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The study of groundwater distribution is gaining importance due to the mounting
pressures exerted by rapid urban growth on water supply, especially in small islands that
could experience faster supply deterioration through saltwater intrusion. Understanding
the interplay between the groundwater supply and demand dynamics requires seeing
the resources beneath the surface. One typical visualization technique is groundwater
potential (GWP) mapping, which predicts groundwater’s spatial distribution from
measurable variables on or above the Earth’s surface. However, system errors and
noise can affect the quality of the input variables, which can influence the reliability
and explanatory power of the GWP maps. Herein, we analyzed the effect of noise
on the GWP map accuracy for Cebu and Mactan islands, Philippines. We found that
the GWP map retains the fidelity of the zonal structure information in the presence of
noise in the input map layers. With a combination of two binary-classifier performance
curves, we established the noise-resilience horizon. This horizon is the limit noise-level
that the input maps may contain such that the GWP maps retain high accuracy. This
horizon indicates that the input maps may carry as much as 20% to 25% error without
significantly corrupting the GWP map’s predictive accuracy. Our findings contribute to
the knowledge of GWP mapping’s accuracy limits, which is valuable as such diagrams
comprise the core of decision-support systems in groundwater management. We also
anticipate our dither approach as a foundation for the generic assessment of GWP map
accuracy, regardless of a priori details of the map-generating model.

Keywords: groundwater potential, frequency ratio, noise resilience, island water supply, mapping

INTRODUCTION

Groundwater is an essential resource at the very foundation of modern human civilization. The
growth of urban centers worldwide presents an ever-mounting pressure on this water supply
for three reasons. First, the population has grown tremendously in a period shorter than the
development of groundwater extraction systems (Wyman, 2013). Second, the threat of climate
shifts seems to be happening at a rate faster than cities could adapt (Green, 2016). Third, the speed
of groundwater contamination, which anthropogenic activities accelerate, is sufficiently significant
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in magnifying the perceived scarcity (Burri et al., 2019). Hence,
studies that can help in enhancing the community’s adaptation
rate, such as on the informative search of untapped groundwater
sources, will be valuable.

Small island communities are among the densest in the world,
thus facing a prominent threat of strained groundwater supply.
For instance, the small area exposes such islands to saltwater
intrusion, a situation that rising sea levels would exacerbate
(Robins, 2013). The motivation to explore groundwater sources
to support the demands of a growing human population, driven
mainly by rapid urbanization, is paramount. Cebu is an island in
the Philippines with a population density of about 890 persons in
every square kilometer, among the most notable in the world. The
rapid urbanization of the island led to the surging water demand
for residential, commercial, and industrial consumption. Indeed,
in many small islands, the population density exerts the most
pressure on the water supply. A further complication with small
island hydrogeology is the difficulty in quantifying catchment
water balance, a major part of which is unseen (Robins, 2013).
The largely immeasurable water balance of small islands will thus
require indirect methods of tracking groundwater viability. These
tracking methods will help address the possible repercussions
from a strained supply.

The present study applies the concept of the groundwater
potential (GWP) to delineate zones within the densely inhabited
islands of Cebu province (notably, the Cebu and Mactan islands)
in the context of water source prospecting. A GWP map is a
spatial distribution of the best estimate of the terrain’s physical
capacity to supply a required amount of groundwater for a
given use. The GWP map is the output of a combination of
input map data on physical variables that relate to the presence
or absence of groundwater. Díaz-Alcaide and Martínez-Santos
(2019) identified eight (8) of the most common input variables
GWP researchers include. We utilized the frequency ratio (FR)
method in determining the GWP values due to its data-driven
approach. The technique assigns weights objectively based on the
available data, although it requires a large number of wells (such
as in the order of 1,000). Semi-quantitative methods, such as
the analytical hierarchy process (AHP), consider human-expert
opinions to assign the weights of importance of the putative
factors that influence GWP.

The noise-resilience horizon is a framework for setting a
theoretical limit to the expected predictive accuracy of any
GWP model, regardless of the details of the method that
generated it. We utilized the notion of dithering to inject random
noise to a GWP map and explore the maximum intensity
of this noise at which the original map’s accuracy degrades
significantly. Dithering has been discussed in the context of
signal processing as a method of modulating the inherent
quantization errors of measured signals (Sullivan et al., 1993;
Hu, 2016). The modulation renders the signal’s total error
component into a steady white noise that can be separated from
the underlying information by conventional filtering techniques
(Lipshitz et al., 1992). In this study, we used dithering similarly,
but for showing how far the degradation corrupts the original
information content of the map, analogous, in context, to the
lossy transmission of signals over noisy computer networks

(Mohr et al., 2000). Demonstrating our approach of finding the
noise-level horizon requires that we minimize as much human
bias as possible, which may be challenging to filter out through
techniques like AHP. Nevertheless, the framework should be
applicable, with suitable adjustments, to generate GWP maps
using other methods.

