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Branching Algorithm to Identify
Bottom Habitat in the Optically
Complex Coastal Waters of Atlantic
Canada Using Sentinel-2 Satellite
Imagery
Kristen L. Wilson* , Melisa C. Wong and Emmanuel Devred

Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada

Sentinel-2 satellite imagery has been successfully used to map submerged seagrasses
in clear waters, and surface-canopy forming seaweed habitats in a range of water
types. We examined the ability to use Sentinel-2 remote sensing reflectance to classify
fully submerged seagrass and seaweed habitats in optically complex, temperate waters
within a high priority management region in Atlantic Canada. To do so, we determined
the “best” Sentinel-2 image available between 2015 and 2019 based on tidal height,
absence of sun glint and clouds, and water transparency. Using the full Sentinel-2 tile,
we atmospherically corrected the image using ACOLITE’s dark spectrum fitting method.
Our classification goal was a two-class prediction of vegetation presence and absence.
Using information obtained from drop-camera surveys, the image was first partially
classified using simple band thresholds based on the normalized difference vegetation
index (NDVI), red/green ratio and the blue band. A random forest model was built to
classify the remaining areas to a maximum depth of 10 m, the maximum depth at which
field surveys were performed. The resulting habitat map had an overall accuracy of 79%
and ∼231 km2 of vegetated habitat were predicted to occur (total area 345.15 km2).
As expected, the classification performed best in regions dominated by bright sandy
bare substrate, and dense dark vegetated beds. The classification performed less well
in regions dominated by dark bare muddy substrate, whose spectra were similar to
vegetated habitat, in pixels where vegetation density was low and mixed with other
substrates, and in regions impacted by freshwater input. The maximum depth that
bottom habitat was detectable also varied across the image. Leveraging the full capacity
of the freely available Sentinel-2 satellite series with its high spatial resolution and
resampling frequency, provides a new opportunity to generate large scale vegetation
habitat maps, and examine how vegetation extent changes over time in Atlantic Canada,
providing essential data layers to inform monitoring and management of macrophyte
dominated habitats and the resulting ecosystem functions and services.

Keywords: habitat mapping, machine learning, rockweed, satellite remote sensing, seaweed, submerged aquatic
vegetation, kelp, seagrass
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INTRODUCTION

Seaweeds and seagrasses (marine macrophytes) are submerged
aquatic vegetation found in nearshore coastal environments. In
Atlantic Canada, seagrasses (primarily eelgrass, Zostera marina,
rarely widgeon grass, Ruppia maritima) occur within subtidal
soft-sedimentary habitats and seaweed canopies (dominated by
brown algae in the Fucaceae and Laminariaceae families) occur
along rocky habitats. In the rocky intertidal zone, Ascophyllum
nodosum (rockweed), is the dominant habitat forming species
in sheltered areas while Fucus spp. dominates along exposed
areas, with a transition to kelps (e.g., Laminaria digitata and
Saccharina latissima) in the subtidal whose canopy does not
reach the surface. Coastal ecosystems which are dominated
by seaweeds and seagrasses are some of the most productive
habitats globally and provide several important ecosystem
functions and services (Barbier et al., 2011). These include acting
as ecosystem engineers to provide biogenic habitat structure,
providing coastal protection against erosion, absorbing nutrient
runoff, providing carbon storage, supporting biodiversity and
fisheries, and generally acting as an indicator of overall ecosystem
health (Orth et al., 2006; Schmidt et al., 2011; Duarte et al.,
2013; Wong and Dowd, 2016; Teagle et al., 2017; Wong and Kay,
2019). In Atlantic Canada, and globally, seaweed and seagrass
habitat, and ecological services, are under threat from stressors
such as invasive species, climate change, coastal development,
and nutrient loading (Waycott et al., 2009; Filbee-Dexter and
Wernberg, 2018; Murphy et al., 2019). Tools for mapping and
monitoring marine macrophyte distribution are important to
understand and quantify habitat changes, particularly to inform
decision making related to conservation areas for seaweed and
eelgrass habitat, and resource management for commercially
important seaweeds.

Satellite remote sensing has been used to map and monitor
marine macrophyte distribution globally in optically shallow
waters (Duffy et al., 2019; Kutser et al., 2020). Satellites measure
the amount of sunlight reflected off of the seafloor at several
wavelengths (including water-column attenuation) in sufficiently
transparent waters, which can be classified using several
approaches including empirical, image-based classification
algorithms (e.g., O’Neill and Costa, 2013; Poursanidis et al.,
2019), object-based techniques (e.g., Roelfsema et al., 2014;
León-Pérez et al., 2019), or physics-based semi-analytical model
inversion (e.g., Lee et al., 1999; McKinna et al., 2015). As the
light travels from the sun, to the seafloor, and back to the
satellite, it interacts with the atmosphere, which amounts to
up to 90% of the top-of-atmosphere signal (Wang, 2010), sea
surface, and the water column, necessitating the requirements for
atmospheric (Vanhellemont and Ruddick, 2016; Vanhellemont,
2019), sun glint (Hedley et al., 2005; Kutser et al., 2009), and
water column corrections (Zoffoli et al., 2014). Empirical,
image-based classifications, which require in situ data to train
an algorithm, are widely used to quantify bottom habitat.
Historically the maximum likelihood classifier has been the
preferred classification algorithm (Richards, 1986), however,
machine learning algorithms such as support vector machines
(Vapnick, 1995) and random forests (Breiman, 2001) have been

recently demonstrated to perform better than the maximum
likelihood classification (Marcello et al., 2018; Ha et al., 2020).
Empirical methods are less sensitive to rigorous atmospheric
and water-column corrections, but are not readily applicable to
other regions (Islam et al., 2020). Object-based classifications
operate on similar principles as image-based classifications, with
the exception that the image is first segmented into many objects,
and the classification is performed at the level of the object,
opposed to the pixel (Roelfsema et al., 2014; Su and Huang,
2019). This is a hybrid approach, which can include non-spectral
data layers during classification. Physics-based semi-analytical
inversion models retrieve simultaneously the inherent optical
properties (IOPs) of the water column (i.e., absorption and
scattering coefficients), water depth and bottom reflectance
(e.g., Lee et al., 1999; McKinna et al., 2015). This approach
requires the development of spectral libraries for all optically
active components but regional in situ data are not required
for model training given the globality of the spectral libraries
(Kutser et al., 2020). Its application to any water body requires
highly accurate atmospheric correction to retrieve seafloor
reflectance and identify bottom habitat. Satellite remote sensing
of seagrass and coral habitat is widely used in tropical clear
waters, where bottom habitat is readily detectable to great depths
(<40 m) (Hossain et al., 2015; Kovacs et al., 2018; Wicaksono
et al., 2019). Satellite remote sensing is also widely used in a
range of water types for certain seaweed habitats, when the
vegetation canopy reaches the surface, as the measured signal
comes from the sea surface, opposed to the seafloor, and there is
negligible interaction of the water-leaving signal with the water
column (e.g., Schroeder et al., 2019; Bell et al., 2020; Mora-Soto
et al., 2020). A more complicated classification question arises
for submerged macrophytes in optically complex temperate
waters, where high CDOM, suspended particulate matter, and
phytoplankton concentration reduce the maximum depth at
which the seafloor is visible compared to tropical habitats (3–
10 m vs. <40 m). The use of satellite remote sensing in temperate
habitats is becoming more common (e.g., Casal et al., 2011;
O’Neill and Costa, 2013; Dierssen et al., 2019), and in the process,
new methods are being developed to leverage the many benefits
of satellite remote sensing to accurately quantify the distribution
of marine macrophytes in areas where water transparency still
permits bottom habitat mapping with passive sensors.

