hierarchical structure of four integrated
attributes: (1) soil nutrient status, (2) soil biological status, (3)
soil structure, and (4) soil hydrological status, following Van
Leeuwen et al. (2017). The total amount of soil information
provided by these four integrated attributes was used to assess
the SB function together with the assessment of four other soil
functions using partly the same input data in order to support
farmers and farm advisors at local scale and policymakers at
regional scales.

The proposed approach is meant to be seen as a first attempt
and as a proof of concept. Upon further development additional
attributes may foster an improved soil function assessment.
As a first attempt we have restricted our concept to focus

on belowground biodiversity and soil ecosystem processes,
excluding information on aboveground biodiversity. As proof
of concept we will compare the outcome of the proposed
methodology with an alternative assessment of the soil SB
function based on expert judgement for 137 grasslands in the
Netherlands (Mulder et al., 2005b; Rutgers et al., 2009; Schouten
et al., 2014) as well as for 52 sites in Brittany France (Cluzeau
et al., 2012; Ponge et al., 2013; Villenave et al., 2013).

MATERIALS AND METHODS

Structure of the Decision Model
(DEX Model)
We developed a decision model according to the DEX (decision
expert) model structure (Bohanec et al., 2007) to quantify
the capacity of a soil to supply the function soil biodiversity
and habitat provision (SB function). The model quantifies
the capacity of a soil to support the supply SB function
at three levels, i.e., low, moderate or high. The structure
of the model has the form of a Multi-Criteria Decision
Analysis, including quantifiable or measurable “attributes” of
the soil combined with expert judgement (Debeljak et al.,
this issue). Within the DEX model we developed two sub-
models, one for grassland and one for cropland, as they function
very differently with respect to the management attributes.
Approaching grasslands and croplands in the same way would
reduce the versatility and sensitivity of the model for the SB
function and limit the provisioning of useful advice to farmers
and other stakeholders.

In total, 32 (grassland model) or 31 (cropland model)
attributes (Table 1, Figure 1), were combined in a hierarchical
DEX model to make a first-tier assessment of the SB function.
Data availability may sometimes be limited (especially for the
biological attributes) leading to an incomplete set of attributes
to make an assessment. For this reason, we implemented a no
data category for these attributes, to ensure that the model is
able to provide a performance estimate despite incomplete input
data, responsibly addressing the amount of information that
is available in the remaining quantified attributes. Obviously,
the model output improves considerably, the more input data
are available.

An attribute is defined as a piece of quantifiable information of
the ecosystem, including the information from the environment,
climate, hydrology, geographic characteristics, land and soil
management and which can be used to quantify and to assess
the SB function. Only attributes that can be linked in a statistical
or mechanistic way to the SB function were used in these
models. The models distinguish attributes in three categories, i.e.,
soil properties (S), environmental factors (E), and management
practices (M). These attributes together fill the S × E × M
matrix (Turbé et al., 2010; Schulte et al., 2014; Vogel et al., 2018).
This three-dimensional matrix addresses the interrelationships
between the various attributes. Soil properties (S) include static
attributes such as soil texture, and dynamic attributes, such as soil
biological attributes (e.g., soil organism abundance, richness) and
soil organic matter content. S attributes can have a different effect
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TABLE 1 | Description of attributes used in the decision model of soil biodiversity

and habitat provisioning and their respective units used.

Type Attribute Unit Description

E Annual precipitation mm Average yearly

precipitation

E Average annual temperature ◦C Average yearly

temperature

S Soil pH – Soil pH, measured as

pH (CaCl2 soil: water

1:2.5)

S Soil organic matter % Soil organic matter

content in the topsoil

S Thickness of organic layer cm Thickness of organic

layer (A horizon)

S Soil C:N ratio – Soil C:N ratio (Total

C/Total N)

S Soil N:P ratio – Soil N:P ratio (Total

N/Total P)

S Bacterial biomass mg C/kg dry soil Bacterial biomass

S Fungal biomass mg C/kg dry soil Fungal biomass

S Earthworm richness # species per 100

individuals

Earthworm specie

richness

S Earthworm abundance # m−2 Earthworm abundance

S Nematode richness # genera per 150

individuals

Nematode genus

richness

S Nematode abundance # 100 g−1 fresh

soil

Nematode abundance

S Microarthropod richness # families per 100

individuals

Microarthropod family

richness

S Microarthropod abundance # m−2 Microarthropod

abundance

S Enchytraeid richness # species per 70

individuals

Enchytraeid species

richness

S Enchytraeid abundance # m−2 Enchytraeid abundance

S Soil texture – 3 classes: WRB

classification system

S Soil bulk density kg dm−3 Soil bulk density

S Groundwater table depth m Depth of groundwater

table

M Liming Yes/no Application of liming

M Mineral N fertilization kg N ha−1 y−1 Amount of

plant-available N

applied per ha per year

M Manure type – Type of manure applied

(slurry, manure,

compost, etc.)