MATERIALS AND METHODS

A GWP map typically results from the data integration of
multiple predictor variables. For every map unit (e.g., pixel for a
digital map) centered at coordinate (x,y), the value of the GWP is
expressible as a multivariable linear regression model of the form,

GWP (x,y) = a0 +
∑Q

i=1
aiFi(x,y) (1)

The Fi are the input factors, grouped into eight (8) thematic
layers. Each layer L, in turn, comprises ML classes; hence,

Q =
∑8

L=1
ML (2)

We may assume a0 = 0 as a boundary condition (i.e., GWP = 0
if all F = 0).

The modeler does not typically have a priori information on
the value of the weight coefficient ai. The common approaches
for determining those values, such as the multi-influence factor
(MIF) technique and AHP, use a qualitative system of ranking
the importance of factors. However, this ranking system relies
on subjective assessment of the importance (Nasir et al., 2018),
which can amplify site-specific biases. In the present study, we
opted to use the frequency-ratio (FR) technique to determine
the weight values based on prior information about the location
of existing wells (Díaz-Alcaide and Martínez-Santos, 2019). The
National Water Resources Board (NWRB) and Local Water
Utilities Administration (LWUA) of the Philippines provide data
on existing well locations1. For Cebu and Mactan islands, the
NWRB and LWUA identified a total of 1,204 unique wells. This
data set is a 70:30 split between training set for constructing the
GWP map, and validation set for the map evaluation.

The present study has been carried out through four main
steps, as outlined in Figure 1: (1) data collection and preparation,
(2) noise injection, (3) application of frequency ratio model, and
(4) map validation and assessment.

Frequency Ratio
The basis of determining the coefficients is the frequency ratio
(FR), a value calculated given a data set of existing well locations.
The training data set includes a total of 842 wells as indicated in
Figure 2, which also highlights the Cebu and Mactan islands of
the Cebu province.

Every pixel on the map corresponds to a 10-m by 10-m area,
which could accommodate at most one well. With this one-
to-one correspondence, a total of 842 pixels represent existing

1https://doi.org/10.5061/dryad.c866t1g4c
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FIGURE 1 | The methodological framework of the study.

well locations in the training set. For every thematic layer L
categorized into ML classes, the FRk of the k-th class (for k = 1,
2,. . .,ML) is a ratio of two ratios. The numerator is a ratio between
the number of wells located in pixels belonging to the k-th class,
Wk, and the total number of wells in the study area (N = 842)
considered. The denominator is the ratio between the number of
pixels categorized in the k-th class, Pk, and the total number of
pixels representing the entire study area, P. Hence, FRk = (Wk /
N) / (Pk / P), which is a real-valued positive number.

For every thematic layer L, a threshold WL
∗ = N/ML,

represents the equipartition scenario for which wells can be
found in pixels regardless of the class to which the pixel belongs.
This scenario implies that the thematic layer offers no useful
information of the zones in which to develop groundwater
sources. We use WL

∗ to further assess the significance of
the classes in which the FR values are relatively substantial.
Particularly, if Wk/N > WL

∗, then we consider the k-th class as
a significant factor that determines the GWP. This method of
assessing the k-th class checks if a high FR is a result of consistent
recurrence of wells in k-class pixels. A high FR is possible when
very few wells are in pixels of a rare class (i.e., covers a small
portion of the study area). This scenario might imply a chance
incidence of wells in a rare class of a certain thematic layer.

Thematic Layers
A thematic layer corresponds to any of the eight input
variables assumed as relevant in determining GWP across various
geographic settings (Díaz-Alcaide and Martínez-Santos, 2019).
The layer provides pixel-level data classified either according to
quantitative ranges or qualitative characteristics. The following
paragraphs provide further details about each thematic layer as
they apply to the context of the study. The class labels for all layers
are in the Supplementary Table 1.

Geomorphology
The geomorphologic features have a link to the topographic
landforms found in the study area. Hammond’s macro-landform
classification technique was used in the ArcMap ModelBuilder
(Karagulle et al., 2017). This approach generates the landform

map from the relief, slope and profile parameter maps resulting
from a digital elevation model (DEM).