In the optically complex, temperate waters of Atlantic Canada
there has been considerable interest in using remote sensing
to classify marine macrophyte habitat using sonar, lidar, and
optical satellites. Intertidal rockweed habitat along the south
shore of Nova Scotia has been classified with lidar (Webster et al.,
2020) and multispectral satellite sensors including Worldview
and Quickbird imagery (Macdonald et al., 2012). Rockweed
habitat can be easily identified using vegetation indices given
its strong signal in the near-infrared (NIR) compared to its
environment. In the subtidal zone, completely submerged kelp
habitat has been quantified with Landsat along the Gaspé
Peninsula in Quebec (Simms and Dubois, 2001), with SPOT-
7 along the Mingan Archipelago also in Québec (St-Pierre and
Gagnon, 2020) and with lidar along the south shore of Nova
Scotia (Webster, 2018). Eelgrass habitat has been quantified
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with lidar (Webster et al., 2016), sonar (Vandermeulen, 2014;
Barrell et al., 2015), and a variety of multispectral sensors
including Worldview, Quickbird, and SPOT (Milton et al.,
2009; Barrell et al., 2015; Wilson et al., 2019) at various sites
along the exposed Atlantic coast of Nova Scotia and along the
Northumberland Straight. The above listed studies used either
an image-based classification generally based on the maximum
likelihood classifier (Wilson et al., 2019; St-Pierre and Gagnon,
2020; Webster et al., 2020), or object-based classification (Milton
et al., 2009; Barrell et al., 2015) to quantify marine macrophyte
habitat at bay-wide scales with commercial satellites.

In this study, we were interested in understanding to what
extent detailed marine macrophyte habitat could be classified
using the freely available Senintel-2 satellite data series and
an image-based classification procedure. Varying from previous
work in the region, we aimed to classify marine macrophyte
habitat at large spatial scales (hundreds of square kilometers),
and with the exception of the Landsat study, with a freely
available imaging platform, which allows for repeated surveys
over yearly to decadal time-scales without prior tasking. We
focused on a high-priority management region characterized by
complex bathymetry and a multispecies environment, including
fully submerged kelp and eelgrass beds, in an optically complex
coastal environment. We explored the impact of various
preprocessing steps such as water column corrections, and image-
based classification algorithms such as maximum likelihood
classification and machine learning classifiers. While our original
goal was to differentiate between eelgrass and seaweed (primarily
brown) habitat this was found not to be possible and maps
were produced denoting vegetation presence and absence. The
driver of this work was to develop a method framework
for using Sentinel-2 data in a systematic manner to classify
the large-scale distribution of marine macrophyte habitat, to
be able to provide data layers for marine spatial planning,
monitor marine macrophytes habitat extent, and consequently
inform management decisions in high-priority regions (e.g.,
conservation). To support this, the final map classification is
presented in both a binary presence-absence map, and probability
of vegetated habitat to define a level of certainty in the map. To
the best of our knowledge, our study is the first to use Sentinel-
2 data to quantify marine macrophyte habitats in Atlantic
Canada, which includes completely submerged kelp beds and
eelgrass meadows.

MATERIALS AND METHODS

Study Area
The Eastern Shore Islands (ESI) are an archipelago located along
the Atlantic coast of Nova Scotia, Canada (Figure 1). The ESI
archipelago is an important management area with most of
the land already protected, and the marine environment under
consideration for a marine protected area (DFO, 2019). The
high management priority is given due to the relative pristine
condition of the terrestrial and marine environments including
several healthy eelgrass meadows, and rockweed and kelp beds,
all important habitat forming species in the region, providing

three-dimensional structure and nursery habitat for many marine
species (Schmidt et al., 2011; Vercaemer et al., 2018). The ESI
archipelago is characterized by a complex coastline including
rocky shores, sandy beaches, and salt marshes, each at a varied
degree of exposure to the Atlantic Ocean. The numerous islands
result in a complex bathymetry with shallow depths (<10 m)
extending kilometers offshore. This results in an optically
complex environment for satellite remote sensing where bottom
substrate and water transparency are highly variable.

Field Surveys
Drop camera field surveys were conducted to characterize bottom
type as well as eelgrass and seaweed presence/absence from
September to October 2019. Stations (n = 128) were pre-identified
based on depth (0–10 m) and substrate type (5 classifications
ranging from soft mud to hard bottom) to allow stratified
sampling across conditions in which both vegetated habitat types
are found (hard versus soft substrate). At each station (Figure 1),
an underwater video system (consisting of a GoPro Hero 7
camera inside a waterproof housing with lasers attached for
scaling; Pro Squid, Spot X underwater Vision1) was deployed. The
system was connected to a topside console that allowed operators
to view video feed and record GPS position. The camera was
lowered into the water to approximately 1 m above the sea
bottom, and the boat was allowed to drift for 1–2 min while
the camera video recorded the bottom substrate. Substrate type
(i.e., bare, eelgrass, or seaweed) was visually determined from the
live feed and then validated from the video at a later date. For
image classification, all points were labeled as bare or vegetated
following the video validation, as exploratory analysis showed
it was not possible to separate eelgrass and seaweed habitat
(results not shown).

There was about a 1- to 3-year period between the field surveys
(2017–2019) and image acquisition (2016) depending on the
source of the in situ data. While it is not uncommon to have a
temporal gap between the field survey and image acquisition (e.g.,
O’Neill and Costa, 2013; Poursanidis et al., 2019), we assumed
that large-scale vegetation distribution patterns would have
minimally changed during the time period, particularly given
that both the image acquisition and field survey were obtained
in the same season. Yet, given that areas with patchy/mixed
habitat types might have undergone slight shifts in vegetation
density, particularly since the region was impacted by the passage
of Hurricane Dorian in early September 2019, days before the
field surveys were performed, an additional data quality control
step was performed. The video footage for each field survey
point was examined in relation to the true color composite of
the satellite imagery and the spectra, to identify areas of mixed
habitat types or very low density of vegetation coverage. These
stations (n = 32) were omitted from image classification resulting
in using 96 stations giving 218 data points. Each drift transect
consisted of 2–3 observations depending on the number of GPS
coordinates obtained. The quality control step was done both
to use pure endmembers for model training, and to account
for slight shifts in habitat, which are more likely to occur in

1https://www.spotx.com.au/
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FIGURE 1 | Atmospherically corrected true-color composite of the Sentinel-2 tile (T20NQ) of the Eastern Shore Islands in Nova Scotia, Canada acquired on
September 13, 2016. Dots indicate stations where field survey data were collected, triangles indicate visually identified points, colors show where vegetated habitat
is known and not known to occur. Numbers relate to image-stills of select habitat types occurring in the region.

fragmented areas. Percent cover was calculated for select video
frames per station, and in general average vegetated percent
cover was >75%, often higher, in stations that passed quality
control. Additionally, a visual assessment between a Worldview-
3 image acquired in August 2019 over a large portion of the
tile, and the best Sentinel-2 image acquired in 2016 (see section
“Satellite Data, Atmospheric Correction, and Land Masking”)
was performed to ensure that large-scale vegetation patterns were
fairly stable between 2016 and 2019.

In addition to the 2019 field survey (n = 218), additional
field data from 2017 to 2019 were also included (n = 15; Wong
et al. Unpublished data). Lastly some visually identified points
from the imagery were added to assist in model training for
habitat types missed in the field surveys for shallow bare substrate
(n = 294), shallow vegetation (n = 202), and bare sand at
moderate depths (n = 50; Figure 1). These visually identified
points were selected from areas that were easily interpretable,
were spaced evenly to cover the entire Sentinel-2 tile, and were
added in an iterative approach to provide a more accurate

vegetation map (Vahtmäe and Kutser, 2013). All field survey
data and visually identified points were labeled as vegetated or
non-vegetated for a two-class binary classification of vegetation
presence and absence for a total of 779 data points (Table 1).
Therefore, three separate data sources were used in model
building/evaluation to maximize the amount of information
available to the classification algorithm. The number of data
points used in the current study lies within the number of points
used for other coastal Sentinel-2 studies ranging from <150 (e.g.,
Fauzan et al., 2017; Poursanidis et al., 2019) to >1,000 (e.g.,
Traganos et al., 2018; Yucel-Gier et al., 2020).