M Legume presence % Percentage of legumes

in grassland

M Chemical pest management Yes/no Application of chemical

pesticides

M Mechanical pest management Yes/no Application of

mechanical weeding

M Grassland type – Type of grassland

M Grassland diversity # Number of grass/herb

species sown

M Grassland in rotation Yes/no Inclusion of grassland

in rotation

(Continued)

TABLE 1 | Continued

Type Attribute Unit Description

M Number of crops in rotation # Number of crop types

during last 5 years

M Type of crops in rotation – Cash crops, grass or

grains, legumes, crop

mixtures, and

intercropping

M Catch crops #3 years Frequency of catch

crops in rotation during

last 5 years

M Tillage – No tillage,

non-inversion or

intermittent tillage, or

conventional tillage

M Stocking density LSU ha−1 Livestock density in

Livestock units

M Months in field # month Time spent in the field

by livestock

M Irrigation Yes/no Presence of sprinklers,

drippers or ditches for

providing water

M Artificial drainage Yes/no Presence of tile drains,

ditches, furrows, or

pipes

on the SB function depending on the value of environmental (E),
for example climatic zone, and management (M) attributes, for
example application of manure or tillage. Similarly, particular
management practices can be highly valued in one climatic
zone, but may have little influence in other climatic zones.
These differences in the model between climatic zones are not
visible in the model structure, but threshold values have been
created (based on available literature and expert knowledge) for
each climatic zone separately, marking model responses as low,
moderate or high per attribute (Table 2). Hence, the absolute
value for any one attribute, may fall into category “high” in one
climatic zone but “moderate” or even “low” in another climatic
zone (for example, a soil pH(CaCl2) of 5 is considered “moderate”
in the Atlantic zone, but “low” in the Mediterranean zone)
(JRC, 2010b).

Following decision rules according to the method described
by Bohanec et al. (2007) and Debeljak et al. (this issue) the basic
attributes appear as the leaves of a decision tree and these are
aggregated at multiple steps into small branches and then larger
branches. The largest branches of the decision tree are referred
to as “integrated attributes” (Figure 1). Four integrated attributes
exist in the DEX model: (1) soil nutrient status: representing
the pools and fluxes and availability of nutrients for plants and
soil organisms (including C, N, P, K, and micronutrients); (2)
soil biodiversity status: representing diversity, abundance, and
activity of soil organisms and related management practices; (3)
soil structure: representing information on soil structure, ranging
from mesoscale (coarse fractions, soil texture classes, organic
matter, air and water-filled space, density, and compaction) to
macroscale (soil layers, terrain, slope); and (4) soil hydrological
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FIGURE 1 | Cropland model structure, showing the build-up of the soil function from basic attributes, via one or more aggregation steps, into four “integrated

attributes” and finally to the holistic assessment of the SB function. Some of the management attributes in the integrated attributes biology and structure were

changed to adjust the model to grassland cases (inset).

status: representing all processes and elements that contain
information on the hydrological status of the soil, such
as humidity, the flows of water, and drainage status. The
combination of these four integrated attributes together provide
the information for the assessment of the SB function in terms of
“low,” “moderate,” and “high.”

The decision rules of the model were defined by soil
ecology experts (i.e., the authors of this paper, with the
exception of Guenola Pérès who was an independent expert
for the French sites). The threshold and categorical values of
attributes to be used in the decisions rules can be found in
Table S1 (Supplementary section). At each stage of branching
of the model, integration rules apply, for example, a “high”
earthworm abundance and “low” earthworm richness lead
to “moderate” earthworm diversity (Rutgers et al., 2016).
Another example is that in acidic soils liming leads to a
higher soil biodiversity, in particular for earthworms (McCallum
et al., 2016). In this process of integrating attributes, some
attributes were considered as more important than others,
and thereby having a larger effect in the decision rules. The
weights (importance) of attributes are presented in Table 2.
There are two types of weights. Local weights represent
the importance of an attribute for the following (or next)
aggregated attribute, for example earthworm abundance and

richness each count for 50% of earthworm diversity, at the
next level of attributes, which by itself counts for 25% of
the next level attribute “faunal.” Global weights represent the
importance of the attribute in the overall model, for example
earthworm abundance then only determines 1% of the overall
model output.