Lineament Density
The lineament density is a quantity referring to the total
lineament length per unit area. The shaded relief images
from a LiDAR DEM generated, via manual interpretation and
digitization, the lineament data. Each relief image corresponds
to an azimuth angle: 45◦, 135◦, 225◦, and 315◦. These angles
allow for the enhancement of the linear features from the DEM.
With ArcMap’s (version 10) line density tool, we automated the
calculation of the lineament density values. Finally, with the
natural breaks method, we categorized the lineament density
values into five classes that correspond to ranges: very low (0.00–
1.33 km/sq.km), low (1.33–3.06), moderate (3.06–4.99), high
(4.99–7.92), and very high (7.92–16.97).

Drainage Density
The drainage density is the total length of the drainage channels
per unit area. Each drainage channel is a result of the watershed
delineation framework applied to the LiDAR DEM of the study
area. Using ArcMap (version 10) line density tool, the generated
channels went through further data integration that resulted in
the estimates of the drainage density values. With the natural
breaks method, we categorized the drainage density values into
five classes: very low (0.00–0.22 km/sq. km), low (0.22–0.67),
moderate (0.67–1.13), high (1.13–1.67), and very high (1.67–4.38).

Soil
The soil map came from the Philippine GIS Data Clearinghouse
or PhilGIS (philgis.org, Accessed December 2019), an online
repository for free GIS data of the entire Philippine archipelago.
The study area consists of eleven (11) soil types: hydrosol,
beach sand, clay (Faraon, Bolinao, Lugo, and Medellin), clay
loam (Macolod, Mandawe, Mantalongan, and Baguio), and
Mandawe silt loam.

Land Use/Land Cover
The National Mapping and Resource Information Authority
(NAMRIA) of the Philippines provided the maps on the land use
and cover features of the study area. Due to the dynamic nature
of land use, especially in built-up areas, the land use/land cover
(LULC), at best, only covers a snapshot. The present study utilized
the 2015 version of the NAMRIA data for LULC.

Geology
The PhilGIS is also the provider of data on the geologic map of
the study area. This map comprises twelve (12) identified features
dominated by Carcar limestone and Talavera Group, which are
37% and 30%, respectively, of the study area. Only 0.03% of the
study area does not belong to a geologic category.

Rainfall
The annual average rainfall amount has a north-south gradation
highest at the northernmost tip of the study area decreasing
towards the south. The long-term rainfall data between 1981
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FIGURE 2 | Locations of existing wells (N = 1,204) across the Cebu and Mactan islands of Cebu province distinguished among training (842 wells) and training set
(362 wells). Basemap Source: ESRI (2018), DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User
Community.

and 2010 came from the Philippine Atmospheric, Geophysical
and Astronomical Services Administration (PAGASA). We used
the Thiessen polygon method to generate the rainfall map from
these data. Four weather stations were crucial sources for the
Thiessen method: Tacloban, Mactan, Tagbilaran and Dumaguete.
The Tacloban station accounting for 0.46% of the study area,
which is at the northernmost tip, registered the highest rainfall
level at 2659.3 mm. The Mactan station, covering the majority of
the area (69%), registered the second highest level at 1564.5 mm.
The Tagbilaran station, the scope of which is the second widest
(19%), registered 1412.6 mm. The Dumaguete station, which
covered the southernmost 11% of the study area also registered
the lowest rainfall level at 1218.4 mm.

Slope
The slope data is a result obtained from the same data processing
steps as in creating the geomorphology map. With a combination
of Hammond’s classification procedure and the natural breaks
technique, we considered five (5) categories of slope angles from
the gentlest to the steepest. These categories are: Gentle (0.00 to
7.73 degrees); Moderate (7.73 to 17.06); Strong (17.06 to 26.72);
Steep (26.72 to 36.70); and Very Steep (36.70 to 82.09).

Sensitivity Analysis
Models that use multiple parameters such as the FR technique
curb the impact of ambiguities in the generated GWP map.
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An adequate model is one that optimizes the balance between
biases and unexplained variances arising from the use of too few
parameters and overfitting from including too many parameters
(Saidi et al., 2011). To deal with this bias-variance tradeoff and
provide an objective and efficient justification of the factors of the
GWP map, a sensitivity analysis was performed.