Satellite Data, Atmospheric Correction,
and Land Masking
Sentinel-2 is a European observation system composed of
two identical satellites (A and B launched in 2015 and 2017,
respectively), that provide images every 5 days at the equator and
every 2–3 days at 45◦N (Drusch et al., 2012). Sentinel-2 has a
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TABLE 1 | Number of field survey and visually identified points by habitat type and water depth (m).

Water depth (m) Habitat type Total points (%) Total pixels (%) Total SA (km2)

Field survey points Visually identified points

Eelgrass Seaweed Sand Mud Vegetated Bare

0–1 17 0 0 0 100 221 43.39 14.67 50.63

1–2 8 0 0 16 57 60 18.10 12.07 41.68

2–3 14 0 4 17 30 12 9.88 13.41 46.29

3–4 11 22 7 12 6 2 7.70 7.67 26.46

4–5 0 12 0 4 7 5 3.59 9.13 31.53

5–6 0 10 0 5 2 2 2.44 11.12 38.39

6–7 0 18 3 0 0 8 3.72 7.75 26.76

7–8 0 11 0 8 0 7 3.34 7.08 24.43

8–9 0 0 0 12 0 7 2.44 7.40 25.55

9–10 0 12 4 6 0 20 5.39 9.69 33.44

Total 50 85 18 80 202 344 100.00 100.00 345.16

The sum of all points by depth class represented as a percentage (%) of all points (n = 779) that were available for model building and evaluation (Total Points). The
number of pixels in the Sentinel-2 tile by depth class represented as a percentage (%) of all pixels (n = 3,451,533) in the Sentinel-2 tile (Total Pixels). The total surface
area (SA; km2) of each depth class in the Sentinel-2 tile assuming an equal area of 100 m2 per pixel (Total SA). Only the field survey points which passed quality control
are included in this table. Depth was measured in situ for field survey points. Depth was obtained from the 30 m multibeam data for the visually identified points, and the
Sentinel-2 pixels. Note the difference in total SA with Table 3 is due to rounding.

swath width of 290 km and provides 13 bands at a radiometric
resolution of 12-bits and a spatial resolution from 10 to 60-m.
At the spatial resolution of 10-m, four bands are available with
centered wavelengths of ∼490 nm (band 2 blue), ∼560 nm (band
3 green), ∼665 nm (band 4 red), and ∼833 nm (band 8 NIR).
These were the only bands used in the study to take advantage
of the high spatial resolution. Level-1C products are geolocated
and radiometrically corrected to top-of-atmosphere reflectances
in local UTM coordinates and are available in 100 × 100 km tiles.
Images can be freely downloaded, pending a registration, from
Copernicus Open Access Hub2.

To determine the best image for classification, we assembled
a catalog of available Sentinel-2 imagery for our region of
interest between the launch of Sentinel-2 in 2015 to 2019
(see Supplementary Material 1). From the first day imagery
was available for our region of interest on September 12,
2015 to December 31, 2019, we identified 464 days where
the entire region, or a part of it, was imaged by Sentinel-
2. Of which, 320 days were immediately discarded due to
heavy cloud cover, leaving 144 days, which may be suitable
for image classification (Supplementary Figure 1.1). All 2015
images were cloud covered, but in general from 2016 to 2019
at least one cloud free image existed per month and year. The
tidal height at time of image acquisition varied between low
and high tides, and 57 days (out of the 144) were impacted
by different degrees of sunglint, both of which can impact
classification success. Additionally, it was noted that water
transparency varied highly across these cloud-free image dates
and bottom habitat was not always visible in the Sentinel-2
imagery. Lastly, due to the various satellite tracks, only 64 days
(out of the 144) imaged the entire region, the rest partially
imaged the region of interest. This resulted in about 14% of

2https://scihub.copernicus.eu

all available images that were potentially suitable for bottom-
habitat monitoring.

The best Sentinel-2 image from 2015 to 2019 for our region
of interest was selected based on tidal height, the absence of
clouds and sun glint, minimal wave action, and low turbidity.
This image was acquired on September 13, 2016 at 15:07 UTC,
within 10 min of a low tide (15:17 UTC at a tidal height3 of
0.58 m). The full Sentinel-2 tile (T20NQ) Level 1C image was
downloaded for analysis. This image was assumed to represent
the best-case scenario for image quality to understand what
information about marine macrophyte coverage can optimally
be extracted from Sentinel-2 for Atlantic Canada. A method
workflow is presented in Figure 2 and described in Sections
“Satellite Data, Atmospheric Correction, and Land Masking” and
“Image Classification.”

The full tile image was atmospherically corrected with
ACOLITE (Python v.20190326.0) using the dark spectrum fitting
approach (Vanhellemont and Ruddick, 2016; Vanhellemont,
2019). Previous work with Sentinel-2 in another region of
Atlantic Canada explored the use of ACOLITE to atmospherically
correct Sentinel-2 images for bottom habitat identification and
found the dark spectrum fitting method to be superior to
the exponential approach (Wilson and Devred, 2019). Dark
spectrum fitting is an entirely automated, image-based approach
to aerosol calculation which makes no prior assumptions on
which bands should be used to calculate atmospheric properties
(for instance the red or NIR signal being negligible). It assumes
that a tile contains pixels whose surface reflectance should be
approximately zero for at least one band. Using the dark targets,
and various aerosol models, a final model is chosen based on
the band which defines the lowest atmospheric path reflectance.
Rayleigh scattering is accounted for via lookup tables based on

3waterlevels.gc.ca/eng/station?sid=505
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FIGURE 2 | Methods workflow to classify the Sentinel-2 tile.

the 6SV radiative transfer model. All ACOLITE settings were left
at their default values except for masking. All l2w_mask settings
were disabled to allow for more fine-tuned masking.

Generating accurate land masks is an essential preprocessing
step when working with coastal near-shore environments, where
sharp transitions in the magnitude of surface reflectance occur.
ACOLITE default mask settings define land values where top-
of-atmosphere reflectance (ρt) in band 11 (SWIR; central
wavelength ∼1,610 nm; 20-m resolution) are greater than 0.0215.
Previous work in another region of Atlantic Canada found this
threshold inadequate to define near-shore environments, and
that an appropriate threshold was image dependent (Wilson and
Devred, 2019). Additionally, as the aim of our study was to
eventually use Sentinel-2 for repeated image classification over
multiple years, a standard land mask was desired that would not
be impacted by tidal height. Therefore, a high tide image of the
same tile (T20NQ) was used to generate a standard regional land
mask that could be used across multiple image dates (Roelfsema

et al., 2009). High-tide was chosen over low-tide to include the
entire range of habitat that marine macrophytes exist. This image
was acquired on August 24, 2016 at 15:08 UTC corresponding
to high tide (15:08 UTC at a tidal height of 1.62 m) and pixels
with ρt ≥ 0.07 for band 11 were defined as land based on visual
inspection and masked. While SWIR is strongly absorbed by
water and therefore provides better delimitation of land and
water surfaces than NIR, the different spatial resolution between
the 10-m bands used in image classification, and the 20-m band
used to generate a land mask should be accounted for. To do so,
mixed pixels (i.e., containing both land and water areas) at the
20-m resolution were masked with the Normalized Difference
Vegetation Index (NDVI) to identify any vegetated land pixels.
Floating algae index (FAI) was not explored as it requires
information from the 20-m SWIR bands. The August 24, 2016
image was atmospherically corrected with ACOLITE and surface
reflectances of band 4 and band 8 were used to calculate NDVI.
Pixels where NDVI ≥ 0.7 were identified as land vegetation based
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on visual examination and masked. This threshold was defined
as the lowest threshold which did not include rockweed beds,
which may float at the surface at high tide. As a final step, areas of
freshwater (e.g., lakes) were manually masked.

