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Nano-sized particles are important components of the Earth biogeochemical system.
However, in the Anthropocene, the human activities disturbed their natural cycle and
increased their abundance by (i) affecting their emissions and releases; (ii) altering the
environmental processes involving nanoparticles; and (iii) introducing anthropogenic
nanoparticles (ANPs). Intentionally or unintentionally released, the occurrence of the
anthropogenic particles in the environment is continuously rising. Both natural and
anthropogenic nanoparticles are recognized as important carriers for trace elements and
organic micropollutants and key modifiers of their transport, speciation, bioavailability,
and effects in the environment. Nevertheless, currently they are considered separately,
despite the necessity of more integrated, broader, and non-sectorial perspective taking
together particles of different origins and various processes likely to generate and
involve them. The present paper provides a perspective on the environmental processes
involving anthropogenic and natural nanoparticles (NNPs) and discusses the role of
human activities in nanoparticle cycling, as well as the necessity to bridge the divide
between the NNPs and ANPs. The discussion will be supported by the examples of our
own research to ask, if there is still a frontier between NNPs and ANPs?
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INTRODUCTION

Nano-sized particles,1 naturally present in the Earth, move through different compartments
(biosphere, lithosphere, atmosphere, and hydrosphere) within global biogeochemical cycle. They
play an important, but not fully understood, role in the dynamics of the overall Earth system.
However, human activities disturbed the cycle of natural nanoparticles (NNPs) by (i) affecting their
emissions and releases; (ii) altering the environmental processes involving nanoparticles; and (iii)
introducing anthropogenic nanoparticles (ANPs). Both incidentally released nanoparticles (INPs)2

1Although still a question of debate, nano-sized particles definition used in the present paper involve any object (organic,
inorganic, or organometallic) of nanometric size (or sub-micrometric size), which can be in dispersed form in a fluid (Faucher
et al., 2019; IUPAC, 2019) and the small dimensions confer them peculiar physical and chemical properties that differ from
larger objects made of the same material(s) (Maurice and Hochella, 2008). Natural nanoparticle describes a sub-set of the
colloidal phase.
2Incidental nanoparticles are produced as a result of any form of direct or indirect anthropogenic activity or process.
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and engineered nanoparticles (ENPs)3 form the pool of the
ANPs. It is estimated that 1000s of Tg of NNPs, 1–10 Tg of
INPs and less than 1 Tg of ENPs from different natural and
anthropogenic sources co-exist and move annually between the
Earth compartments (Hochella et al., 2019). Despite their small
proportion of the total nano-sized particle mass, the amount of
ENPs in the environmental compartments continues to increase
with ever growing use of nano-enabled materials (Keller and
Lazareva, 2014). ENPs were recently considered within the frame
of global anthropogenic cycling of elements, concluding that for
elements such Ag, Al, Ce, Co, Cu, Fe, Ni, and Zn, ENPs had a
minor impact on their cycling, whereas SiO2 ENPs represented
3–25% of mined Si (Janković and Plata, 2019). However, such
integrated Earth system approach has emerged only recently;
NNPs and ANPs are thus in most cases considered separately.
Only few examples can be found in the literature providing a
comprehensive comparison of the behavior of NNPs and ENPs
(Baalousha et al., 2011; Wagner et al., 2014; Sigmund et al.,
2018). Therefore, broader and integrated approach toward fate
and impact of nano-sized particles in the environment would
be useful for better understanding Earth systems biogeochemical
dynamics. This requires considering nano-sized particles of
different origins together with the various processes likely to
generate and involve them.

