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It is commonly accepted that microplastic (MP) ingestion can lead to lower food intake

and bioaccumulation of hydrophobic organic contaminants (HOCs) in aquatic organisms.

However, causal links between MP and contaminant levels in biota are poorly understood

and in situ data are very limited. Here, we investigated whether HOC concentrations in

herring muscle tissue (Clupea harengus membras) are related to MP ingestion using

fish caught along the West coast of the Baltic Sea. The MP occurrence exhibited a

large geographic variability, with MP found in 22.3% of the fish examined, and the

population average being 0.9 MP ind−1. However, when only individuals containing MP

were considered, the average MP burden was 3.9 MP ind−1. We also found that MP

burden decreased with reproductive stage of the fish but increased with its body size.

To predict MP abundance in fish guts, we constructed a mass-balance model using

literature data on MP in the water column and physiological rates on ingestion and gut

evacuation for clupeids of a similar size. The model output was in agreement with the

observed values, thus supporting the validity of the results. Contaminant concentrations

in the muscle tissue varied substantially across the study area but were unrelated to the

MP levels in fish, suggesting a lack of direct links between the levels of HOCs and MP

ingestion. Thus, despite their ubiquity, MP are unlikely to have a measurable impact on

food intake or the total body burden of hydrophobic contaminants in Baltic herring.

Keywords: microplastic, Baltic sea, herring, hydrophobic organic contaminants, marine monitoring

INTRODUCTION

Plastic debris, including microplastics (MP < 5 mm), can be ingested by aquatic animals across
several trophic levels (Cole et al., 2013; Lusher et al., 2013, 2015). Due to the importance of
commercial fish and shellfish species for human consumption, the ingestion and presence of MP
in these animals has become a matter of concern (EFSA Panel on Contaminants in the Food
Chain (CONTAM), 2016). To address this concern and to provide a quantitative assessment of
MP ingestion in various fish species, an active research is ongoing (Foekema et al., 2013; Lusher
et al., 2013; Rummel et al., 2016; Beer et al., 2018; Budimir et al., 2018; Markic et al., 2019).
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A commonly held paradigm states that MP ingestion can lead
to decreased nutritional status (Cole et al., 2015; Ogonowski et al.,
2016) and bioaccumulation of hydrophobic organic chemicals
(HOCs) (Rochman et al., 2013; Wardrop et al., 2016) that
sorb to the MP particles in the water and desorb in the gut
lumen (Rochman et al., 2014). However, some experimental and
modeling studies indicate that plastic polymers could also have
a net cleaning effect acting as passive samplers while in the
digestive system and thereby relieve the animals of HOCs (Gouin
et al., 2011; Gerdes et al., 2019; Mohamed Nor and Koelmans,
2019). The relative importance of microplastics as vectors for
contaminant transport remains unresolved, possibly also due to
the lack of field data linking HOC concentrations in biota to
ingested MP in ecologically relevant settings.

Here, we studied MP ingestion by Baltic Sea herring (Clupea
harengus membras L.), a commercially exploited fish and a
keystone species in the Baltic food web. Being facultative
pelagic filter-feeders (Huse and Toresen, 1996), herring stand
a high risk of ingesting MP along with zooplankton prey
and hence accumulating MP-associated contaminants. It is
also a sentinel species in the Swedish National Monitoring
Program for Contaminants in Marine Biota (SNMPC) and,
thus, a potential indicator species for MP monitoring in the
Baltic Sea (Beer et al., 2018).

If MP ingestion indeed contributes significantly to HOC
bioaccumulation in contaminated environments, then one would
see a positive correlation between the amount of MP ingested
over time and HOC concentrations in the animals. However,
there are no reliable methods to estimate accumulated MP
exposure using field samples of fish, because MP do not
accumulate to any significant extent in their digestive system
(Jovanović, 2017). Although gut contents reflect only a recent
ingestion history, the MP burden determined by gut content
analysis is commonly used as a reflection of the feeding habits and
habitats of the fish. Another area of concern with respect to the
interpretation of MP counts in environmental samples, including
fish guts, is analytical accuracy and reliability of MP extraction,
and determination (Dehaut et al., 2016). Therefore, to increase
the reliability of the MP gut content data, it is important to verify
whether the recorded MP body burden is within ecologically
plausible rates of ingestion and gut evacuation. To compare
the observed MP abundance in the fish gut with the intake
that can be expected given the MP abundance in the water
column, and gut evacuation that can be expected given the food
intake, a mass-balance modeling approach can be used. Here,
we applied such modeling using literature-derived parameters
on clupeid feeding and food processing as well as ambient
MP concentrations, to estimate MP burden in the herring
with a body size similar to those in our collection. To further
evaluate the ecological plausibility of our MP-quantification,
we also investigated the relationship between several biological
parameters and MP ingestion.