Our regional land mask was applied to the September 13, 2016
image for the 10-m bands (i.e., bands 2, 3, 4, and 8). Next, all
pixels in water depths ≥10 m were masked out to correspond
with the maximum depth of the field survey (see section “Field
Surveys”). The bathymetry was obtained from the Canadian
Hydrographic Services multibeam data (Greenlaw Unpublished
data) at a spatial resolution of 30-m and was resampled to a 10-
m resolution with bilinear interpolation using the raster package
(Hijmans, 2019) in R (R Core Team., 2019). As a last quality
control step, pixels with at least one negative remote sensing
reflectance in any of the four 10-m bands were discarded from
the study (25 pixels; <0.001% of total pixels).

No water-column correction was performed on the imagery.
While we explored the use of the commonly employed depth
invariant indices (Lyzenga, 1978; results not shown here), we
could not assume that water transparency was consistent across
our study area breaking a key assumption of the approach (Zoffoli
et al., 2014). Regardless, water column corrections based on depth
invariant indices and more analytical bio-optical modeling have
been shown to have mixed effects on image classification success
(e.g., Marcello et al., 2018; Poursanidis et al., 2018; Traganos
et al., 2018) and are commonly not applied (e.g., Hogrefe et al.,
2014; Wicaksono and Lazuardi, 2018). In addition, given that
we only used the four wavebands at 10-m resolution, resolving
depth, water column and bottom properties might appear as an
overoptimistic task.

Image Classification
Our original classification goal was to differentiate between
eelgrass and seaweed habitat but this was not found to
be possible (results not shown) as their spectral signatures
were very similar for the Sentinel-2 three visible bands (see
Figure 3 and section “Results”). We therefore adapted our
classification goal from species distribution mapping to detect
vegetated versus non-vegetated habitat (see Figure 2 for an
organization of data processing). Three common supervised
(i.e., requiring a priori knowledge of habitat type), and one
unsupervised image classification procedures were tried as a
preliminary data exploration (Supplementary Table 2.1). All
analyses were performed on remote sensing reflectance using R
version 3.6.0 (R Core Team., 2019) with the raster (Hijmans,
2019), caret (Kuhn, 2019), RSToolbox (Leutner et al., 2019),
irr (Gamer et al., 2019), and readxl packages (Wickham and
Bryan, 2019). The first approach was a supervised statistical
classification with maximum likelihood classification (Richards,
1986). Maximum likelihood is a simple approach, which assigns
a pixel to the class it has the highest probability of being
a member of. Maximum likelihood has been widely used in
remote sensing studies; however, it requires many training points
across all habitat (class) types, and that the remote sensing
reflectance within each class follows a normal distribution.
More recently, remote sensing studies have focused on machine
learning classifiers that do not make any assumptions on

data distributions and require fewer training points, notably
support vector machines (SVM) and random forests (e.g.,
Traganos and Reinartz, 2018b; Poursanidis et al., 2019). The
SVM approach differentiates classes based on defining the
optimal hyperplane between the classes and can separate non-
linearity by applying a kernel function. As such, we explored
the use of SVM with a radial basis function kernel (Vapnick,
1995). Random forests build a collection of decision trees, and
randomly sample these trees to create a final ensemble model,
which is a robust classifier to outliers and noisy training data
(Breiman, 2001). We lastly compared the supervised classifiers
to an unsupervised k-means analysis (MacQueen, 1967).
Following this preliminary data exploration (see Supplementary
Material 2), the random forest algorithm was found to be
the preferred classifier. As expected, the supervised classifiers
outperformed the k-means classification, even when the k-means
was performed on shallow depths (O’Neill and Costa, 2013),
and the machine learning classifiers outperformed the maximum
likelihood classification based on maximizing map accuracies
and kappa (Supplementary Tables 2.2, 2.3; Traganos and
Reinartz, 2018b; Ha et al., 2020). While SVM produced higher
overall map accuracies and kappa coefficient than random
forests (Supplementary Table 2.3), no threshold could be
identified to correctly classify all data points in the final map
(Supplementary Figure 2.1 and see following paragraphs).
Additionally, visual examination of the imagery demonstrated
that the random forests and SVM classifications were almost
identical (Supplementary Figure 2.2). Therefore, the random
forests approach was found to be the preferred classifier as it
required significantly less model tuning, both in time, number of
parameters, and dependency on kernel choice (Supplementary
Table 2.1). It produced comparable habitat maps to the SVM
classification with higher accuracy from the cross-validation
runs (Supplementary Figure 2.2), and a threshold could be
identified in the final map to correctly classify all data points
(Supplementary Figure 2.1).

The full Sentinel-2 tile was classified as follows (Figure 2).
First, intertidal, and very shallow subtidal pixels with canopy
near-surface vegetation were classified using NDVI. Here, very
shallow generally corresponded to depth ≤2 m, although we
did not compare canopy height relative to water depth which
would provide a more accurate threshold for vegetation detection
with NDVI. NDVI was calculated with band 4 and band 8, and
all pixels with a value greater or equal to 0.4 were assumed to
be vegetated (Barillé et al., 2010). Second, for all pixels with
NDVI < 0.4, band thresholds were used to classify some non-
vegetated habitats. A threshold for band 2 (blue) of ≥0.035
was assigned to mask out the remaining “bright” pixels, which
were assumed to be non-vegetated substrate such as uncovered
intertidal areas to very shallow (<2–3 m) sand/rocks, or breaking
waves on shore. Shallow to moderate depth bare sediment was
classified using the Red/Green ratio (Band 4 divided by Band
3). Pixels with a Red/Green ratio ≤ 0.3 were classified as bare
sand as in Dierssen et al. (2019), and pixels with a Red/Green
ratio ≥ 0.9 were classified as mud (i.e., dark sediment) or
contaminated by fresh tannic water runoff which is common
along beaches in the region.
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FIGURE 3 | Example spectra from representative field survey points across multiple depths for (A) eelgrass, (B) seaweed, (C) sand, (D) mud. Dashed lines indicate
pixels that would be classified using the NDVI or R/G band thresholds. Solid lines indicate pixels classified with the random forests model. Note that seaweed at
0–3 m, mud at 0–1 m, and sand at 1–2, 4–7, and 8–9 m of depth is based on visually identified points. No non-patchy eelgrass habitat was sampled at >4 m water
depths and visually identified points at these depths could not be labeled with certainty to be an eelgrass bed (instead of a seaweed dominated habitat).

All remaining pixels (i.e., NDVI < 0.4 and Blue < 0.035
and 0.3 < Red/Green < 0.9), were classified using the random
forests approach as described in Section “Image Classification”
(Figure 2). The three visible wavelengths were used in the
random forests model (bands 2, 3, 4; blue, green, red) for a
two-class binary prediction of vegetation presence from absence.
For differentiation of major macrophyte groups (e.g., eelgrass
from brown seaweed) in these temperate waters, the maximum
depth for image classification would need to be reduced from 10
to 2–3 m, significantly more field survey points at overlapping
depths for the various vegetation types would need to be
collected, and imagery with greater spectral (e.g., hyperspectral)

and/or spatial resolution would be required (Kutser et al., 2020;
Vahtmäe et al., 2020). In our study region, the three visible
bands at 10-m resolution did not provide enough information to
separate seagrass from seaweed dominated habitat.

Random forest model tuning with the “rf” method in R
requires defining the number of random predictors to select
at each branch of the tree. An initial model was developed
with repeated k-fold cross-validations with fivefolds repeated 10
times to determine the best number of predictors. With model
tuning complete, all training data were partitioned into fivefolds
repeated 10 times. A random forests model was built on each
partition’s training data, then predicted onto the full data set.
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For each partition’s test data, the withheld points were used
to generate a confusion matrix including overall map accuracy,
user accuracy, producer accuracy, and a Kappa coefficient with
z-tests for significance from zero (Foody, 2002). This cumulated
in 50 different models, habitat maps, and confusion matrices.
A final confusion matrix was calculated based on the average
accuracy metrics from the cross-validation runs. To generate
the final map classification, the probability that a pixel was
classified as vegetation was calculated by summing the number of
times a pixel was classified as vegetation, divided by 50 (number
of cross-validation runs) and converted to a percentage. Pixels
labeled as vegetated with NDVI were labeled as 100%, and pixels
labeled as bare habitat with the blue band or Red/Green ratio
were labeled as 0%. Delivering a final map classification as a
percentage demonstrates the level of confidence an end-user
should have when using the vegetation map. Yet, if a binary map
classification is required for presence from absence, we explored
what vegetation probability threshold choice would maximize
overall map accuracy and kappa using all data points in Table 1.
For instance, if the final map classification was thresholded at
50%, where pixels ≥50% probability were labeled as vegetated
and pixels with <50% were labeled as not-vegetated, we then
compared how overall map accuracy and kappa would change
relative to a 60% threshold.