The map removal sensitivity analysis technique (Lodwick
et al., 1990) was used in the present work. It was performed by
removing one thematic layer at a time from the FR integration. If
the exclusion of a factor results in a large variation in the output
map, the output map was said to depend on that factor. The
layers which caused the least changes to the GWP map were then
removed in succession until the layer with the largest variation
caused was left. The sensitivity, S = S(x,y) at position (x,y) on the
map is calculated according to the following expression:

S =
|V/U-V’/u|

V
× 100 (3)

Herein, V = V(x,y) is the GWP(x,y) defined in equation (1)
accounting for all U = 8 thematic layers, and V’ = V ’(x,y) is the
GWP value with one or more thematic layers (or input factors)
removed. The quantities U and u are the number of factors
included in the calculation of V and V’ respectively. For a given
u, the overall map sensitivity is examined from the statistics taken
across all the pixels on the map. Particularly, we focused the
sensitivity analysis on the mean sensitivity across all pixels.

Noise Injection by Dithering
This study focused on investigating the robustness of the GWP
map generation approach to the inherent errors embedded into
the input map data (i.e., thematic layers). The reliability of the
GWP map rests on the stability of the output to the potential
variabilities arising from the fidelity issues in the input data. We
simulate the errors in the input data by injecting uncorrelated
noise in the form of a dither probability K that the value in
the pixel located in (x,y) switches to a different category. In this
study, we explored the following dither probabilities: 10%, 20%,
25%, 50%, and 80%. For a given thematic layer L, the effective
probability that any pixel changes its value (i.e., category) would
be K (1 – 1/ML). The value of this effective probability is less than
K but never less than K/2. Applying this procedure onto all pixels
generates a dithered map GWPK(x,y) for a given value of K.

Map Validation and Assessment
The GWP map is an output of the evaluation of Equation 1 over
all the pixels of the map. The delineation of the GWP zones
required the discretization of the pixel values into five categories
determined using the natural breaks technique: Very Low (0.00 to
4.55), Low (4.55 to 7.69), Moderate (7.69 to 12.56), High (12.56 to
18.62), and Very High (18.62 to 27.61).

The validation set consisting of 362 wells consist of wells
that were not part of constructing the GWP map. We used
this data set to test the accuracy of the constructed GWP map.
First, the GWP categories go through a further categorization
that groups the values belonging to Very Low and Low as “NO”
and Moderate through Very High as “YES.” This binarization

of the categories prepares the map for the assessment using
the receiver operating characteristic (ROC) curve. The ROC
visualizes the map’s diagnostic ability to predict those zones in
which groundwater wells are feasible or not. Second, we define
the four fundamental categories for the evaluation of binary
classifiers, namely, true positive (TP), false positive (FP), false
negative (FN), and true negative (TN). TP is when a well in the
data set is in a YES pixel; FP is when no well is in a YES pixel; FN
is when a well is in a NO pixel; TN is when no well is in a NO
pixel.

The assessment of the GWP map dwells on the examination
of the ROC and another graph, known as the precision-
recall (PR) curve. While the ROC plots the TP rate (also
known as recall, = n(TP)/[n(TP) + n(FN)]) against the FP rate
( = n(FP)/[n(FP) + n(TN)]), the PR curve plots the precision
( = n(TP)/[n(TP)+ n(FP)]) against the recall. The area under the
curve (AUC), which has a value between 0 and 1, is the metric for
the classification performance of the map. Applied to either the
ROC or PR curve, a high AUC within the allowable range implies
the better performance of the GWP map. While the AUC of the
ROC curve usually suffices, its high value may be misleading,
especially for class-imbalanced data sets (Lever et al., 2016). The
AUC of the PR curve offers confirmation for the AUC of the
ROC curve. A high AUC from both curves would suggest that
the binary classifier is accurate.

In addition to the high AUC, the PR curves also would
exhibit features that indicate the predictive accuracy of the binary
classifier. A binary classifier’s baseline performance is random
guessing, which implies that it will be correct half of the time,
on average. This baseline should be a horizontal line at 0.5 in
Figures 4 and 5.

RESULTS

The FR values resulting from the application of the frequency-
ratio calculations onto the training data set reveals the
noteworthy correlations between the thematic layers and GWP.
In comparison with a designated threshold (Supplementary
Table 1), the existing wells tend to be in sites (pixels) belonging
to certain classes more often than chance. Hence, the data set
exhibits a class imbalance in the context discussed by Lever
et al. (2016). This result translates to relatively high coefficients
on certain factors in Equation 1, further implying a strong
correlation between those factors and GWP.

