
ORIGINAL RESEARCH
published: 02 November 2020

doi: 10.3389/fenvs.2020.581091

Frontiers in Environmental Science | www.frontiersin.org 1 November 2020 | Volume 8 | Article 581091

Edited by:

Sherry L. Palacios,

California State University, Monterey

Bay, United States

Reviewed by:

Eriita Jones,

University of South Australia, Australia

Ana B. Ruescas,

University of Valencia, Spain

*Correspondence:

John M. Johnston

johnston.johnm@epa.gov

Specialty section:

This article was submitted to

Environmental Informatics and

Remote Sensing,

a section of the journal

Frontiers in Environmental Science

Received: 07 July 2020

Accepted: 30 September 2020

Published: 02 November 2020

Citation:

Myer MH, Urquhart E, Schaeffer BA

and Johnston JM (2020)

Spatio-Temporal Modeling for

Forecasting High-Risk Freshwater

Cyanobacterial Harmful Algal Blooms

in Florida.

Front. Environ. Sci. 8:581091.

doi: 10.3389/fenvs.2020.581091

Spatio-Temporal Modeling for
Forecasting High-Risk Freshwater
Cyanobacterial Harmful Algal Blooms
in Florida
Mark H. Myer 1, Erin Urquhart 2, Blake A. Schaeffer 3 and John M. Johnston 4*

1US Environmental Protection Agency, Oak Ridge Institute for Science and Education (ORISE), Athens, GA, United States,
2US Environmental Protection Agency, Oak Ridge Institute for Science and Education (ORISE), Research Triangle Park, NC,

United States, 3US Environmental Protection Agency, Center for Exposure Measurement and Modeling, Research Triangle

Park, NC, United States, 4US Environmental Protection Agency, Center for Exposure Measurement and Modeling, Athens,

GA, United States

Due to the occurrence of more frequent and widespread toxic cyanobacteria events,

the ability to predict freshwater cyanobacteria harmful algal blooms (cyanoHAB) is

of critical importance for the management of drinking and recreational waters. Lake

system specific geographic variation of cyanoHABs has been reported, but regional and

state level variation is infrequently examined. A spatio-temporal modeling approach can

be applied, via the computationally efficient Integrated Nested Laplace Approximation

(INLA), to high-risk cyanoHAB exceedance rates to explore spatio-temporal variations

across statewide geographic scales. We explore the potential for using satellite-derived

data and environmental determinants to develop a short-term forecasting tool for

cyanobacteria presence at varying space-time domains for the state of Florida. Weekly

cyanobacteria abundance data were obtained using Sentinel-3 Ocean Land Color

Imagery (OLCI), for a period of May 2016–June 2019. Time and space varying

covariates include surface water temperature, ambient temperature, precipitation, and

lake geomorphology. The hierarchical Bayesian spatio-temporal modeling approach in

R-INLA represents a potential forecasting tool useful for water managers and associated

public health applications for predicting near future high-risk cyanoHAB occurrence given

the spatio-temporal characteristics of these events in the recent past. This method is

robust to missing data and unbalanced sampling between waterbodies, both common

issues in water quality datasets.

Keywords: harmful algal blooms, cyanobacteria, hierarchical Bayes, integrated nested Laplace approximation,

remote sensing, predictive modeling

INTRODUCTION

Harmful algal blooms are environmental events that occur when algal populations achieve
sufficiently high density resulting in possible adverse ecological and public health effects
(Smayda, 1997). Harmful cyanobacteria blooms (cyanoHABs) are made up of naturally
occurring photosynthetic prokaryotes found in various aquatic systems and can produce toxins
(cyanotoxins). Toxic cyanoHABs are common components of Florida’s surface waters and have
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been identified since the late 1980s (Carmichael, 1992; Chapman
and Schelske, 1997; Burns, 2008) in Florida’s freshwater and
brackish environments, including those used for recreation,
source waters used for drinking water supply, and finished
drinking waters (Williams et al., 2001, 2007; Florida Fish
Wildlife Conservation Commission, 2017). Florida freshwater
cyanoHABs have consisted primarily of the genera Microcystis,
Anabaena, and Cylindrospermopsis and their associated toxins:
microcystins, anatoxin-a, and cylindrospermopsin, respectively
(Burns et al., 2002; Phlips et al., 2002). Upon numerous sampling
occasions, microcystin levels in Florida’s recreational waters
have exceeded the existing World Health Organization (WHO)
(Chorus and Bartram, 1999; World Health Organization, 2003)
and EPA (US EPA, 2019) guidelines for cyanobacterial toxins,
underscoring the potential impact of cyanoHABs on public
health (Williams et al., 2007).