RESULTS

We examined changes in the spectral signatures of remote
sensing reflectance for pixels extracted from the best Sentinel-
2 image over four known habitat types: sand, mud, eelgrass,
and seaweed (including rockweed and kelp habitat which are
structured by vertical zonation patterns; Figure 3). As expected,
sand had the highest reflectance values, with a clear decrease in
magnitude as the wavelength increases (Figure 3C). Reflectance
spectra from muddy substrate (Figure 3D) were dissimilar to
the ones from sandy substrate with lower absolute reflectance
values at comparable depths, and a weak spectral dependence at
all depths, compared to the sharp decrease in the red and NIR
for sand. For mud substrate, the red and NIR bands showed the
clearest decrease as a function of depth. Both eelgrass (Figure 3A)
and seaweed (Figure 3B) showed lower reflectance in the visible
part of the spectrum at comparable depths than the reflectance
for both sand and mud bare substrate habitats. Subtle differences
are visible between the two vegetation types, where eelgrass has
a higher Green/Blue ratio but a lower NIR/Red ratio. However,
differences in vegetation type could not be differentiated by
any image classifier and limited overlapping field points at
comparable depths made a true comparison of the ratios difficult
(Supplementary Figure 3.1 in Supplementary Material 3).

To classify the best image, the threshold for NDVI indicating
vegetated habitat and the thresholds for non-vegetated habitat
were set to perfectly classify (i.e., 100% classification success) the
training points located within those values (Table 2). A total of
12 data points occurred within NDVI ≥ 0.4, and this threshold
classified ∼6% of the pixels in the tile (Table 3). A total of
61 data points occurred within the non-vegetated thresholds
(Table 2) and classified ∼6% of the pixels in the tile (Table 3). The

remaining pixels (n = 3,031,740) were classified with a random
forests model. Following the repeated k-fold cross validation of
the random forests model, the final average overall map accuracy
was 79% with an average moderate kappa value of 0.57 based
on the withheld test data partitions (Table 2). Non-vegetated
habitat had ∼5% higher user and producer accuracy for non-
vegetated habitat, relative to the user and producer accuracy of
vegetated habitat, indicating the classification was slightly better
at predicting absence of vegetation.

The probability that a pixel was classified as vegetated with
the random forests model was determined by summing the
number of times a pixel was classified as vegetation, divided
by 50 (number of cross-validation runs) and converted to a
percentage (Figure 4A). In this classification map, 76% of the
pixels were always classified the same in all 50 cross-validation
runs where 16% (474,937) of the pixels were always classified as
bare (non-vegetated) habitat, and 60% (1,831,911) were always
classified as vegetated habitat by the random forests model
(Figure 4B). When the threshold based classified pixels were
included in the final classification map as either 0% (non-
vegetated thresholds) or 100% (NDVI ≥ 0.4; total n = 3,451,533),
we then explored the effect of thresholding the habitat probability
map between 1 and 100% on overall map accuracy (Figure 4C)
and kappa (Figure 4D) to determine an appropriate threshold for
a binary map classification. When a threshold of 21% was chosen,
meaning that any value ≥21% was labeled as vegetated habitat
and any value <21% was labeled as non-vegetated, all data points
were classified correctly resulting in an overall accuracy of 100%
and a kappa of 1. This trend persisted until a vegetated threshold
of ≥80%, where at vegetated thresholds >80% (i.e., 81% and
higher) overall map accuracy and kappa began to decrease again.

Our classification scheme applied to Sentinel-2 data
performed best at identifying bright sandy habitats, and
dense vegetated beds (Figure 5), which can be expected as
they represent the two most distanced endmembers. The blue
threshold (0.035) classified bright, bare sandy habitats to depths
of 2–3 m (Figure 3). The R/G threshold of 0.3 classified bare
sandy habitats from 2–3 m to roughly 7–8 m. The NDVI
threshold classified both intertidal/shallow seaweed beds and
shallow eelgrass beds as vegetated. The random forests classifier
was able to differentiate vegetated from non-vegetated habitat
to the edge of the 10 m deep water mask (Figure 5). However,
this maximum depth at which bottom habitat could be classified
was not consistent across the tile (Figure 6). For instance,
in areas affected by freshwater runoff, even bright sand was
misclassified at depths >5 m (Figure 6A), and in more estuarine
regions almost all bottom habitat is classified as vegetated habitat
(Figure 6B). While limited field survey data are available in
estuarine regions to confirm this, it appears that freshwater with
high concentrations of CDOM reduces the water depth at which
the sea floor is visible due to strong absorption. These areas (i.e.,
pixels) present reflectance spectra similar to the ones of optically
deep water even in regions of very shallow water depths. As the
distance from the river increased, water transparency increased,
and bottom habitat gradually became visible in seaward estuarine
regions (Figure 6).

Additionally, the classification performs poorly in bare
sediment habitats dominated by muddy substrate (Figure 7).
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TABLE 2 | Confusion matrix after each classification step has been added in. Overall map accuracy is bolded. Kappa significance indicated by asterisk (*).

Classification stage Map classification Field survey data Kappa

Not vegetated Vegetated User accuracy (%)

NDVI ≥ 0.4 Not vegetated 0 0 100.00 1.00

Vegetated 0 12 100.00

Producer accuracy (%) 100.00 100.00 100.00

B2 ≥ 0.035 OR R/G ≤ 0.3 OR R/G ≥ 0.9 Not vegetated 61 0 100.00 1.00

Vegetated 0 12 100.00

Producer accuracy (%) 100.00 100.00 100.00

Random forests Not vegetated 72.42 ± 3.64 17.16 ± 3.95 80.98 ± 3.57 0.57 ± 0.07*

Vegetated 15.98 ± 3.68 50.24 ± 3.99 76.04 ± 5.85

Producer accuracy (%) 81.93 ± 4.16 74.54 ± 5.85 78.72 ± 3.18

First classification stage includes only the vegetated pixels classified with NDVI. Second classification stage includes the vegetated pixels classified with NDVI, and the
non-vegetated pixels classified with the blue band or red/green ratio. Third classification stage includes the vegetated pixels classified with NDVI, the non-vegetated pixels
classified with the blue band or red/green ratio, and the random forests classified pixels. For the third matrix, the average (±standard deviation) confusion matrix based
on the test data partitions from the repeated k-fold cross validation (k = 50) is shown.

TABLE 3 | Number and percentage of pixels and surface area (SA) of habitat classified across various classification steps and water depth.

Max depth (m) Metric Tile total NDVI ≥ 0.4 NDVI < 0.4

B2 ≥ 0.035 OR
R/G ≤ 0.3 OR

R/G ≥ 0.9

B2 < 0.035 AND 0.3 < R/G < 0.9

RF average (±SD) RF 21% threshold RF 80% threshold

4 Total pixels (#) 1,650,543 211,472 144,101 801,630 ± 14,708 866,892 741,491

Total pixels (%) 100.00 12.81 8.73 48.57 ± 0.89 52.51 44.92

SA (km2) 165.05 21.15 14.41 80.16 ± 1.47 86.69 74.15

10 Total pixels (#) 3,451,533 216,806 202,987 2,208,412 ± 35,334 2,349,498 2,099,200

Total pixels (%) 100.00 6.28 5.88 63.98 ± 1.02 68.07 60.82

SA (km2) 345.15 21.68 20.30 222.08 ± 3.53 234.95 209.92

Tile total indicates the number of pixels across the full tile to be classified (total pixels; #), the percentage of the pixels relative to the total (total pixels;%), and the SA the
pixels cover assuming an equal area of 100 m2 per pixel (SA; km2). Pixels classified with the NDVI threshold as vegetated habitat (NDV ≥ 0.4). Pixels classified as bare
habitat with threshold the blue band (B2) or the red/green ratio (R/G). Pixels classified as bare habitat with the random forests (RF) classification based on the average
(±standard deviation, SD) from the k-fold cross-validation, and when the final map classification is thresholded at 21 and 80% probability.