Two sub-models were developed, one for croplands (Figure 1)
and one for grasslands (Figure 1-inset), which differed in
incorporation of specific management practices, e.g., tillage and
crop rotation characteristics in the cropland model, grazing
and grass management characteristics in the grassland model.
Also the threshold values of some attributes classifying data in
low, moderate, or high classes are different between models.
For example, in grassland most values of biological attributes
(abundances, richness) are higher than in cropland due to the
often lower agricultural land use intensity (Eggleton et al., 2005;
Plassart et al., 2008; Rutgers et al., 2009; Cluzeau et al., 2012;
Tsiafouli et al., 2015), and threshold values were set accordingly
(higher in grasslands).

Netherlands Soil Monitoring Network
Expert Assessment
As comparison for the DEX model we used a soil
biodiversity/quality assessment obtained by expert judgements.
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TABLE 2 | Weights of attributes in grassland and cropland models.

Attribute Grassland Cropland

Soil biodiversity and habitat Local Global Local Global

Nutrients 39 39 38 38

pH condition 30 12 31 12

Liming 50 6 50 6

Soil pH 50 6 50 6

Nutrient content 35 14 38 15

Organic matter quantity 50 7 50 7

Soil organic matter 50 3 50 4

Thickness organic-rich layer 50 3 50 4

Organic quality 50 7 50 7

Soil C:N ratio 50 3 57 4

Soil N:P ratio 50 3 43 3

Nutrient inputs 35 14 31 12

Mineral N fertilization 50 7 50 6

Manure type 50 7 50 6

Biology 33 33 29 29

Soil biota 35 11 44 13

Faunal 50 6 50 6

Earthworm diversity 25 1 25 2

Earthworm richness 50 1 50 1

Earthworm abundance 50 1 50 1

Nematode diversity 25 1 25 2

Nematode richness 50 1 50 1

Nematode abundance 50 1 50 1

Microarthropod diversity 25 1 25 2

Microarthropod richness 50 1 50 1

Microarthropod abundance 50 1 50 1

Enchytraeid diversity 25 1 25 2

Enchytraeid richness 50 1 50 1

Enchytraeid abundance 50 1 50 1

Microbial 50 6 50 6

Bacterial biomass 50 3 50 3

Fungal biomass 50 3 50 3

Management* 65 21 NA NA

Grassland 57 12 NA NA

Grassland type 32 4 NA NA

Grassland diversity 36 4 NA NA

Legume presence 32 4 NA NA

Pest management 43 9 NA NA

Chemical pest management 67 6 NA NA

Mechanical pest management 33 3 NA NA

Management* NA NA 56 16

Grassland in rotation NA NA 34 5

Crop diversity NA NA 32 5

Number of crops in rotation NA NA 27 1

Type of crops in rotation NA NA 38 2

Catch crops NA NA 35 2

Chemical pest management NA NA 34 5

Structure 14 14 20 20

Soil attributes 50 7 50 10

(Continued)

TABLE 2 | Continued

Attribute Grassland Cropland

Soil biodiversity and habitat Local Global Local Global

Soil texture 50 4 50 5

Soil bulk density 50 4 50 5

Management attributes* 50 7 NA NA

Stocking rate 50 4 NA NA

Number of months in fields 50 4 NA NA

Management attributes* NA NA 50 10

Tillage NA NA 100 10

Hydrology 14 14 13 13

Environmental attributes 33 5 33 4

Average annual temperature 17 1 17 1

Annual precipitation 83 4 83 4

Soil related 33 5 33 4

Groundwater table depth 100 5 100 4

Management related 33 5 33 4

Irrigation 50 2 50 2

Artificial drainage 50 2 50 2

The weights are the result of the integration rules, and not determined beforehand. The

Management sections marked with a *represent parts of the model trees that differ

between the grassland and cropland models.

The outcome of the DEX model for the 137 Dutch sites
were compared with the expert ranking of the data from
the Netherlands Soil Monitoring Network [NSMN; (Mulder
et al., 2005a; Rutgers et al., 2009)]. In the NSMN biological
and chemical soil attributes and land management attributes
were analyzed in a routine procedure, each year with a
sampling period in the spring (March–June) at approximately
40 sites. The monitoring and sampling design is described
in Rutgers et al. (2009). In total, data from 137 grasslands
(for dairy farming) on sand were selected from the first
monitoring cycle from 1999 to 2003. This set was selected
because some additional data on land management were
also available. Four types of grasslands of dairy farms were
present in the dataset: organic, conventional, intensive, and
extensive dairy farms with an additional livestock system (pigs
and/or poultry).