Once the plausibility of ourMPmeasurements was confirmed,
we tested the hypothesis that HOC concentrations in the fish
muscle measured by SNMPC were unrelated to the weight-
specific MP gut content. Hence, the objectives and workflow of
this study were: (1) to quantify MP ingestion by Baltic herring,

FIGURE 1 | Sampling sites within the Swedish National Monitoring Program
for Contaminants in Marine Biota included in this study, BotB: Bothnian Bay
(yellow), BS: Bothnian Sea (orange), NBP: Northern Baltic Proper (red), WGB:
Western Gotland Basin (green), and BB: Bornholm Basin (blue). 1:
Rånefjärden, 2: Harufjärden, 3: Holmöarna, 4: Gaviksfjärden, 5:
Långvindsfjärden, 6: Bothnian Sea, offshore site, 7: Ängsskärsklubb, 8: Lagnö,
9: Baltic proper, offshore site, 10: Landsort, 11: Byxelkrok, 12: Utlängan, and
13: Western Hanö Bight.

(2) to assess whether the measured MP burden is ecologically
plausible, and (3) to establish whether the levels of HOC are
related to the measured MP burden in fish.

MATERIALS AND METHODS

Fish Collection and Sample Characteristics
The Baltic herring used for our analyses were collected by
SNMPC conducted by the Swedish Museum of Natural History
(Stockholm, Sweden). To avoid possible bias by known point
sources, we randomly selected 130 specimens that had been
collected at 13 reference monitoring stations (n= 10 per station,
Figure 1), thus covering a sufficient geographical area that would
provide a representative range of HOC and MP exposure for
the analysis.

The sex ratio of the selected fish was ∼50:50 and uniform
across sampling sites. The individuals were 3–7 years old, with
a total length of 173 ± 18mm and body weight 35 ± 12 g
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wet weight (mean ± SD). The reproductive phase determined
by gametocytic maturity was classified on a five-degree scale
according to Bucholtz et al. (2008) and included deformed
gonads (stage 1), post spawned individuals (stage 2), juveniles
(stage 3), individuals with developing gonads (stage 4), and fish
with mature gonads (stage 5).

Each fish was dissected, and the muscle tissues taken from
the middle dorsal muscle layer were used for HOC analysis,
whereas the entire gastrointestinal tract (GIT) was used for the
MP analysis. All sampling was performed according to standard
procedures (TemaNord, 1995) employed by SNMPC. After
dissecting, each individual GIT was packed in aluminum foil to
avoid cross-contamination. All GIT samples were immediately
frozen at −20◦C and stored until MP analysis at the Department
of Environmental Science and Analytical Chemistry, Stockholm
University, Sweden.

MP Quantification in the Gastrointestinal
Tract of Fish
To quantify the number of MP ingested by the herring (objective
1), each GIT was placed in a glass Petri dish, opened with
surgical scissors, and rinsed with deionized, particle-free water.
Using a stereo microscope, the bolus was examined, and any
items resembling MP were extracted by stainless steel pincers
and transferred to clean Eppendorf tubes filled with milli-Q
water. The appearance of the putative MP was recorded and each
particle was categorized according to its shape (fiber or fragment)
and color. Hereafter, the number of MP per individual fish is
referred to as MP burden. A subsample (n = 20) of the putative
MP was photographed using digital camera (Canon 5Dmark III)
fitted to a Leica DMBR bright field microscope (Leitz, Germany).
The length (fibers) or largest diameter (fragments) was measured
using the segmented measurement tool in Image J (Schneider
et al., 2012).

To relate HOC concentration in the muscle tissue to MP
intake by the fish, the fish size must be taken into account when
expressing MP counts. Moreover, in our collection, the bolus size
varied considerably among the individual fish and geographical
areas (Table 2), indicating variability in feeding activity shortly
before sampling and/or spontaneous gut evacuation that might
have been related to stress during the sampling. To account for
variability in bolus size and the corresponding variation in the
observed MP burden, we normalized individual MP counts to
the gut fullness. The latter was assessed by visual observation on
a five-step semi-quantitative scale: 0 (empty gut, no food items),
0.25, 0.5, 0.75, or 1 (full gut). The obtained values were further
normalized to the individual body weight and termed weight-
specific MP burden [number of MP / (gut fullness× body weight)
(g wet weight)]. This normalization approach allowed for relating
HOC concentrations in the fish to the expectedMP burden in the
GIT on a weight basis.