The lower albedo of bare mud presents a spectral shape more
similar to vegetated habitat than bare sand at comparable depths
(Figure 7A). Consequently, around the 4–5 m depth (even
shallower in some areas) the classification became “salt-and-
peppered” suggesting that the binary classification has become
purely random. Lastly, the classification also performed less well
in areas of mixed habitat types. In areas of shallow waters with
patchy vegetation, the bright reflectance from nearby bare sand
overwhelmed the vegetation signal and the spectra of low-density
vegetation on sandy substrate has a spectrum comparable to
sand (Figure 8). This can be seen as a contamination due to
the adjacency effect as it occurs in coastal waters close to land,
where pixels in the vicinity of a brighter target are contaminated.
Increased satellite resolution might address this issue. Therefore,
the classification fails for low density or dense but isolated patches
of vegetated habitat.

With these limitations in mind, the total surface area coverage
of vegetated habitat was calculated (Table 3). At the maximum
depth of image classification (10 m), ∼231 km2 (67%) of

vegetated habitat were predicted to exist, 21.68 km2 were
calculated with NDVI and 209.92 km2 calculated from the
random forests calculation. Conversely, ∼114 km2 (33%) were
dominated by bare sediment habitat, 20.30 km2 were calculated
with thresholding the blue band and Red/Green ratio, and
93.25 km2 were calculated with the random forests classifier.
There are uncertainties around the random forests surface area
values depending on the average used for the cross-validation
maps, and if the final map was thresholded. If the image was
masked to 4 m, a depth where most of the image was well
classified based on visual examination, about 95 km2 (∼58% of
the total area) of the seafloor was vegetated.

DISCUSSION

We used the “best” Sentinel-2 image acquired between 2015
and 2019 for a high priority management region and examined
to what detail marine macrophyte habitat could be classified
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FIGURE 4 | Pre-threshold vegetation map demonstrating the probability that a pixel contains vegetated habitat with land (light gray) and deep water (≥10 m; white)
masked (A). Pixels classified as vegetated or non-vegetated with the threshold classification were labeled as 100 or 0%, respectively. All other pixels were classified
with the random forests classifier and probability was determined as the number of times a pixel was classified as vegetated divided by 50. Polygons with dashed
borders indicate the location of zoomed in boxes in the following figures. The number of pixels at each probability value (B). The effect of various threshold choices
for the map in (A) on overall map accuracy (C) and kappa value (D) using all data points (see Table 1).

in an optically complex costal environment based on empirical
image-based classification procedures. We found that simple
band thresholds were effective at classifying very shallow habitats,
and bright sandy bare substrate to moderate depths, although a
supervised image classifier was required to classify the remaining
areas. Vegetated habitat extent was classified at depths shallower
than 10 m, with an overall accuracy of 79%, although the

maximum depth that bottom habitat was visible varied spatially
across the tile (i.e., 4–10 m, due to shifts in water column content
and habitat type). While the random forest model developed for
our study area cannot be directly applied to other areas (Islam
et al., 2020), our method workflow can be readily applied to
other images provided that field survey data are available to
train the algorithm. In the following section, we discuss the
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FIGURE 5 | Finalized classification of the Sentinel-2 image from September 13, 2016 highlighting three example regions where the classification performed well
including the differences between the classification stages. Left column is the true color composite. Right column is the map classification for the same region. (A) A
predominantly sandy beach with distinct seaweed patches (F5A in Figure 4). (B) Mixed seaweed and eelgrass habitat interspersed with sandy habitat (F5B in
Figure 4). (C) Large dense eelgrass meadows and separate kelp forests surrounded by bare substrate (F5C in Figure 4). Knowledge of vegetation type was from
the field survey data only and not the map classification.

strengths and weaknesses of using Sentinel-2 to classify marine
macrophyte habitat in Atlantic Canada, keeping in mind that
our findings can be applied to other temperate coastal areas of
the world.

Suitability of Sentinel-2 for Benthic
Habitat Mapping in Atlantic Canada
Our stepwise approach to image classification is a unique hybrid
of other methods of image classification, which generally focus

on simple band ratios (e.g., Dierssen et al., 2019; Mora-Soto
et al., 2020) or a supervised classifier to quantify bottom habitat
(e.g., Traganos and Reinartz, 2018b; Poursanidis et al., 2019),
but not both. The ratio approach was applied first to all pixels,
and when the threshold was met, pixels were classified with no
assumptions made on the other pixels (i.e., the one that did
not meet the threshold criteria). These remaining pixels were
then classified with random forests. This two-step process is
performed in the classification stage, with no post-classification
manipulation of pixels and therefore does not require contextual
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FIGURE 6 | Finalized classification of the Sentinel-2 image from September 13, 2016 highlighting variance in maximum depth the classifier was successful. Left
column is the true color composite. Right column is the map classification for the same region thresholded at 80% probability of being vegetated. (A) A sandy beach
at the edge of an estuary influenced by freshwater input was successfully classified to ∼5 m, waters at depth from 5.5 to 10 m shown with transparent yellow overlay
(F6A in Figure 4). (B) An estuarine brackish environment by freshwater input was successfully classified to ∼2 m, waters at depth from 2.5 to 10 m shown with
transparent yellow overlay (“brown” in the figure; F6B in Figure 4).

editing as in Mumby et al. (1998). It leverages the simplicity
and high accuracy of band ratios in habitats that are relatively
straightforward to classify, such as bright sand, and shallow,
dense vegetation, with the power of machine learning classifiers
in more complex classification schemes. The random forests
classification was performed across all depths where the threshold
approach had failed.

The band ratios include vegetation indices based on red-edge
indices such as NDVI and the Red-Green ratio, which can be
effective tools for quantifying intertidal vegetation at low tide or
vegetation that floats at, or near, the surface (e.g., Barillé et al.,
2010; Dierssen et al., 2019; Mora-Soto et al., 2020). Following
Dierssen et al. (2019) we found that the Red-Green ratio could
successfully classify bare sand at shallow to moderate depths,
albeit at a slightly lower threshold value (<0.30 this study,
<0.35 Dierssen et al., 2019). While no upper threshold could be
determined to classify vegetated habitat, an upper threshold could
be defined to exclude shallow muddy substrate (>0.9). These
thresholds were conservatively set to not misclassify any field
survey points, which cover a large spatial area, even though the
inherent optical properties (IOPs) of the water would vary over
this scale. The thresholds could be fine-tuned at smaller spatial
scales, where water column properties remain fairly stable. In
our study we also found NDVI (Band 4 and 8) to be effective at
classifying intertidal to very shallow subtidal habitat (∼< 2 m).
This threshold can be more readily defined from the literature

instead of requiring field survey points as there is little impact
of the water column in regions where NDVI is effective. No
distinctions were made between major species groups, such as
rockweed from shallow eelgrass beds. This is in agreement with
the study of Mora-Soto et al. (2020) who found that NDVI and
FAI based on Sentinel-2 imagery could be used to map Giant
Kelp (Macrocystis pyrifera) forests, which float at the surface and
intertidal green algae, but could not discriminate between the two
vegetation types.