On Cebu and Mactan islands, the following features seem to
have noteworthy, strong correlations with GWP: (1) quaternary
alluvium geology; (2) very low hills geomorphology; (3) clay or
clay loam soil; (4) built-up area; (5) gentle slope. We also find that
GWP takes strong influence from low lineament density and high
drainage density, a counterintuitive combination. Some authors
suggest that GWP would benefit from a high lineament density
due to enhanced groundwater recharging by precipitation.
Meanwhile, a low drainage density tends to arrest groundwater
leakage. Nevertheless, the high GWP in those areas of the study
area is likely a confluence of the extensive quaternary alluvial
geology and transitional zone topography. Walther et al. (2017)
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found that small dams in Oregon are typically hiding in "very
low" hills and areas of high population density (as do built-up
areas). Small dams, like groundwater sources, are mostly hidden.
They also refer to very low hills as a transition zone between plain
and steeper topography. The high GWP in these areas seems to
corroborate with this aspect of a transition zone, especially in an
area that receives an average of more than 1,500 mm of rainfall
annually. Das et al. (2018) and Das and Pardeshi (2018) likewise
found a similar confluence of geology, geomorphology, and soil
type in their geospatial characterization of the Pravara basin in
India.

Sensitivity Analysis of the Estimated
GWP
The results of the sensitivity analysis justified the thematic layers
that were considered in determining the GWP map. Table 1
shows the variation index statistics calculated from the map
removal sensitivity analysis approach. The analysis disclosed that
the rainfall factor had the highest influence in the GWP (mean
variation index: 1.33%) followed by geology (mean variation
index: 1.1%) and lineament density (mean variation index:
1.01%). A similar deduction was found by Al-Ruzouq et al.
(2019) on geology and precipitation in northern UAE, although
lineament density was found least significant. Conversely,
excluding the LULC layer delivered the least variation in GWP
implying that the factor has the least impact on the GWP map.
Although higher FRs were computed for the geomorphology
classes, the factor only ranks fifth in the most significant factors in
GWP. The application of a one map removal sensitivity analysis
indicated that rainfall, lineament density, and geology are the
most significant factors influencing groundwater potential in the
region of study.

Table 2 displays the variation of the GWP as a result
of excluding one or more factors in the integration process.
A small variation of the GWP was calculated by removing the
factor LULC while higher variations manifested as more factors
were removed from the integration. The assimilation of fewer
parameters divulged that variations are apparent in the GWP
map with the complete number of parameters. Despite the
varying importance of each factor, sensitivity analysis confirmed
the significance of the eight (8) thematic layers in GWP.

TABLE 1 | Statistics of the one-map removal sensitivity analysis.

Thematic layer
maps excluded

Overall sensitivity (%)

Mean Minimum Maximum Standard
deviation

LULC 0.91 0 11.56 0.78

Slope 0.97 0 12.5 0.88

Drainage density 0.97 0 12.5 0.8

Geomorphology 1 0 11.22 0.57

Soil 1.01 0 12.5 0.89

Lineament density 1.03 0 12.5 0.99

Geology 1.1 0 11.84 0.74

Rainfall 1.33 0 12.5 0.77

Dithered GWP Maps at Varying Noise
Injection Levels
The noise injection study established the limits of the dithering
level at which the GWP maps retain a substantial level of
accuracy. Particularly, our results show that the baseline map
retains the zonal structure in the presence of noise in the input
map layers, but only up to a maximum level. We designated this
maximum level as the noise-resilience horizon.

The output GWP maps (Figures 3A–F) show a progressively
decreasing zonal structure with an intensifying noise injection
level (i.e., as the value of K increases). This trend is
likewise visually evident in the progression of the input maps
(Supplementary Figures 1–7) from K = 0% to K = 80%. The
noiseless case (Figure 3A) show zones of high to very high GWP
in the northern tip of Cebu Island. GWP is high as well on
a major part of Mactan Island, which lies to the right of the
middle part of Cebu Island. The coastal areas exhibit high GWP
especially around the strait between Cebu and Mactan islands
in which a dense cluster of wells actually exist (Figure 2). The
zonal structure of the GWP map is still remarkable at K = 10%,
20% and even at 25% (Figures 3B–D). However, at K = 50%,
the GWP map already demonstrates significant smudging in the
zonal structure. Compared to the K = 0 case, the GWP map at
K = 50% (Figure 3E) is not an informative guide for groundwater
prospecting. The situation is much worse at K = 80% (Figure 3F).