The following polymer identification scheme was applied.
First, to identify whether the putative MP were synthetic
polymers, we followed the recommendations of Hidalgo-Ruz
et al. (2012). Particles 1–5mm in diameter were recorded and
classified as MP, if all the following criteria were met: (i)

uniform, unnaturally bright or of an unnatural color, (ii) lack
of organic structures, and (iii) uniform diameter over the entire
length of a fiber. Second, to test the accuracy of the visual
identification, all samples containing putative MP (i.e., the gut
contents of 44 individual fish) were analyzed using Fourier
transform infrared spectroscopy (FTIR) according to recent
quality assurance guidelines (Hermsen et al., 2018). However, due
to significant losses during initial handling, the particle recovery
was low and only 61 microparticles were analyzed by FTIR.
Third, MP-validation was performed by comparing the sample
spectra to a published reference database (Primpke et al., 2018).
The Hit Quality Index (HQI) was used to determine whether
a sample spectrum matched any spectra in the database. The
HQI-threshold for a match was set at 70% similarity (Thompson
et al., 2004). A detailed description of the data preparation
of sample spectra and sample classification is provided in
Supporting Information 1.1 and Figure S1.

FTIR Analysis
The infrared spectra were recorded at 4 cm−1 resolution with
a Bruker Vertex 70 FTIR instrument that was equipped with
a Bruker Platinum attenuated reflection (ATR) unit. Data were
recorded on both sides of the center burst of the interferogram
during forward and backward movement of the interferometer
mirror. A zero filling factor of 2 was used and the spectra were
apodized with a Blackman-Harris 3-term function. The spectra
for samples 1–6 (Table S1) were recorded using an HgCdTe
detector, 100 sample scans were recorded and the scanning time
was 22 s. The spectra for samples 7–61 (Table S1) were recorded
using a DTGS detector, 364 sample scans were recorded within
300 s scanning time. Individual particles were placed on the
diamond crystal of the ATR unit and pressed onto the crystal with
a piston. Prior to each measurement, the crystal was cleaned with
99% ethanol.

Controls and Blanks
To minimize contamination by airborne particles during the
examination, the dissections were performed under a Fumex
local extractor (Wesch et al., 2016); each sample being analyzed
for 10min. A Petri dish filled with filtered deionized water
was placed next to a test sample to serve as a blank for the
quantification and characterization of potential contamination
during the analysis. When working with samples, a cotton lab
coat, and gloves were used: moreover, the type and color of
clothing were recorded to enable contamination back-tracing. All
procedural blanks contained particles (mainly single fibers) of
unknown origin. However, all these particles were <1mm and
thus did not contribute to the MP counts used in the statistical
analysis. If quantifiable amounts of blank contamination with
particles >1mm were to be found, such samples would be
excluded from any further analyses.

Chemical Analysis
Following the guidelines of the Swedish National Monitoring
Program for Contaminants in Marine Biota, the muscle samples
were analyzed for polychlorinated biphenyls (PCB 28, 52, 101,
118, 138, 153, and 180), organochlorine pesticides (DDE, DDD,
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DDT, HCB, AHCH, BHCH, and Lindane), and polybrominated
flame-retardants (BDE 28, 47, 99, 100, 153, 154, and HBCD).
For stations 2, 7, and 9–11 (Figure 1), 10 g of muscle tissue
from individual fish were used, whereas 1 g samples of muscle
tissue from 10 individuals were pooled for samples originating
from stations 1, 3–6, 8, and 12–13 (Figure 1). An overview of
the analyzed contaminants and their average concentrations in
herring muscle tissue are provided in Table 1, while details of
the analytical procedures and quality assurance practices used by
SNMPC are provided elsewhere (Bignert et al., 2016).