NANOPARTICLE CYCLING IN THE
ENVIRONMENT

Natural nanoparticles are generated in different environmental
compartments by various physical, chemical, and biological
processes (Figure 1), such as (bio)chemical weathering of
minerals, photo-oxidation, redox and precipitation reactions,
(bio)mineralization, physical fragmentation, gas-solid nucleation
in the atmosphere, etc. (Sharma et al., 2015). ANPs generation is
a result of human-related activity or processes (e.g., combustion),
due to the life cycle of products containing nanoparticles
or accidental releases. Examples of such sources inherent
for human activities include: (i) dust generation by various
activities; typically mining, tillage, and demolition/construction.
Atmospheric transport then constitutes a vector of long-
distance transport (Jun et al., 2016); (ii) atmospheric release
and nucleation (Lee et al., 2019); (iii) release of treated and
untreated waste water (Brar et al., 2010); and (iv) storage in an
insufficiently confined area or spreading of sludge from sewage
treatment plants (Meier et al., 2016). Natural processes could
also be responsible for the generation of the ANPs from different
materials. For example, weathering of plastics could result in
a formation of micro- and nano-plastics in waters and marine
organisms (Ganesh Kumar et al., 2020; Kögel et al., 2020).

Independently on their origin, the nano-sized particles
interact with different abiotic and biotic components, via various
interconnected processes leading to their transformation in the
environmental compartments. Processes such as aggregation,

3Engineered nanoparticles are purposely designed and produced by humans.
Usually defined as particles with a size between 1 and 100 nm (IUPAC, 2019).

sedimentation, biological accumulation, biomagnification,
dissolution, chemical and physical alterations, etc., are common
for both NNPs and ANPs (Baalousha et al., 2011; Wagner et al.,
2014; Sigmund et al., 2018). The nano-sized particles, regardless
of their origin, participate in the same bio-physicochemical
processes (Figure 1), which ultimate will determine their fate
and impacts (Garner et al., 2017, 2018). The fate and behavior
of bare ENPs was similar to their natural counterparts with
the same composition (Garner and Keller, 2014; Wagner et al.,
2014; Sigmund et al., 2018). Human activities also affect these
processes by changing the surrounding physical and/or chemical
conditions that govern them.

These processes depend on the multiple factors that can
be grouped in three main categories intrinsic to: (i) nano-
sized particles, including particle physicochemical speciation,
size, shape, surface functionalization, etc.; (ii) environmental
variables, including pH, water hardness, and alkalinity, presence
and concentrations of different ligands from natural and
anthropogenic origins, which may influence chemical and
physicochemical speciation; and (iii) biological systems,
including habitat, feeding pattern, etc. Abundant information on
the environmental implications of ENPs can be found in recent
review papers (Lead et al., 2018; Joonas et al., 2019; Mortimer
and Holden, 2019; Kögel et al., 2020; Slaveykova et al., 2020).

It is out of the scope to provide a detailed overview on the
fate and impact of the nano-sized materials in the environment.
Hence, we make a parallel in some key properties and processes
to consider toward bridging the gap between NNPs and ANPs.

TOWARD BRIDGING THE GAP
BETWEEN NNPS AND ANPS

Whatever their origin, nano-sized particles are characterized by a
greater fraction of atoms at the surface, which determine their
enhanced surface energy and reactivity (Hochella et al., 2019).
Purposely-made ENPs have controlled chemical composition,
size, and properties. They therefore have less polydisperse
character and some properties are enhanced as compared
with NNPs. For example, due to their controlled surface
structure and smaller sizes TiO2 ENPs have catalytic and redox
properties that natural ones do not present (Chin et al., 2011).
In addition, the presence of persistent engineered coatings
on the ENPs gives them properties which differ from the
core material in terms of dissolution, stability and effects.
Similarly to NNPs, the surface of ANPs is modified in the
environmental and living systems, through the adsorption and
desorption of organic and inorganic compounds of natural
or anthropogenic origin. Such alterations can affect surface
properties of nano-sized particles, hence their interactions with
trace elements, organic micropollutants, colloids, surfaces, and
biota (Wagner et al., 2014; Wang et al., 2015). Therefore, the pure
synthetic identity of ENPs could also be questioned given their
interactions with different naturally occurring compounds. The
existence of “purely natural” NNPs is a source of interrogation
insofar as the whole of the biosphere concerned by the processes
of genesis and by materials/compounds qualified as natural are
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FIGURE 1 | Nano-sized particles in the environmental compartments. Processes governing their distribution among environmental compartments (in italic), their
formation, and their transformation (in circles) are highlighted. ANPs (in red) originating from macroscopic or nanomaterials, once released into the environment take
part in the same distribution and transformation processes.

possibly affected by human activities. It would therefore be
useful to consider that “altered” nano-sized particles involve both
anthropogenic and natural components and thus would have
more complex environmental fate and impact. Hereafter, we
provide shortly two examples considering the interactions of the
ANPs with naturally occurred compounds and of the NNPs with
inorganic and organic pollutants.