Validation and Assessment of the GWP
Map and the Noise-Resilience Horizon
The AUC for the ROC and PR curves on the training data set
(Table 3) are above 0.80 when the noise levels are K = 0%, 10%,
and 20%. The binary classification performance of the GWP map
appreciably degrades at K = 50% and 80%, with the AUC of
the ROC and PR curves both dropping to less than 0.70. The
GWP map performs just as well (if not somewhat better) on
the validation set across the different K values (Table 3). This
consistency in the AUC between the training and validation data
sets seems to suggest that the GWP map of the study area is useful
for identifying potential areas of groundwater development.

A cluster of ROC and PR curves form within a recognizable
band for a range of noise levels between K = 0% and 25%
(Figures 4 and 5). This band is distinctly separate from the curves
for K = 50% and 80% and also significantly above the indicative
performance (see dashed lines in Figures 4 and 5) of a randomly
guessing classifier. The high AUC > 0.80 for all the curves in this
band suggests that the GWP map preserves zonal information
in spite of noise. Consequently, the GWP map is resilient to
noise with intensities as high as K = 25%. Visually, the cluster of
curves constitute the noise-resilience horizon, which represents
the limit noise-level that the input maps may contain to retain
high accuracy.

The noise-resilience horizon that we found in our analysis
seems to agree with results obtained from the lossy transmission
of an image over noisy computer networks (Mohr et al., 2000).
In that study, the authors determined how many packets can be
lost through network transmission and still retain an acceptable
image quality level at the receiver’s end. From the context of
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TABLE 2 | Statistics of the map removal sensitivity analysis.

Thematic layer maps included Overall sensitivity (%)

Mean Minimum Maximum Standard deviation

Slope, drainage density, geomorphology, soil, lineament density, geology, rainfall 0.91 0 11.56 0.78

Drainage density, geomorphology, soil, lineament density, geology, rainfall 1.59 0 12.5 1.15

Geomorphology, soil, lineament density, geology, rainfall 1.92 0 12.5 1.48

Soil, lineament density, geology, rainfall 2.65 0 12.5 1.98

Lineament density, geology, rainfall 3.8 0 20.83 2.57

Geology, rainfall 5.38 0 37.5 3.6

Rainfall 9.34 0 87.5 5.4

FIGURE 3 | The GWP output maps at different noise levels according to K-values. Top row: (A) K = 0%, (B) K = 10%, (C) K = 20%. Bottom row: (D) K = 25%,
(E) K = 50%, and (F) K = 80%. Basemap Source: ESRI (2018), DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and
the GIS User Community.

that study, the image is analogous to the GWP map; the packet
losses correspond to the inherent noise within the input maps;
and the lossy transmission can be interpreted as the noisy input-
output transformation that generates the GWP map. Mohr et al.
(2000) found that the image quality is robust to packet losses
of as much as 40%, which is analogous to the noise-resilience
horizon we obtained in our study. The calculation of such a
horizon is valuable for assessing the realistic limits to the accuracy
of relaying information via inherently noisy methods.

DISCUSSION

The study by Elbeih (2015) established the scientific utility of
remote-sensing and GIS data sets as inputs for estimating GWP
maps. However, as did numerous studies after it, authors did
not report the inherent statistical uncertainties of the input GIS
thematic layers. For this reason, the reliability of the groundwater
maps, regardless of the reported site-specific accuracy, is not easy
to establish. Most studies also assume that the input variables do
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TABLE 3 | Computed areas under the receiver operating characteristic and
precision-recall curves of the training and validation datasets at each
dithering level.

Dithering level AUC

Training data
(n = 842 wells)

Validation data
(n = 362 wells)

ROC PRC ROC PRC

0% 0.842 0.834 0.853 0.833

10% 0.832 0.823 0.843 0.837

20% 0.820 0.806 0.830 0.836

25% 0.813 0.795 0.835 0.826

50% 0.616 0.627 0.596 0.614

80% 0.597 0.596 0.569 0.574

not change in time, which neglects the demand level dynamics
associated with rapid urbanization. An earlier study by Nas
and Berktay (2010) seems to be the only one that provided an
explicit declaration of the geo-statistical characteristics of the
input data from which they generated the spatial distribution
of groundwater quality. The geo-statistical characterization of
the input data underscored the importance of examining input
uncertainty to gauge the reliability of estimated groundwater
maps. For example, the kurtosis was exceptionally high (i.e., > 3),
suggesting heavy-tailed distributions of values, having more
frequent outliers than a normal distribution would allow. A large
kurtosis would likely correspond to high dither probabilities,
implying weaker reliability levels of the predicted GW map.