Data Analysis and Statistics
Relationships Between Biological Factors,

Geography, and Ingested Microplastic
We used generalized additive models (GAM) in package mgcv
to examine relationships between specific biological variables
(weight, gut fullness, age, and reproductive phase) and MP
burden (objective 2). Sea basin was used as a fixed factor since
the inclusion of this term as a random intercept resulted in
a significantly worse model (1AIC = 4.8). The model was
specified as:

MP burden = β s(weight) + s(gut fullness) + s(age) +

s(reproductive phase)+ (sea basin)+ ε

The multicollinearity between the explanatory variables was
evaluated using concurvity measures (Amodio et al., 2014)
calculated by themgcv-package and found to be low (<0.24). Due
to the overrepresentation of zeros in the data (overdispersion)
for the MP burden, the model was constructed using zero-
inflated Poisson error structure. Model performance was assessed
using a quantile-quantile plot adapted for discrete data (Augustin
et al., 2012) implemented in the package mgcViz (Figure S5).
Differences in the MP burden between the basins were tested
using Permanova with station nested within basin as a random
factor (Anderson, 2001). The significance level was set at α =

0.05; all statistical analyses were conducted in R 3.5.0 (R Core
Team, 2014).

Relationships Between HOCs and Ingested

Microplastic
Maximum-likelihood Factor Analysis with Varimax rotation
(factanal function in base R) was used to assess the degree of
association between the chemical variables and weight-specific
MP burden in the GIT (objective 3). Whenever possible, the
analysis was performed on an individual basis. When pooled
samples were included, we used their arithmetic mean values.
Prior to the analysis, Bartlett’s test of sphericity was performed
to confirm patterned relationship between the variables, which
was statistically significant (χ2

15 = 176, p < 0.0001). A scree
plot was used to determine the number of factors to retain,
and factor loadings >0.7 were considered statistically significant
(MacCallum et al., 2001). When measured HOC values were
below the limit of quantification (LOQ), they were imputed by
LOQ divided by the square root of two (Succop et al., 2004). The
analyzed chemical concentrations were summed and grouped
into their respective contaminant groups (PCBs, PBDEs, and
organochlorine pesticides).

To test the robustness of the approach, we also performed a
follow up analysis using Generalized Additive Models following
the general model structure described in section Relationships
between biological factors, geography and ingested microplastic.
However, instead of using MP burden as the response variable,
we modeled each HOC group individually and included weighted
MP burden as an additional explanatory variable. The models
were run using normal error structure and the response variable
was transformed to conform to normality using either Log10
(PCBs), Box-Cox (BDE, HBCD, and HCB), or square root
transformation (organochlorine pesticides, DD). Model fit was
evaluated using residual plots.

Modeling Plastic Ingestion by Herring
To evaluate whether the observed MP burden could be predicted
using ambient MP abundance data and food processing rates
(objective 2), we modeled the ingestion of MP using literature-
derived parameters on food uptake, egestion, and MP abundance
in the study area. The rationale is that observed MP abundance
in the gut would reflect average exposure levels assuming that (1)
MP concentrations are fairly homogeneous in the outer coastal
areas (Gorokhova, 2015; Gewert et al., 2017), which are the main
feeding grounds of herring (Flinkman et al., 1998); (2) the MP
abundance in the water column, where the fish feed, is similar to
that at the surface, where the data on the relevant size fraction
of MP (1–5mm) were collected; (3) MP ingestion by herring
is non-selective and thus proportional to the MP abundance in
the water; and (4) gut evacuation rates are non-discriminatory,
i.e., MP are egested at the same rate as prey remains. Then,
the MP burden (MP ind−1) at any given time, t, can be
written as the mass balance between the uptake and loss rates
(Equation 1, Figure S2):

MPt = MP
(

t − dt
)

+ (IR− ER) dt, (1)

where IR and ER are the ingestion and egestion rates (MP h−1),
respectively. They can be calculated as:

IR = CMP × CR (2)

and

ER = GER×MPt , (3)

where CMP is the ambient MP concentration (number of MP
L−1), CR is the clearance rate (L h−1; the volume of water swept
clear of particles per individual and hour), and GER is the gut
evacuation rate (h−1).

We used literature data to parameterize the model (Table S2).
The MP concentrations in the target size range (1–5mm) from
surface waters in the outer Stockholm archipelago (Gewert et al.,
2017) were used as CMP values. CR values were estimated
using reported feeding rates for North Sea herring on Calanus
finmarchicus, a copepod of similar size as the microplastics
considered here, and the main prey for herring (Varpe and
Fiksen, 2010); see Supporting Information 2.1 and Figure S3

for the calculation of CR. As published gut evacuation rates for
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TABLE 1 | Overview of the HOCs in herring muscle tissue and descriptive statistics of their concentrations (µg g−1 lipid weight).