Our choice of a specific image classifier (random forests) was
based on an initial exploratory analysis (Supplementary Material
2), and previous studies which compared different machine
learning classifiers to the maximum likelihood classification and
found the machine learning classifiers to be the superior image
classifier (e.g., Ha et al., 2020). Therefore, our study provides
further support for the shift away from the continued use
of maximum likelihood. Both SVM and random forests have
routinely high overall map accuracies as found in our study and
other works (Traganos and Reinartz, 2018b; Poursanidis et al.,
2019; Wicaksono et al., 2019). However, we chose to use random
forests as it requires less model tuning than SVM. Furthermore,
for acoustic seabed classification, random forests was found
to be the preferred algorithm compared to k-nearest neighbor
and k-means as it produced the most reliable and repeatable
results (Zelada Leon et al., 2020). While the classification
choice does have an impact on map accuracy values, we found
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FIGURE 7 | Finalized classification of the Sentinel-2 image from September 13, 2016 highlighting how mud is misclassified at greater depths. (A) True color
composite and resulting map classification (thresholded at ≥80% probability of being vegetated) indicating location of field survey points of a muddy habitat at 1–2 m
(square), 2–3 m (circle), and 3–4 m (triangle). Waters at depth from 5 to 10 m shown with transparent yellow overlay (“brown” in the figure). (B) Spectra for the same
three survey points, compared to sand and vegetated dominated habitat at 2–3 m of water depth.

that it had no effect on species level discrimination during
exploratory analysis. For instance, all four classification types
explored in our initial analysis could map vegetated versus non-
vegetated habitat, to varying degrees of accuracy, but none could
differentiate between eelgrass versus (predominantly brown)
seaweed dominated habitat. We therefore had to modify our
classification goal from separating eelgrass from seaweed habitat,
to only classifying vegetated habitat presence and absence. This
is in line with another study based on Sentinel-2 imagery in
temperate waters that was also able to only classify vegetation
presence from absence (Fethers, 2018). Using SPOT-6/7 imagery,
with similar band placements to Sentinel-2 bands 2–4 (blue,
green, and red) but at a higher spatial resolution (1.5-m),
eelgrass was differentiated from seaweeds in only one of three
different images for a bay-wide mapping study in Atlantic
Canada (Wilson et al., 2019). Even in tropical clear waters,
supervised classifiers with Sentinel-2 have had varying success
to differentiate among submerged seagrass species (Kovacs
et al., 2018; Traganos and Reinartz, 2018b). Therefore, while
Sentinel-2 can produce large-scale coastal benthic habitat maps
in Atlantic Canada, it would only be to a level of vegetation
presence. If greater class separation is required, hyperspectral
imagery (5–10 nm resolution depending on the part of the
spectrum) can differentiate between different vegetation types,
even in optically complex waters, albeit to much shallower

depths (Vahtmäe et al., 2020). Our analysis found that the four
10-m spectral bands on Sentinel-2 were not enough to provide
differentiation between eelgrass and seaweeds.

Including appropriate water penetrating bands is essential
for developing accurate coastal benthic habitat maps. In the
submerged habitat classification using random forests, we
excluded the NIR band from the analysis. While the NIR provides
critical information along the red-edge, strong absorption by
water in this part of the spectrum introduces noise into the
classification in all but the shallowest of waters (<2 m; Kutser
et al., 2009). Exploratory analysis found that excluding the NIR
band (8) increased the maximum depth from ∼5 to ∼10 m at
which the classifier could successfully identify bottom habitat at
the expense of misclassifying vegetation in very shallow (∼<2 m)
waters (Wilson and Devred, 2019). Classifying intertidal/shallow
habitat with NDVI provided comparable results in very shallow
regions as including NIR in the random forests model, with
the benefit of reducing “noise” in the classification allowing
for classifying bottom habitat at greater depths. Consequently,
we found the best band combination to maximize spectral
information available to the classifier, while minimizing noise
introduction to the blue, green, and red bands (Bands 2–4).
The blue (band 2) and green (band 3) are commonly used in
image classification of seagrass habitat with Sentinel-2, generally
with a third band either being coastal blue (Traganos et al., 2018;
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FIGURE 8 | Finalized classification of the Sentinel-2 image from September 13, 2016 highlighting how low-density vegetation is misclassified. (A) True color
composite and resulting map classification (thresholded at ≥80% probability of being vegetated) indicating location of field survey points of a sandy habitat (black
triangle), low density eelgrass (red x), and a large, dense eelgrass bed (white square). (B) Spectra for the same three survey points which all are between 0 and 1 m
of water depth. Note the low-density eelgrass training point would not have been included in model training (see section “Field Surveys”).

Poursanidis et al., 2019) or red (Traganos and Reinartz, 2018b; Ha
et al., 2020). In our study, classification performance decreased
when the coastal blue band (band 1) was added due to its
low spatial resolution (60-m), which was inappropriate for
identification of highly heterogeneous habitat such as in our area
of interest. Furthermore, while in very clear waters the coastal
blue band provides valuable information on bottom habitat
across all depths, the presence of CDOM and particulate matter
in temperate optically complex waters limits the applicability
of the coastal blue band due to their high absorption across
these wavelengths (∼450 nm). Classification performance also
decreased when the red band was omitted, which is commonly
done in tropical studies (Traganos et al., 2018; Poursanidis et al.,
2019), indicating that valuable information was still provided at
this wavelengths even though it is strongly attenuated by water.
Therefore, the optimum bands in temperate, optically complex
waters vary compared to the typical band combination used in
tropical studies. Classification of seaweed habitat with Sentinel-
2 has focused on intertidal species (Kotta et al., 2018), or those
with floating canopies such as Giant kelp (Mora-Soto et al., 2020),
and can therefore use information about the red-edge for image
classification, including the NIR bands.

Effective masking of optically deep water is an important step
in image-based classification procedures as bottom reflectance is
no longer detected by the satellite. If a poor maximum depth for

image classification is chosen, then all habitat below this depth
will be classified as vegetated due to the relatively dark spectra
compared to optically shallow regions. Generally, the maximum
depth is either specified to coincide with the maximum depth
that field survey data were collected (Yucel-Gier et al., 2020), or
analytical modeling is used to determine the maximum depth
bottom reflectance that can be detected (O’Neill and Costa, 2013;
Poursanidis et al., 2019). In Nova Scotia, eelgrass beds have been
documented up to 12 m deep (DFO, 2009) and kelp beds to 20 m
deep (Johnson and Mann, 1988), yet we masked water deeper
than 10 m to coincide with the maximum depth at which field
survey points were collected during our study. While the external
bathymetry file was at a lower spatial resolution then the satellite
data (30 versus 10-m), which would cause errors if bathymetry
was required for every pixel particularly in shallower (<5 m)
waters, it is reasonable to derive a deep water mask based on the
10-m contour. Therefore, most eelgrass habitat was included in
our map product but there is an additional ∼333 km2 of total
surface area between 10 and 20 m of water depth where kelp
habitat may exist within the study area. While bottom type could
be visually distinguished at depths shallower than the 11–12 m
isobaths in regions with high albedo (sandy beach) and sharp
contrast (sand into dense vegetation patch), this maximum depth
was not consistent across the image. In some areas bottom habitat
was only detectable for depths shallower than 2 m. It is not
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surprising that there is a large range of maximum water depths
where bottom habitat can be classified. In the clear waters of
the Mediterranean Sea, the seagrass species Posidonia oceanica
has been consistently mapped with Sentinel-2 to water depths of
16–40 m (Traganos and Reinartz, 2018b; Traganos et al., 2018;
Poursanidis et al., 2019). While in optically complex temperate
environments, Sentinel-2 has been used to map eelgrass beds to
depths of 4–5 m (Fethers, 2018; Dierssen et al., 2019), and retrieve
bathymetry to 10-m deep in Ireland (Casal et al., 2020), both
studies observed that this maximum depth was highly dependent
on image quality, and depth limits were significantly shallower
under non-optimal conditions, which is consistent with our
results. Lastly, while Sentinel-2 has not previously been used to
detect submerged kelp beds, SPOT and Landsat have been used
to map vegetated bottom habitat (eelgrass and kelps) to depths
of 7–8 m in Atlantic Canada (Simms and Dubois, 2001; Wilson
et al., 2019; St-Pierre and Gagnon, 2020) and down to 10 m in
turbid waters in Spain (Casal et al., 2011).