Eight professionals involved in the NSMN with track
records in soil quality assessment were asked to use their
expertise in soil and land management attributes and
independently rank this set of 137 sites according to
their estimation of the performance of the SB function.
The judgements were based on biological information,
including presence, abundance, activity and diversity of
enchytraeids, earthworms, nematodes, micro-arthropods,
bacteria, and soil management, including percentage of
grassland and livestock density. For more details regarding the
methods for analyzing the underlying data in the NSMN see
Rutgers et al. (2009).

The following rules were applied for the ranking (between
brackets the weight factor of the information contributing to the
attribute score) (Schouten et al., 2014):
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• Enchytraeid community: number of genera (2), abundance
(4), percentage of Friderica species (1), Functional group
diversity [1/ sum (0.0001+N∧2)] (2)

• Earthworm community: abundance (4), number of taxa (2)
percentage of litter decomposers (2) percentage of anecic
earthworms (2), functional group diversity (1)

• Nematode community: abundance (1), Shannon diversity (3),
Maturity index 2–5 (3), plant parasitic index (2), 1-NCR
(nematode channel ratio) (2), percentage of CP1 nematodes
(2), abundance of carnivore plus omnivore nematodes (1)

• Micro-arthropod community: total abundance (1), abundance
of a-sexual long living micro-arthropods (1), abundance of
phoretic species (1), abundance of nematode predators (1),
abundance of general predators (1), abundance of parasite
micro-arthropods (1), abundance of fungivore browsers (1)

• Bacterial processes: bacterial biomass (1), potential N
mineralization rate (2)

• Bacterial metabolic diversity: hillslope of the community level
physiological profile (CLPP) (1)

• Management attributes: percentage of grassland (1),
1/(livestock density) (1)

First, the 137 sites were ranked for each sub attribute.
Subsequently the ranking score was multiplied by a weighting
factor (also based on expert judgement) leading to a total score
for all attributes and their weighting factors. Although the NSMN
methodology includes valuation on the basis of management,
information regarding management was sometimes missing,
hence this was in this case not taken into account for the
final ranking. The final ranking was used as an expert driven
dataset with information on soil quality for the evaluation of the
DEX model.

French (Brittany) Soil Biodiversity
Monitoring Network Expert Assessment
A second dataset used for the comparison with output from the
DEX model was obtained from the Soil Biodiversity Monitoring
Network (RMQS-BioDiv) which is part of the French Soil
Monitoring Network (RMQS). The RMQS was established to
provide a national framework for observing changes in soil
quality across France (Arrouays et al., 2002) and consisted of
2,200 sites located at the nodes of a 16-km grid that covered the
French Metropolitan Territory. The RMQS-BioDiv is part of the
RMQS but limited to the region of Brittany (West of France)
and consisted of a total of 109 sites (https://ecobiosoil.univ-
rennes1.fr/page/programme-rmqs-biodiv). Biological attributes
were collected in 2006 or 2007 during the spring season, with
sampling design and sampling protocol as described in (Cluzeau
et al., 2012). Chemical and physical attributes correspond to
the topsoil samples (0–30 cm) from Atlantic Central (Metzger
et al., 2005) that were sampled as described previously in Martin
et al. (2009). For environmental attributes, climatic data were
obtained by interpolating observational data using the SAFRAN
model (Quintana-Segui et al., 2008). The RMQS-BioDiv data
were linked to the climatic data by finding for each RMQS
site the closest node within the 12 × 12 km² climatic grid and
then averaged for the 1990–2016 period. Altitude and slope

information were derived from a digital elevation model (USGS,
2004). The crop attributes and management practices from the
last 5 years, including the year in which the biodiversity was
studied, were collected by an agricultural survey with the farmers.
Due to differences in management information from one site to
another, the percentage of legumes and catch crops in the rotation
were calculated on maximum 5 years or less (if less information
was available). In total, from the 109 sites, 52 sites (29 grasslands,
23 croplands) were selected where both biological attributes and
other attributes were available.

The expert judgement of RMQS-BioDiv was carried out
independently by one of the co-authors (GP) in order to evaluate
this set of 52 sites. The evaluation was done following a separate
expert judgement using an a priori approach. The judgments
were based on (i) biological information including presence,
abundance, and richness of earthworms, nematodes, bacteria,
(ii) management attributes including fertilization (mineral
vs. organic, solid vs. liquid), grazing and mowing intensity,
percentage of grassland, tillage, type of crops, (iii) soil properties
including pH, organic matter content, bulk density and organic
layer thickness. The thresholds used were independent from
those used for the NSMN sites.