Chemical group Chemical species Abbreviation Mean SD Median Min Max LOQ

Polychlorinated biphenyls (PCBs) 2,4,4
′
-PCB PCB 28 0.0039 0.0019 0.0033 0.0018 0.0106 0.002

2,2
′
,5,5

′
-PCB PCB 52 0.0067 0.0044 0.0057 0.0025 0.0199 0.002

2,2
′
,4,5,5

′
-PCB PCB 101 0.0222 0.0149 0.0176 0.0069 0.0713 0.002

2,3
′
,4,4

′
,5

′
-PCB PCB 118 0.0204 0.0135 0.0155 0.0062 0.0694 0.002

2,2
′
,3,4,4

′
,5

′
-PCB PCB 138 0.0591 0.0408 0.0444 0.0152 0.1896 0.002

2,2
′
,4,4

′
,5,5

′
-PCB PCB 153 0.0417 0.0280 0.0345 0.0120 0.1320 0.002

2,2
′
,3,4,4

′
,5,5

′
-PCB PCB 180 0.0181 0.0114 0.0149 0.0029 0.0551 0.002

Organochlorine pesticides 4,4
′
-DDT DDT 0.0205 0.0218 0.0134 0.0037 0.0966 0.002

4,4’-DDE DDE 0.1055 0.0960 0.0815 0.0160 0.4130 0.002

4,4’-DDD DDD 0.0284 0.0333 0.0163 0.0016 0.1391 0.002

α-1,2,3,4,5,6-Hexachlorocyclohexane AHCH 0.0029 0.0005 0.0030 0.0018 0.0039 0.002

β-1,2,3,4,5,6-Hexachlorocyclohexane BHCH 0.0056 0.0027 0.0057 0.0018 0.0099 0.002

γ-1,2,3,4,5,6-Hexachlorocyclohexane Lindane 0.0029 0.0005 0.0030 0.0018 0.0039 0.002

Brominated flame retardants (BDEs) 2,4,4
′
-TriBDE BDE 28 0.0002 0.0001 0.0002 0.0001 0.0005 0.0002

2,2
′
,4,4

′
-TetraBDE BDE 47 0.0051 0.0032 0.0041 0.0016 0.0160 0.0002

2,2
′
,4,4

′
,5-PentaBDE BDE 99 0.0012 0.0009 0.0009 0.0005 0.0044 0.0002

2,2
′
,4,4

′
,6-PentaBDE BDE 100 0.0012 0.0007 0.0011 0.0004 0.0035 0.0002

2,2
′
,4,4

′
,5,5

′
-HexaBDE BDE 153 0.0002 0.0002 0.0002 0.0001 0.0009 0.0002

2,2
′
,4,4

′
,5,6

′
-HexaBDE BDE 154 0.0006 0.0004 0.0005 0.0002 0.0018 0.0002

1,2,5,6,9,10-Hexabromocyclododecane HBCD 0.0114 0.0096 0.0088 0.0025 0.0470 0.002

Other Hexachlorobenzene HCB 0.0289 0.0209 0.0246 0.0114 0.1013 0.004

SD, standard deviation; LOQ, the limit of quantification.

adult herring were not available, we used experimental values
reported for other clupeids of similar size, European pilchard
(Sardina pilchardus) (Costalago and Palomera, 2014) and South
American pilchard (Sardinops sagax) (van der Lingen, 1998),
which have similar feeding ecology and physiology as Baltic
herring (Collard et al., 2017). The physiological rates used in the
model corresponded to the average size of our fish.

The model was implemented using STELLA R© ver. 9.4.1
software (iSee systems, Inc. Lebanon, NH, U.S.A.) to estimateMP
burden (MP ind−1) dynamics in a fish population at a given MP
abundance. The intrapopulation variability was simulated using
a Monte Carlo generator with 1,000 permutations; details on the
simulation settings are provided in Supporting Information 2.2

and Figure S4. To validate the model, we compared the
simulated data distribution from the model to the field data
using descriptive statistics, χ2, and the two-sample Cramér-von
Mises tests.