It is not surprising that water transparency would vary over
a Sentinel-2 tile characterized by a complex coastline subject to
river inputs, sediment redistribution and resuspension, CDOM
runoff, and differing phytoplankton concentrations, which all
impact the optical characteristics of the water column and are
highly variable over even small spatial scales. Furthermore,
while the 10-m maximum depth at which bottom habitat can
be detected using Sentinel-2 provides a cost effective mean to
quantify large-scale distribution of marine macrophytes in Nova
Scotia, the variance in the maximum depth that bottom habitat is
visible should be further explored. On small scales (single seagrass
bed or inlet) a maximum depth should be readily detectable for
classifying vegetation coverage. But on large-scales (several inlets
to full Sentinel-2 tiles) another approach is required. The simplest
approach would be to use the minimum water depth that bottom
habitat could be consistently detected, although this would limit
the extent of habitat maps to the shallowest waters. Another,
albeit tedious, technique could involve manually digitizing a
deep-water mask accounting for the spatial heterogeneity of
water transparency. A more automated approach may involve
deriving water column properties with ACOLITE and the use
of detectability limits of different substrates (Vahtmäe et al.,
2020) to develop contours where water transparency may shift.
Furthermore, the high revisiting time of Sentinel-2 (every 2–
3 days in Atlantic Canada) allows for multi-scene compositing,
opposed to relying on only classifying the overall “best” image,
within a time frame for which vegetation extent is expected to
remain similar. This would minimize water transparency impacts
on image classification as this process has shown promising
results for satellite derived bathymetry studies in turbid waters
with Sentinel-2 (Caballero and Stumpf, 2020), and coastal habitat
classification with Landsat (Knudby et al., 2014). Regardless, our
image classifier performed well to a maximum water depth of
10 m, but some interpretation is required to understand where
water transparency is limiting the classification performance. As
we used a “best” image for classification, we can conclude that
marine macrophytes can be detected to the 10 m depth contour
in Atlantic Canada under optimal conditions, and in sub-optimal
conditions this value likely varies between the 4–8 m depth

contour, although further work would be required to define the
lower threshold.

The final map classification yielded an overall map accuracy
of 79% for the binary classification of vegetation presence and
absence. This is comparable to other Sentinel-2 coastal habitat
mapping studies for submerged seagrasses in optically complex
waters of Denmark (73%; Fethers, 2018) and in clear waters
in Turkey (75–78%; Yucel-Gier et al., 2020), Italy (82–88%;
Dattola et al., 2018), New Zealand (88%; Ha et al., 2020), and
Greece (58–96%; Traganos and Reinartz, 2018b; Traganos et al.,
2018; Poursanidis et al., 2019). The large range of accuracy
values for the study carried out in the coastal waters of Greece
reflects differences in their seascapes. The lowest accuracy values
(58%) occurred in a fragmented seascape with large amounts of
mixed habitat types (Poursanidis et al., 2019), the highest (96%)
occurred in a small (∼3 km2) study region with large seagrass
beds (Traganos and Reinartz, 2018b), and intermediate values
(72%) were obtained for a classification encompassing the entire
Aegean and Ionian Seas (Traganos et al., 2018). Elsewhere in
Atlantic Canada, submerged kelp and eelgrass habitat has been
classified using the high-resolution SPOT-6/7 imagery with an
overall map accuracy of ∼88% at bay-wide scales (Wilson et al.,
2019; St-Pierre and Gagnon, 2020). Consequently, our accuracy
metrics would likely improve if we focused on smaller spatial
scales where classification models can be fine-tuned to specific
habitat-types and water column properties. Still, good accuracy
metrics were achieved for the full tile classification, providing
accurate maps of vegetated areas for marine spatial planning.
While the previous Atlantic Canada studies were punctual in
space and time, and demonstrated feasibility of using satellite
remote sensing to map bottom habitat in Atlantic Canada, this
study represents a first step to routinely classify and monitor
bottom habitat in Atlantic Canada to inform habitat management
policies at effective cost.

This study only explored the limits of empirical, image-based
classification procedures to map marine macrophyte habitat with
Sentinel-2 in the optically complex waters of Atlantic Canada.
Further work includes comparing the results from the image-
based classification to a map derived from a semi-analytical
inversion models. Inversion methods solve simultaneously for
depth, bottom reflectance, and water IOPs but are highly
sensitive to atmospheric correction errors and were developed
for hyperspectral data (Lee et al., 1999). To date, they have
had limited applications for multispectral data due to the high
number of unknown parameters (absorption, scattering, depth,
and bottom reflectance) relative to the number of spectral
bands (Garcia et al., 2020). In the case of Sentinel-2, only three
water-penetrating spectral bands are available at a 10-m spatial
resolution, which is inadequate to characterize both the water
column, depth, and bottom reflectance (Dierssen et al., 2019).
To our knowledge, only one study has explored semi-analytical
inversion of Sentinel-2 data to map seagrass habitat and derive
water column properties in a tropical environment (Traganos
and Reinartz, 2018a). To do so, they first solved for water
depth with an empirical satellite-derived bathymetry approach
by regressing in situ measured depth against the coastal blue
and green ratio, and then solved for water column properties

Frontiers in Environmental Science | www.frontiersin.org 16 November 2020 | Volume 8 | Article 579856

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-579856 November 7, 2020 Time: 19:28 # 17

Wilson et al. Sentinel-2 Coastal Habitat Mapping

and bottom reflectance using the three 10-m bands (blue, green,
and red) with the downscaled 60-m coastal blue and 20-m
red-edge (740 nm) bands, and the derived depth layer with a
modified HOPE (Hyperspectral Optimization Process Exemplar)
model (Lee et al., 1999). The addition of the lower-resolution
spatial bands in our study region would complicate benthic
habitat mapping due to the complex coastline and high spatial
heterogeneity of both bottom habitat and water depth.

CONCLUSION

The freely available Sentinel-2 satellite imagery time series
provides a new opportunity to generate large scale vegetation
habitat maps, and examine how vegetation extent changes over
time, at a spatial resolution of about a tenth that of the Landsat
imagery series (i.e., 100 m2 for Sentinel-2 against 900 m2 for
Landsat-8). As such, Sentinel-2 has been used to map the extent
of marine macrophytes in single inlets and bays (Traganos and
Reinartz, 2018a; Dierssen et al., 2019), regionally (Traganos et al.,
2018), and globally (Mora-Soto et al., 2020). Such uses at both
small and large spatial scales show promise in Atlantic Canada,
provided that accurate water transparency masks are generated.
In regions where water transparency limits Sentinel-2 mapping
capabilities, gaps in coverage can be addressed with in situ
approaches such as sonar deployment (Vandermeulen, 2014).
Using Sentinel-2, we found that two complimentary approaches
provide a unique, robust and efficient classification of bottom
habitat. The simple band-ratio thresholds can classify vegetation
extent in shallow, sandy waters, and when the thresholds
method fails the random forests machine learning classifier
successfully denotes the location of vegetated habitat. From
the classified habitat maps, estimates of surface area coverage
of marine macrophyte habitat can be generated. Although
attempted, Sentinel-2 does not have the spectral resolution to
distinguish seagrass from seaweed dominated habitats in the
optically complex waters of our study region, this finding is in
contrast to other studies that took place in tropical waters (e.g.,
Kovacs et al., 2018). As such, the final vegetation maps can
be combined with other data layers including depth, substrate,
exposure, species distribution models and/or local ecological
knowledge to qualitatively differentiate eelgrass from seaweed

habitats (Lauer and Aswani, 2008; Wilson et al., 2019; Beca-
Carretero et al., 2020). Benthic habitat maps are an essential data
layer to inform the monitoring and management of macrophyte
dominated habitats, and Sentinel-2 provides a cost-effective tool
to quantify these habitats.
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