The following rules were applied for the evaluation (between
brackets the weight of factor of the information contributing to
the attributes score, based on expert judgement):

• Earthworm community: abundance (4), number of taxa (2)
• Nematodes community: abundance (1), Shannon diversity (3)
• Bacterial processes: bacterial biomass (1)
• Management attributes: fertilization (3), grazing and mowing

intensity (1), percentage of grassland (3), tillage (3), type of
crop (1)

• Soil properties: pH (1), organic matter content (1), bulk
density (1) and organic layer thickness (1).

The sites were ranked based on the sum of weighted attributes,
and the cut-off between high, moderate and low evaluations was
based on quantiles, i.e., the highest 13 sites (1st quantile), were
ranked as “high,” the lowest 13 sites (4th quantile) were ranked as
“low,” and the 26 sites in between as “moderate.”

Statistical Comparison
The analyses of the two test datasets both produced values of the
performance of the SB function in terms of “low,” “moderate” and
“high.” For the Netherlands dataset we made two comparisons
between the output of the two approaches, one for the full
set of 137 farms, and one for a subset of 50 farms (top and
bottom 25 farms from the ranked list). The two stage process was
adopted because we expected a large variation in the assessments
which resulted in moderate and low performance (see discussion
section). For the French data-set we made one comparison of
the two approaches using all 52 soils and by distinguishing the
SB is the three categories “low,” “moderate” and “high.” For
all comparisons, we calculated three measures of similarity in
output. First, we calculated the Pearson correlation coefficients
between the two outputs (DEX model and expert weighted
ranking) (scoring low as “1,” moderate as “2” and high as “3”).
Second, we quantified a similarity index in output by assigning
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values to the fit, i.e., a score of “+1” when both outputs had
the same performance, a score of “0” when the two outputs
gave different, but not contrasting performance, i.e., “low” vs.
“moderate,” or “moderate” vs. “high,” and a score of “−1” when
the two outputs predict contrasting performance, i.e., “low” vs.
“high.”When both outputs produced completely random results,
the overall value is slightly positive (0.11). Third, we counted the
number of perfect fits, i.e., the percentage of “+1” scores. With
random models this percentage would be 33.3%.

In addition, we performed a sensitivity analysis of the DEX
model for missing data and for the contribution of each category
of attributes. For each of the sensitivity runs we calculated all
three values of similarity between the results of the DEX model
in comparison to the expert weighted rankings.

RESULTS

A multi-attribute DEX model was built for quantifying the
SB function with two sub-models for grassland and cropland
management systems. To complement the assemblage of DEX
models for three other soil functions (described elsewhere in this
issue). Together with the nutrient cycling and regulation function
of soils (Schröder et al., 2016) this set of five soil functions
embraces the major contributions of soils to deliver a coherent
set of most important ecosystem services to society.

Model Performance
The comparison between the DEX model and the ranking based
on expert judgement was made for both the 137 grassland soils
from the Netherlands (Schouten et al. (2014) and for the 52
soils from Brittany France. For the Dutch soils, two comparisons
were made, one using all 137 sites, using the categories “low,”
“moderate,” and “high” (Figure 2), and one using the 25 “low”
ranked and 25 “high” ranked sites. For the French soil only
a comparison using all 52 sites was made, and using the
same categories as the Dutch sites, i.e., “low,” “moderate,” and
“high” (Figure 3).

For the 137 sites from The Netherlands we found a statistically
significant positive Pearson correlation coefficient between the
model and the expert weighted ranking (r = 0.35, p < 0.01), with
43% correctly evaluated (Table 3B). Restricting the analyses to
the 25 “low” and 25 “high” sites, we found a higher statistically
significant positive Pearson correlation coefficient between the
model and the expert weighted ranking (r = 0.53, p < 0.001),
with 54% correctly evaluated (Table 3A).

The similarity index value of goodness of fit was made by
assigning the value of −1 to sites with a contrasting prediction,
the value of 0 to sites that had different predictions, i.e., “low”
vs. “moderate” or “moderate” vs. “high, and +1 when both
approaches gave the same prediction. Hence, with a random
generated model the goodness of fit parameter should be
(around) 0 (zero), while if the DEXmodel predictions and expert
weighted rankings always result in the same prediction, the
similarity index has a value of 1. Using the 25 “low” ranked and 25
“high” ranked sites we found a similarity index of 0.38 and using
the 137 sites a similarity index of 0.37.