RESULTS

Observed MP Burden
Particles identified by visual inspection as MP (the frequency
of occurrence, %FO, Table 2) were found in 44 out of the 130
individuals (33.8%; range: 1–51 pieces of putative plastic fibers or
fragments ind−1). In these 44 individuals, the mean abundance
was 7.8 ± 12.2 particles ind−1 (± SD) and the average length
of the MP was 2.39 ± 1.80mm; width was 0.022 ± 0.10mm
(± SD, all measured MP were fibers). The dominant type of
particles were fibers of various colors (87.6%), while fragments

were less frequent (12.4%). However, only 32.8% of the visually
identified, putative MP were classified as either synthetic or semi-
synthetic (viscose) by FTIR and 47.5% were classified as being of
natural origin (e.g., chitin, fur, and cellulose); 19.7% could not be
identified (Table S1).

After correcting for the proportion of misclassified samples,
only 29 individuals containing MP were retained (22%; range: 1
to 17 MP), with a mean abundance of 3.9 MP ind−1 ± 4.4 SD.
When all examined individuals were considered, the population
average was 0.9 MP ind−1 ± 2.6 SD, with the 95% bootstrap
confidence interval ranging 0.5–1.4 MP ind−1. The variation
in the MP burden between the stations and basins was high
(Figure 2; Table 2) and no significant differences in the MP
burden between the basins were found (station nested within
basin as a random factor, pseudo F(4,117) = 0.9, p= 0.48).

Predicted vs. Observed MP Burden and
Frequency of Occurrence
The model predicted that 81% of fish contained MP, with
a mean MP burden of 4.7 MP ind−1; these values were
about 5-fold the observed values. However, the ranges of the
frequency distributions for the simulated and observed values
were overlapping, although the field observations were more
strongly skewed toward zero values compared to the model
prediction (Figure 3A; Table S3). The difference between the
distributions was statistically significant (Cramér-von Mises T
= 226, p < 0.0001). However, when zero values were excluded,
the distributions, albeit still significantly different (Cramér-von
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FIGURE 2 | Boxplot of Log10-transformed MP abundance in the
gastrointestinal tract (GIT) of herring per basin; the basins are ordered from
north to south. Data are presented as medians (vertical lines), inter quartile
range, IQR (boxes), 1.5 IQR (whiskers) and outliers (points) deviating > 1.5
IQR. The black slices of the pie charts indicate the proportion of the fish with
no MP in the GIT. Corresponding, untransformed data is provided in Table 2.

FIGURE 3 | Frequency distribution of the MP burden based on the model
simulations (dark gray bars) and field observations (light gray bars). (A) shows
the entire dataset and (B) presents only fish with MP in the GIT (i.e., the
non-zero values). The dashed vertical lines indicate the mean values for the
model simulations (long dash) and the observations (short dash).

Mises T = 12.5, p < 0.01), became more similar (Figure 3B;
Table S3), indicating that much of the difference between the
distributions was driven by the significantly higher proportion of
zero observations in the field data (χ2 = 219.5, p < 0.0001).

Linkage Between MP Intake and HOCs
We found no relationship between the weight-specific MP
burden and the concentration of any of the HOCs (Figure 4).
Together, the two factors explained a cumulative variance of
84.3% (Table S5). As a variable, weight-specific MP burden
loaded weakly and negatively (−0.14) on the first axis and
moderately positive (0.58) on the second axis. In contrast, the
organochlorine pesticides and PBDEs loaded significantly and
positively on the first axis, while the PCBs loaded moderately
positive (0.56) on the first and significantly positive (0.82) on
the second axis. Hence, no contaminant group had loadings
clustering with those for the weight-specific MP burden. The
follow-up GAM analysis confirmed the lack of any significant
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FIGURE 4 | Factor scores (axes) and loadings (arrows) of contaminants
(HBCD, HCB and the sum of PCBs, BDEs, and DDs) and weight-specific MP
burden. The data included in this analysis were weighted MP burden and HOC
concentrations in herring muscle tissue determined in (1) individual fish
specimens, and (2) pooled fish samples (10 ind. per sample).

relations between MP and HOC groups (PCBs, BDEs, DDs,
HBCD, and HCB, Table S6 and Figure S6).

Biological Factors Related to MP Burden
The GAM explained 64.7% of the deviance (Table S4) and
indicated that the MP burden was positively and nearly
linearly related to fish body weight (GAM, χ2 = 16.8, p <

0.001, Figure 5A). In contrast, a negative effect was found for
reproductive phase, where MP burden was significantly lower in
fish that had reached sexual maturity (GAM χ2 = 11.1, p < 0.05,
Figure 5B). Gut fullness only had a negative effect on MP burden
when the GIT was empty of food items (GAM χ2 =41.3, p <

0.0001, Figure 5C), while Age displayed a negative relationships
with MP burden (GAM χ2 = 18.8, p < 0.0001, Figure 5D).