Machine-learning approaches for GWP mapping have
increased popularity in recent years (Miraki et al., 2019; Pham
et al., 2019; Chen et al., 2020). Although such approaches report
high accuracies in specific sites to where many researchers
applied the analyses, the transferability of the results to other
sites is inconclusive, contrary to the authors’ claims. Miraki
et al. (2019) used machine learning and considered 12 inputs

to train a classifier in predicting a GWP map. However, the
model’s transferability to other sites may not be a straightforward
consequence of the study. Pham et al. (2019) claim that their
GWP mapping method is generically applicable to other areas
worldwide. Like similar studies, the input GIS data sets are
mentioned and described, but not geo-statistically characterized.
Chen et al. (2020) used 16 inputs and did not report the
uncertainties or errors associated with the data sets. These
studies commonly do not provide a statistical characterization
of the input data sets. Instead, the learning algorithms implicitly
address any inherent errors or uncertainties in the training data.
The framework to assess the reliability and transferability of
the generated maps did not exist until now. Thus, a scientific
assessment of the reliability and transferability of machine
learning approaches can now be made through the framework
we propose.

Although we opted to use the FR method in this study
to demonstrate the noise-resilience horizon, the framework
should be applicable for other GWP estimation methods. The
choice of the FR (Díaz-Alcaide and Martínez-Santos, 2019)
is made in consideration of eliminating as much artificial
bias originating from the subjective assessments present in
other semi-quantitative methods such as the MIF (Nasir et al.,
2018), AHP (Sahoo et al., 2015), and simple additive weight
(SAW) (Abrams et al., 2018). Previous GWP studies typically
assumed that the input map layers are clean. Also, there was
possibly no systematic way to investigate the impact of inherent
uncertainties from maps with various data types (e.g., categorical
or numerical). Without loss of applicability, we chose the FR
method, mainly because it is data-driven and thus minimizes
the degree of subjective biases as in the case of AHP, which rely
on human-expert judgment to attribute weights of importance
to input factors.

The present study applied dithering as an approach to
implementing uncertainty analysis on generated GWP maps. We
established the dithering level, which is between 20 and 25%,
at which the GWP map’s accuracy remains at a preferably high

FIGURE 4 | The ROC (left) and PR (right) curves computed on the training data set. The AUC values are in the legend. The dashed lines in both graphs indicate the
performance of a randomly guessing classifier.
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FIGURE 5 | The ROC (left) and PR (right) curves computed on the validation/test set. The AUC values are in the legend. The dashed lines in both graphs indicate
the performance of a randomly guessing classifier.

level (AUC > 80%). This noise-resilience horizon is the limit of
the noise level, which the input maps may contain so that the
GWP map achieves an accuracy level. This horizon may vary
for different methods of generating GWP due to the differences
in the sensitivity to the input factors, such as what Oh et al.
(2011) found in their application of the FR method to analyze
the GWP in Pohang, South Korea. Kleinen (1994) discussed
the complementarity between sensitivity and uncertainty analysis
extensively.

The statistical uncertainties of the measured input factors for
determining the GWP are implicit in several studies that relate
GWP to groundwater recharge. Herrera-Pantoja and Hiscock
(2007) employed a stochastic weather generator in their estimates
of groundwater recharge. The stochastic approach thus assumes
an inherent random uncertainty from the generated input values.
Szymczycha et al. (2017) used the recharge temperature as a
proxy for the GWP interpreted as the aquifer recharge rate.
The calculation of the recharge temperature hinged on several
assumptions, the uncertainties of which could significantly alter
the estimates within and among sites. The authors observed a
range of estimated recharge temperatures as wide as 13.5%, which
is well within the noise-resilience horizon we found. In other
studies, the statistical uncertainties originated from the assumed
measurable factors: e.g., concentrations of water contaminants
(Kourgialas et al., 2018) or heat-exchange rates (Shrestha et al.,
2018). Valois et al. (2018) applied sounding measurements to map
the groundwater reserves in an area. The authors noted multiple
sources of uncertainties in the obtained sounding measurements
that could affect the accuracy of the GWP representations.
Indeed, quantifying the extent of these uncertainties will be
valuable for estimating the noise-resilience horizon for this
survey-type method of GWP mapping. Therefore, a conceptual
framework for accounting the statistical uncertainties of the input
factors needed to determine GWP is necessary to objectively
qualify any conclusions originating from GWP maps concerning
the search for untapped potential groundwater sources.