For the set of 52 grassland soils from Brittany France we found
a significant positive Pearson correlation coefficient between the
outcome of the DEX model and the expert weighted rankings
(r = 0.57, p < 0.001), with 58% correctly evaluated (Table 3C).

It should be noted that when we had used random models
the percentages predicted correctly would have been 33.3% using
all sites divided over the three categories, and 50% using the
50 Dutch sites divided over two categories. This means that we
have an improved prediction of 4 and 10% for the two analyses
of the Dutch sites and an improved prediction of 25% for the
French soils.

Sensitivity Analysis
To assess the sensitivity of the model to data inputs we excluded
data for each of the four integrated attributes one by one, where
the decrease in correlation coefficient gives an indication how
much the data is needed for model accuracy. We performed this
sensitivity analysis for the Dutch dataset of 25 “low” and 25 “high”
sites, for the Dutch sites including all 137 sites, and for the French
sites including all 52 sites.

For the 25 “low” and 25 “high” sites the results are given
in Table 3A, for the 137 sites in Table 3B, and for the 52
French sites in Table 3C. The clearest conclusion from all
analyses is that information on nutrients is critical. This includes
dominant attributes such as pH, SOM content, C-N ratio. Also,
the high global weight of this integrated attribute explains
the relative dominance of information on the nutrient status
on the SB function. From the comparison with the French
data also the presence of data on soil organisms came out as
important. Furthermore, all analyses showed that parameters
in the integrated attribute hydrology that were excluded and
didn’t have any effect were average temperature and average
annual precipitation. Excluding data for these parameters leads
to default values that are quite similar and did not change the
model performance.

Data for irrigation and drainage were not available for the full
model in the Netherlands, but information for these attributes
was included for many of the French soils. An important remark
here: when data for some attributes is not provided, the model
assumes default values, which often represent the moderate
category. Hence, if the dataset used for validation contains
many farms in the category moderate, removing input values
leads to a better fit (the more input values are missing, the
higher the change that the model output will be moderate).
Therefore, we consider the sensitivity analysis presented in
Table 3A as the better assessment, as no moderate farms were
included here.

DISCUSSION

The results show that the proposed DEX model for the SB
function was meaningful, i.e., the outputs were positively and
statistically significant correlated with the rankings based on
independent expert judgements on the status of the SB function
at 137 grasslands in the Netherlands (sandy soils, Atlantic
climate) and 52 sites in France, 29 grasslands and 23 croplands.
Yet, in a substantial number of cases the two approaches
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FIGURE 2 | Comparison of the output of the DEX model with the expert judgements on 137 sites in the NSMN in the Netherlands. In the ranking of the sites, the top

25 was classified as “high performance,” the bottom 25 sites were scored as “low performance” and all in between as “moderate.” Bubbles represent the number of

sites scoring a particular combination.

FIGURE 3 | Comparison of the output of the Decision support model with the expert judgements on the 52 soils from sites in the RMQS in Brittany France. In the

ranking of the sites, 13 sites were classified as “high” performance, 13 sites were scored as “low” performance and all in between (26 sites) as “moderate.” Bubbles

represent the number of sites scoring a particular combination.

predicted different performance. When we look at the similarity
indices we found values of 0.38 (50 Dutch sites), 0.37 (137 Dutch
sites) and 0.54 (52 French sites), all clearly above 0 (zero).

For the Dutch soils, the percentage of correct predictions were
relatively low. Using all 137 soil this percentage was 43%, which
is 10% higher than the random null model (which would have
been 33% correctly predicted by chance), and using the 50 sites
it was 58%, again only 8% higher than a random null model
(which would have been 50% correctly predicted by chance). The
percentage of correct prediction was much higher using the 52
French sites, i.e., 58% which is 25% higher than with a random
null model. Overall, we therefore conclude that both the DEX

model and the expert weighted ranking seem in line when it
comes to the assessment of the SB function.

The differences between the performance of the model with
respect to the Dutch and French datasets may arise from
three circumstances:

First, looking at the data available for the French sites we
might assume that the significantly higher correct prediction is
at least partly due to the available information regarding land
use and soil management. In the Netherlands, this information
had limited availability and was not used for the expert
weighted ranking of the sites. Consequently, the ranking in the
Netherlands was only based on information from soil biological
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TABLE 3A | Outcome of the sensitivity analysis using the 25 “low” and 25

“high” sites.