Several of Florida’s largest aquatic systems including Lake
Okeechobee (Havens et al., 1998; Havens and Steinman, 2015);
the Harris Chain of Lakes (Williams et al., 2001, 2007); and
the St. Johns, St. Lucie and Caloosahatchee (Glibert et al.,
2006; Boyer and FitzPatrick, 2016; United States Army Corps
of Engineers, 2016) rivers have experienced the increasing
adverse impacts of cyanoHABs. In 2005, the St. Johns County
Department of Health released Florida’s first official health
alert for a toxigenic harmful algal bloom. In response, the St.
Johns River Water Management District began routine daily
sampling and issued weekly releases informing the public of
high microcystin concentrations and risk (Williams et al., 2007).
In July 2016, concentrations (4.5mg L−1) of microcystin were
detected in the river-dominated Caloosahatchee and St. Lucie
estuaries following very heavy rainstorms in Florida (Oehrle et al.,
2017). Strong storms resulted in reservoir operators increasing
the outflow from Lake Okeechobee causing the incursion of a
toxic M. aeruginosa bloom into the St. Lucie Estuary (Boyer and
FitzPatrick, 2016; United States Army Corps of Engineers, 2016).

Identification and quantification of the environmental factors
that contribute to the proliferation of cyanoHABs in freshwater
systems continues to be a topic of scientific research. It is
generally understood that dense concentrations of cyanoHABs
result from a combination of excess total anthropogenic nutrient
loads, particularly phosphorus (Michalak et al., 2013). Other
factors that can be important drivers of cyanoHAB abundance are
positive associations with lake depth, water column stability, and
water temperature (Paerl and Huisman, 2008; Taranu et al., 2012;
Beaulieu et al., 2013) and a negative association with wind speed
(Millie et al., 2014). Landscape alterations such as urbanization
or agricultural practice can change sediment loading and further
alter nutrient availability in watersheds (Lunetta et al., 2015).

Modeling efforts to identify and predict harmful algal blooms
have used several approaches, including classical multivariate
analysis with LOWESS smoothing (Downing et al., 2001),
continuous artificial neural networks (Millie et al., 2014), linear,
non-linear, and mixed-effect models (Beaulieu et al., 2014), and
Bayesian modeling (Obenour et al., 2014).

These data-driven modeling efforts do not address spatial and
temporal correlation in bloom occurrence. Failure to account
for spatial and temporal autocorrelation violates the assumption

of independent and identically distributed data and may lead
to biased model estimates. Further, incorporating Bayesian
inference into predictive models allows inclusion of prior
knowledge, either through literature review and expert opinion
or by using mathematical techniques to generate informative
priors. We therefore aim to improve upon cyanoHAB models
by addressing spatio-temporal correlations using Bayesian
hierarchical models, leading to estimates of explanatory variable
effects that are more reliable for scientific inference.

The integrated nested Laplace approximations (INLA)
method (Rue et al., 2009) offers a simple way to compute
complicated hierarchical models that include spatial and
temporal structure. Large computational times remain a major
drawback of modeling spatial correlation. However, a recent
solution has been developed using stochastic partial differential
equations (SPDE) to provide a faster and computationally
cheaper solution to these modeling problems (Lindgren et al.,
2011). R-INLA is a modeling framework developed and
implemented for the statistical software R (R Core Team, 2015)
that allows complex Bayesian spatial modeling with far fewer
computational resources than previous approaches (Rue et al.,
2017). One benefit of R-INLA is that it is applicable at any
spatial and/or temporal scale. The SPDE approach allows the
user to model spatial correlation and constructs flexible fields
that are better able to handle complex spatial structures than
alternative spatial correlation models such as kriging (Cameletti
et al., 2013), making this approach appropriate for inland
waterbody modeling because we see both regional clustering of
blooms and vast areas of water and land with no cyanobacteria
observations. See Supplemental Material 2, Statistical Appendix
for definitions and discussion of these statistical terms.