Interaction of ANPs With Naturally
Occurring Compounds
Interaction of ANPs with various naturally occurring compounds
(e.g., humic acid, extracellular polymeric substances, peptides)
results in a formation of eco-corona and gives them new surface

properties (Louie et al., 2016; Pulido-Reyes et al., 2017). This new
“environmental identity” has a great influence on their fate by
affecting their dissolution, aggregation/agglomeration, stability in
the water column (Gigault et al., 2012; Wang et al., 2015; Louie
et al., 2016), deposition to mineral surfaces (Louie et al., 2016),
attachment to biological surfaces and bioavailability (von Moos
et al., 2014; Louie et al., 2016), and toxicity (Ivask et al., 2014;
von Moos and Slaveykova, 2014). For example, natural organic
matter was shown to reduce the toxicity of metallic nanoparticles
to many organisms (Wang et al., 2016).

Similarly, in biological environment, ANPs interact with
various biomolecules (e.g., proteins, peptides, DNA, RNA,
lipids, etc.) and earn a new “biological identity” determining
nanoparticle fate and effects within living organisms. For
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example, the antioxidant enzyme catalase formed a corona
around AgNPs, and the released Ag together with AgNPs
inhibited its enzymatic activity. However, AgNP–superoxide
dismutase complex formation only slightly affected the protein
conformation and had no impact on the enzymatic activity or
AgNP dissolution (Liu et al., 2020). It is currently accepted that
the formed bio-corona represents “what the cell sees” (Walczyk
et al., 2010). Hence, it plays a critical role in modulation
of the biological reactivity and nano-sized particle induced
responses in living organisms, which may be significantly distinct
from the expected one exclusively driven by the primary ENPs
synthetic identity.

Interaction of NNPs With Inorganic and
Organic Pollutants
Due to their small size and large specific surface area, NNPs
play a key role in the transport, speciation, and bioavailability,
and thus the ultimate impact of trace elements (Slaveykova and
Wilkinson, 2005; Wilkinson and Lead, 2007; El Hadri et al.,
2016), and organic micropollutants (Sigmund et al., 2018).
NNPs possess a near infinite array of possible compositions
and sizes and include principally oxides and oxyhydroxides of
iron, manganese, and aluminum and aluminosilicates; humic-
like substances, various biopolymers synthesized and released
by living organisms involving various proteins, nucleic acids,
and polysaccharides (Wilkinson and Lead, 2007; Hartland et al.,
2011). Clear size dependence in a preferential binding of trace
metals on NNPs was observed (Worms et al., 2010a,b). Following
the adsorption of different inorganic and organic contaminants,
the NNPs will acquire a new “anthropogenic identity,” which will
have an important consequence for the pollutant availability and

biological outcomes. For example, in the aquatic environment,
NNPs reduce the bioavailability of the trace metals to various
organisms, including bacteria, fungus, phytoplankton, daphnia,
and fish, in direct proportion to the free metal ion concentrations
(Slaveykova and Wilkinson, 2005). NNPs could therefore play the
role of Trojan horses for their associated pollutants and increase
the trace metals bioavailability to filter feeders (e.g., clams,
mussels, and oysters) (Luoma and Rainbow, 2005). Similarly, the
adsorption of metallic pollutants on ENPs could result in their
surface modification, which could change their properties and the
way they interact with biota (Naasz et al., 2018; Li et al., 2020).

Overall, despite the existing differences between NNPs
and ANPs, similar properties and processes control their
fate and effects in the environment. Therefore, process-
oriented knowledge has a potential to lead to sound progress
in the understanding the nano-sized particles dynamics
in the multifaceted Earth (sub-) systems, and feedbacks
with human activity.
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