Model (n = 50) Correlation

coefficient

P-value Similarity Perfect fit

Full model 0.525 <0.001 0.38 0.54

Nutrients excluded 0.378 0.007 0.26 0.4

Biology excluded 0.464 <0.001 0.22 0.44

Structure excluded 0.493 0.003 0.4 0.58

Hydrology excluded 0.525 <0.001 0.38 0.54

TABLE 3B | Outcome of the sensitivity analysis using the 137 Dutch sites.

Model (n = 137) Correlation

coefficient

P-value Similarity Perfect fit

Full model 0.347 <0.001 0.37 0.43

Nutrients excluded 0.248 <0.001 0.43 0.48

Biology excluded 0.281 <0.001 0.29 0.37

Structure excluded 0.310 <0.001 0.33 0.39

Hydrology excluded 0.347 <0.001 0.37 0.43

TABLE 3C | Outcome of the sensitivity analysis using the 52 French sites.

Model (n = 52) Correlation

coefficient

P-value Similarity Perfect fit

Full model 0.565 <0.001 0.54 0.58

Nutrients excluded 0.597 <0.022 0.54 0.56

Biology excluded 0.372 0.002 0.38 0.44

Structure excluded 0.548 <0.001 0.54 0.58

Hydrology excluded 0.565 <0.001 0.54 0.58

attributes, which were collected over a larger time span of time
(6 years) and from a somewhat larger geographically area which
adds to the variation in the observations.

Differences in the methodological approaches can also explain
the differences. Differences in sampling protocols can be a reason
for differences in performance. For instance, in the Netherlands
the samples in the NSMN were mixed at the farm level
(Rutgers et al., 2009), while in France the samples in the RMQS
were mixed according to small plots with a fixed orientation
(Cluzeau et al., 2012).

Interestingly, it seems that soils which were assessed as having
a “high” biodiversity were more often predicted right (i.e., as
similar in both approaches), than soils with “low” or “moderate”
performances. Probably disturbed soils with respect to the SB
function are more different from each other than soils with a
healthy soil life. One aspect might be the variability in types and
levels of disturbances, resulting in differences in disturbed soils,
which are more difficult to predict correctly.

The most important category of attribute in the assessment of
the SB function was found to be the nutrient status of the soil.
This was found for especially the Dutch soils. This clearly shows
the interrelationship between the SB function and the nutrient
cycling function (Schröder et al., 2016), and the importance of
soil pH for soil biodiversity (Griffiths et al., 2016). Although the

goodness of fit clearly dropped when leaving out information on
soil organisms from the French data, it is interesting to note that
the predictions of the DEX model, without information on soil
biological attributes, were still significantly positively correlated
with the expert judgements based on soil biological information.

The DEX model for the SB function was developed for
a European-wide application to assess five soil functions in
agricultural soils. However, the present results with the SB
function suggest some caution, as there were several major
restrictions in this study. First, the comparison was restricted
to one climatic zone (Atlantic). Unfortunately, no better
independent datasets were available that could have been used
as a tool for validation for the other climatic zones. Although
the present comparisons were not ideal for testing of the DEX
model, we think it is based on the currently best available data
and can therefore be seen as a first step of testing the performance
of the model. As such it can be a starting point of our future
aim to build a comprehensive model for Europe, fully including
cropland, all different soil types and climatic zones. Although for
some countries detailed data for a large number of attributes is
available (for example from the Netherlands, Ireland, and France,
dominant in the Atlantic climatic zone), testing the model
properly throughout Europe requires data from all (climatic zone
× soil type × land use) categories. Recently, the introduction of
the General Data Protection Regulation of the EU has however
added another complicating factor in gathering and storing
management information from farms, limiting the available data
sources to be used in European wide biodiversity assessments.

Second, the approach distinguished only three broad output
categories (i.e., in “low,” “moderate,” and “high” categories),
starting from quantitative data. This has two consequences;
on the one hand, the categorization makes the data input less
critical, as only classes of values are needed as an input, which
is easier to provide, and the output is an estimate of the soils’
capacity to support the SB function. On the other hand, the
categorization requires a lot of expert knowledge and reference
data for setting the threshold values for each attribute within each
climatic zone. For example, the soil pH is on average higher in the
Mediterranean area than in the Atlantic area, while soil organic
matter content shows the opposite pattern (JRC, 2010a).