DISCUSSION

Microplastics Are Common but Not
Abundant in Herring Guts
Microplastics (mostly fibers of synthetic and semi-synthetic
origin) were found in about 20% of the fish. While these values
are in good agreement with those reported for herring by Beer
et al. (2018) for the central Baltic Sea (i.e., 20% containing MP,
with 93% fibers), other studies report considerably lower MP
frequency of occurrence and fiber contribution to total MP in
herring. Both Foekema et al. (2013) and Rummel et al. (2016)
found plastics in only 2% of herring samples from the North
Sea and the Southern Baltic Sea, with fibers accounting for
<10% of MP. Excluding fibers from their analyses, Budimir et al.
(2018) reported a frequency of occurrence as low as 1.8% in
herring from the northern Baltic Sea. Our results suggest that
these discrepancies between different studies could be related
to differences in fish size, gut fullness and ontogenetic diet
shifts. For example, Foekema et al. (2013) used fish that were

considerably larger (>200mm total length) and most likely
already had switched from filter feeding to raptorial feeding on
larger prey (Huse and Toresen, 1996). This change in feeding
mode would result in a lower ingestion rate of zooplankton-
sized plastic particles and thus in a lower overall MP burden.
In the study of Rummel et al. (2016), many fish stomachs were
empty, which probably was related to arrested feeding in concert
with spawning (Stacey and Hourston, 1982), and possibly, stress-
induced gut evacuation caused by the fish sampling (Wilkins,
1967; Vinson and Angradi, 2011). In addition, one would expect
the amount of ingested MP to scale with the absolute size of
bolus or gut fullness. However, since this relationship was weak
(Figure 5C), our findings only partly support this expectation.
One possible explanation for this could be a slower egestion
of MP compared to prey, similar to the selective retention of
plastic fibers in amphipods (Au et al., 2015) and fragments
in cladocerans (Ogonowski et al., 2016). The slower egestion
would result in a temporary accumulation of MP in the fish
gut and obscure the expected positive relationship between the
gut fullness and MP burden. While fish weight appears to be
the strongest co-variable for standardizing gut MP content, gut
fullness was also influential, particularly for fish with empty
guts, which may occur during fasting periods that are normally
observed during spawning time (Stacey and Hourston, 1982).
The latter was further supported by the negative effect of
reproductive phase onMP burden. Although the effect of Age also
was statistically significant, the effect was not particularly strong
and most probably of lesser biological importance.

The range of the MP burden predicted by our simple model
was similar to that observed in the field-caught specimens,
although the proportion of fish predicted to contain MP was
more than 5-fold higher (Figure 3A). This is, however, not
surprising because, the frequency of zero values was driven by
the variability in MP occurrence in the water that was derived
from surface-collected MP. Moreover, the model assumed
homogeneous MP distribution in the water column, which is
unlikely, because the MP distribution is patchy, varying with
depth (Gorokhova, 2015). In addition, MP can form aggregates
that are too large to be mistaken for zooplankton prey (Lagarde
et al., 2016). Therefore, the distribution of MP concentrations
originating from the surface collections and used to model
MP encounter rate might poorly reflect the actual abundance
of MP available to the fish. The observed MP burden for the
population was also more variable, which is likely to be related
to diel variations in feeding and gut evacuation under natural
conditions (Seyhan and Grove, 2003), not accounted for by
the model. Other biological factors, such as maturity level,
ontogenetic changes in feeding, and behavior, may have affected
the probability of MP ingestion and thus contributed to the
intrapopulation variability in the MP burden. Finally, fishing
methods (which may induce spontaneous gut evacuation) and
time of capture (which may reflect diurnal differences in feeding
activity) may have contributed to the observed discrepancy in the
MP burden distribution. Nevertheless, given the simplicity of the
model and the uncertainties associated with its parameters, the
predicted values were sufficiently close to those found in the field,
indicating thatMP uptake can be predicted provided that we have
reliable MP abundance estimates.
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FIGURE 5 | Generalized additive models (GAMs) showing partial response curves for the explanatory biological variables: body weight (A), reproductive phase (B),
gut fullness (C) and age (D). The classes for reproductive phase correspond to: 1 = deformed gonads, 2 = post spawned, 3 = juvenile, 4 = developing gonads, and
5 = mature gonads. The vertical axis shows the relative influence of the explanatory variable on the prediction of MP burden on the base of partial residuals. Gray
bands indicate 95% confidence interval for each curve.