Small islands in the Pacific Ring of Fire have complex
hydrogeological structures, unlike landlocked areas, arid

regions, or most coastal zones of continents or big islands.
The complexity of these groundwater-relevant structures is
commonly a consequence of the prevalence of volcanic aquifers
(Margat and Van der Grun, 2013, p. 58). Cebu and Mactan
islands are found well within this volcanically and tectonically
active zone in the Pacific. The challenge of applying GWP
mapping in these settings will be the degree of uncertainty in
the measurement of thematic factors due to geologic features
that could influence instrument measurements. For example,
Valois et al. (2018) reported multiple sources of uncertainty in
their transient electromagnetic sounding measurements arising
from the geologic fractures or folds, which are likewise typical in
islands with active tectonic features. It will not be surprising that
most of the GWP estimation methods found to be useful in such
settings as the northeastern region of the Indian subcontinent
(Sahoo et al., 2015), or the eastern Arabian peninsula (Abrams
et al., 2018), will not work on the hydrogeological complexity of
small islands.

Most studies on GWP maps utilized only ROC to assess
binary classification performance. Here we used the PR curve
to provide confirmation (Lever et al., 2016), mainly because
the data set of existing wells exhibits class imbalance. The
preponderance of wells in urban centers, such as in the area
flanking the strait between Cebu and Mactan islands, manifests
this imbalance. The consistently high AUC from both ROC and
PR curves, nevertheless, confirms the GWP map’s generalization
performance. The ROC alone would have provided a misleading
indication of this performance. For instance, the cluster of wells
may be a result of factors that are unique to the areas in which it
exists. As a result, the precision is only high over a small interval
of recall values starting at zero. In our results, the high AUC from
the ROC curve corroborates with a similarly high AUC from the
PR curve. The utilization of both curves will be an instructive part
of the process of generating GWP maps.

The availability of a substantial data set of existing well
locations contributed to the GWP map’s consistent, satisfactory
performance. Without an extensive data set, the output GWP
map may perform satisfactorily on the training data, but not
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as well on the validation data set (Guru et al., 2017)—a case
known as overfitting. We had access to the coordinates of existing
wells scattered across the study area (N = 1,204). Thus, in our
results, the AUC values are consistently higher on the validation
data set than on the training data set. The size and territorial
scope of the well-location data set will influence the statistical
reliability of determining the noise-resilience horizon. Extensive
prior ground-truth surveys of existing wells across the study area
could curb the limitations imposed by small data sets on the GWP
map’s predictive value.

Although the number of wells in past GWP mapping studies
that utilized machine learning is rather small: N = 66 (Chen
et al., 2019) or N = 279 (Naghibi et al., 2019), it will also
be interesting to apply the noise-resilience horizon approach
to test the limits of such artificial-intelligence models (Miraki
et al., 2019; Pham et al., 2019; Chen et al., 2020). Machine-
learning techniques are recently gaining traction in the academic
discourse on GWP mapping. The need to examine the impact of
the inherent uncertainty in the input GIS data is imperative to any
rigorous efforts to represent the unseen GWP with measurable or
measured spatiotemporal variables.

The implementation of ground-truth validation may
benefit from the interpretation of false-positive detections as
opportunities for groundwater development. As defined in this
study, the false positives represent the absence of wells in sites
where the GWP map predicts high GWP. Where the GWP map
predicts a zone of these false positives is especially a reasonable
candidate for prospecting. The exploration of groundwater
sources has been driving worldwide interest because rapid
urbanization and climate change exacerbate an impending future
shortage.

CONCLUSION

The quality and reliability of GWP maps are essential to its role
as a decision-support tool. The methods of generating such maps
have operated on the assumption that the input data sets are 100%
accurate. However, in reality, such data sets could carry issues
related to the limitations of the measuring methods applied to
obtain them. Establishing a framework that could propagate the
input-variable uncertainties onto the GWP map output was our
study’s central aim. We showed using a dithering approach that
GWP maps may only be considered adequately reliable, within
the limitations of our research, if the input uncertainty levels do
not exceed 25%. This finding will help assess the accuracy levels

of the input maps before generating a GWP map, especially for
groundwater management planning purposes.

The noise-resilience horizon is a semi-theoretical framework
for delineating the limits to GWP estimation methods as imposed
by the input-factor statistical uncertainties. The limitation of
the present work is that we only showed single instances of
the dithered maps at each noise injection level. It will be
interesting if the same conclusions will hold for the average
of an ensemble of random realizations for dither probability.
Also, it will be interesting to see how the ROC and PR
curves vary across a denser range dither probabilities. The
exact position of the horizon may be found by considering
finer sweeps of this parameter. The conversion of detected
opportunities for groundwater development and protection into
focused, economically feasible prospecting is the value that
GWP maps may provide especially for sustainable groundwater
resource management.
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