Furthermore, with only three output categories, the DEX
model is insensitive to small changes in the values of the
input data for the attributes. Only if a sufficient number of
thresholds is passed, a switch to another performance can be
expected. Debeljak et al. (this issue) discussed advantages and
disadvantages of this. For instance semi-quantitative modeling
makes the model easier to run with a simple interface for
farmers and farm advisors, the “Soil Navigator.” With the Soil
Navigator and the outputs of the DEX models, it is possible to set
preferences for soil functions, and explore management options
to reach these targets. Finally it is possible to build continuous
quantitative models based on the DEX trees for the five soil
functions, in order to improve sensitivity.

Third, all the data collected in the datasets used were collected
for other reasons than validation of the DEX model (both
were part of soil monitoring programs) and therefore present
incomplete data inputs which were not optimally designed to
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test a holistic assessment of the soil biodiversity function, with
a broad set of attributes such as compiled in the DEX model.
In general, soil data are collected without a solid basis in
analyzing soil biological attributes, and very often with no or
poor information on soil management attributes, in particular for
the Dutch sites. The Dutch soil monitoring system was designed
to capture the biological soil attributes, with few attributes for
nutrient condition, structure, and hydrologic condition.

The performance of the DEX model might be significantly
improved when more data are available about land use and
farm management, as can be seen from the results obtained
for the French sites. The more data that exists at field, farm or
local level and that can be fed into the model, the better the
accuracy of the output will be. For example, when more detailed
data on soil texture or organic matter quality is available, this
can be easily implemented and will most likely improve the
model output through reducing uncertainty. Ultimately, the data
provided by the farmer, on for example management practices
or plant available nutrients at the plot scale, will also lead to
better predictions.

The conceptual structure of the DEX model for the SB
function is based on the notion that we have to deal with a
multidimensional concept for which no unified proxy-indicator
system exists, and that we have very few standardized and
reliable data for producing quantitative predictions for the SB
function. Consequently, any source of information which could
be plausibly linked to quantification of the SB function was
appreciated, even if the data is of chemical (such as pH, nutrients,
water) or physical (such as temperature, slope, soil structure)
origin. The idea to use all information there is to quantify soil
functions, was also applied in other contributions (Rutgers et al.,
2012; VanWijnen et al., 2012; Wagg et al., 2014). The structure of
the decision tree of the DEX model represents an improvement
to the former studies, as four integrated attributes were agreed
and combined: nutrient status, soil biology status, structure
and hydrological status. In this way information from different
origins can be transparently processed in a quantification system
for the SB function, and new environmental data can also be
implemented easier, and reduce uncertainty in the assessment.

Progress in monitoring and improving the SB function of
soils will most strongly depend on the farmers’ and stakeholders’
acceptance of the importance of this function. Even though
primary productivity, high yields and short term profitability is
bound to be the main focus for contemporary agriculture, there
is acknowledgment in the farming community that our intensive
way of farming is not sustainable when environmental and public
health trade-offs are not taken into account. In order to combat
the loss of fertile soil and to counteract these trade-offs, many
farmer initiatives are adopted in all EU member states, such
as the ‘Initiative Agriculture de conservation in France (https://
agriculture-de-conservation.com) and Veldleeuwerik in the
Netherlands (www.veldleeuwerik.nl). Based on the LANDMARK
stakeholder workshops (Sturel et al., 2018) it is evident that the
SB function has a positive connotation for most farmers and is
even associated with the concept of life itself, i.e., in Germany
and Austria the soil function is recognized as “Soil life” in France
as “Living soil” and in Ireland as “Active and healthy soil.”

Furthermore, the same stakeholders associate soil biodiversity
often to sustaining aboveground biodiversity, thereby adopting
the concept of a system approach with living soils as an integral
part of healthy ecosystems. For instance, earthworms are the
staple feed for some field birds, like the black-tailed godwit in
the Netherlands. High metal (Pb, Cu) concentrations in peatland
had negative effects on the earthworm community (lower average
body weight, and total biomass) with effects accumulating in
the bird population (Klok et al., 2006; Roodbergen et al., 2008).
Future developments in the assessment of the SB function should
addressing this aspect of habitat provision in a broad sense, as
in its present form the assessment has no specific linkage to any
aboveground biodiversity target (protection of a species, a nature
target type, etc.).

In conclusion, the present DEX model predictions of the SB
function are converging to the current and combined expert
judgements of the SB function. In this way, quantification
of the SB function, together with the quantification of the
other four soil functions (Schröder et al., 2016; Sandén et al.,
2019; and described elsewhere in this issue) is better placed
in our attempts to optimize the multiple soil functions in
agricultural landscapes, and hence the multifaceted role of soils
to deliver a bundle of ecosystem services for farmers and citizens,
and supporting land management and policy toward a more
sustainable society.
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