No Correlation Between Weight-Specific
MP Burden and HOCs
The transfer of hydrophobic contaminants from ingested plastics
to biota has been described as the so-called “Trojan horse” effect
(Cole et al., 2011). While this transfer has been demonstrated
under laboratory conditions (Besseling et al., 2013; Batel et al.,
2016), recent modeling studies indicate that natural sources
are much more important than MP in explaining HOC
bioaccumulation patterns in aquatic organisms (Mohamed Nor
and Koelmans, 2019). We did not find any correlation between
HOC concentrations in herring muscle and MP burden. It could
be argued, however, that omitting small MP (<1mm) from our
analysis, could have biased the results. Indeed, by focusing on
the larger MP, we ignored the potentially important influence
of a higher total surface area and thus higher HOC desorption
rates (Hendriks et al., 2001; Hartmann et al., 2017) of smaller
plastic fragments. From the fish feeding biology point of view,
however, the ingestion of such small particles by fish of this
size is rather unlikely, because filter-feeding herring have a
relatively low capacity to retain small particles due to their

rather wide gill raker spacing (Collard et al., 2017) and actively
avoid smaller prey by raptorial feeding (Aro et al., 1989). This
line of reasoning has also been supported by several other
studies reporting a predominant retention of larger than 1-mm
MP by herring of similar size as in our study (Lenz et al.,
2016; Collard et al., 2017; Beer et al., 2018). In the European
pilchard (Sardina pilchardus), Digka et al. (2018) analyzed the
presence of anthropogenic microparticles (1.2–5,000µm) in the
fishes’ gastrointestinal tract using hydrogen peroxide digestion
and found ∼75% of the particles to be in the size range of
the natural food, further supporting primary ingestion as the
main route for microplastic uptake in clupeids. Moreover, given
the short residence time (Grigorakis et al., 2017) of ingested
particles and the slow desorption kinetics of many HOCs, the
lack of correlation between the MP and organic contaminants
is rather expected and in line with other reports for fish and
other aquatic animals (Herzke et al., 2016; Kleinteich et al., 2018;
Gerdes et al., 2019).

Causality is difficult to prove using environmental
samples, where many different parameters concurrently
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affect contaminant body burden of an organism (Hartmann
et al., 2017), including various biotic factors that have significant
effects on both MP (this study) and HOC levels (Persson
et al., 2013). However, our findings suggest that there is
no tenable relationship between the MP intake and tissue
contaminant concentrations in the Baltic herring (Figure 4).
Similarly, no correlation has been found between the amount
of ingested plastic and HOC concentrations in northern
fulmars (Fulmarus glacialis) from the Norwegian coast (Herzke
et al., 2016), even though the birds had ingested much larger
amounts of plastic and their gut passage time for plastic
debris is several orders of magnitude longer than in herring
(Ryan, 2015). This lack of relationship is also supported
by the relatively constant MP burden observed in Baltic
herring over the past three decades (Beer et al., 2018), while
muscle concentrations of HOCs have decreased significantly
(Bignert et al., 2016). The mass-balance model indicates
that our measurements of the MP burden are ecologically
plausible given the currently reported abundances of MP
in the Baltic surface water, thus supporting the reliability
of the MP burden estimates in the Baltic herring reported
here and in other studies and providing confidence in
the methods employed. Taken together, these findings
contrast the currently held paradigm that microplastics
are an important source and vector of HOCs for aquatic
organisms (Mato et al., 2001; Rochman et al., 2013).

CONCLUSIONS

Our findings suggest that in a semi-enclosed sea like the
Baltic, where the MP loading is expectedly high, the
frequency of occurrence of microplastic in planktivorous
fish is moderate. In agreement with other studies, we also
found that biological factors, such as fish size and the
reproductive state may affect both feeding in general and
selectivity toward MP, and, hence, the MP burden. However,
we found no indication that HOC concentrations in the
muscle tissue are related to the amount of ingested plastic in
the fish. Thus, our study further strengthens the view that
MP contribute extremely little to the herring diet and play a
negligible role in explaining contaminant bioaccumulation in
the fish.
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