In this study, we apply Bayesian spatio-temporal models using
R-INLA for the purposes of mapping and predicting exceedance
probabilities of World Health Organization (WHO) high-risk for
recreational exposure blooms (>100,000 cells/mL) in lakes across
Florida. Mapping state level cyanoHAB exceedance probabilities
identifies areas where estimates are higher or lower than the state
average and provides insight through visualization of patterns in
both space and time in addition to inferences drawn from the
effects of predictor variables.

METHODS

Study Area
This study was conducted for 103 lakes in the state of Florida,
United States. Lakes and waterbodies within three Water
Management Districts: St. Johns River, Southwest Florida, and
South Florida, were included in the analysis (Figure 1). Lake
water pixels were extracted using the USGS/EPA Hydrography
Dataset Plus (NHDPlus) version 2 (http://www.horizon-
systems.com/nhdplus/NHDplusV2_home.php). All NHDPlus
features classified as lakes and reservoirs were selected using
U.S. Environmental Protection Agency’s 2012 National Lakes
Assessment (NLA) site evaluation guidelines. Lakes in the
NHDPlus shapefile with a minimum of three 300m water
pixels remaining after a land adjacency QA flag was applied
were considered resolvable waterbodies. The number of pixels
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FIGURE 1 | Florida study area containing inland lakes and reservoirs.

included in each water body ranged from 3 to 14,499. The mean
andmedian number of pixels in each water body were 228 and 23,
respectively. The number of pixels in each water body considered
in the analysis are provided in Supplemental Material 2.
Waterbodies classified as intermittent, estuarine, rivers, streams,
or waterbodies with a surface area <27 hectares are considered
“unresolvable water” and thus QA flagged based on NLA criteria.
Waterbodies with missing data were excluded from statistical
analysis. The OLCI satellite scene extent for our study area
is located within the NLA Coastal Plain (CPL) ecoregion.
According to findings from the 2012 NLA report, 23% of lakes
within the CPL ecoregion pose a high risk to exposure of
cyanobacteria and cyanotoxins (US EPA, 2009).

Satellite-Derived Cyanobacteria Data
Acquisition and Preparation
Satellite-derived cyanobacteria abundance data was obtained
from Sentinel-3 imagery from May 2016 through May 2019
(n = 217 weeks). Standard OLCI Level-1B data were obtained

from the NASA Ocean Biology Processing Group (https://
oceandata.sci.gsfc.nasa.gov). Sentinel-3 OLCI Florida granules
were in the time window of 15:20–16:00 with a frame along
track coordinate of 2,520. The cyanobacteria index (CI) was
calculated using a spectral shape curvature method, as originally
described in Wynne et al. (2008), updated in Lunetta et al.
(2015), and algorithm progression fully detailed in Coffer et al.
(2020). The CI-Multi value is then converted to cyanobacteria
abundance (cells/mL) as described in Wynne et al. (2010). This
algorithm was previously validated across Florida watersheds
(Lunetta et al., 2015; Tomlinson et al., 2016). Composite
images of the maximum cyanobacteria abundance at each
resolvable satellite pixel were obtained from the individual scenes
within sequential 7-day (1 week) periods. Weekly maximum
cyanobacteria abundance was used to minimize the effect
of clouds or wind that might otherwise reduce detection
of the bloom. Many cyanoHAB genera such as Microcystis,
Aphanizomenon, and Dolichospermum have buoyancy control
and will typically float to the surface in the day in the absence
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of strong winds (Visser et al., 2015). Wind can mix the blooms
into the water column, diluting the surface concentration seen
by the satellite (Wynne et al., 2010). Mishra et al. (2005) found
satellite measures in the red region, similar to the CI-multi,
typically only penetrate to a depth of 2m or less. The OLCI
sensor was selected because of public availability of data, spectral
range to support deriving cyanobacteria concentrations, and 2–3
day repeat cycle (Urquhart and Schaeffer, 2020). For each water
body, the satellite-derived cyanobacterial counts were averaged
spatially each week to obtain one summary observation. This
1-week averaging and spatial aggregation was necessary due to
cloud cover and satellite repeat cycles, though it results in a
loss of information relative to using all available cyanobacterial
abundance measurements without averaging and may cause
short-term blooms to be missed.

Covariates
We limited covariates that were relevant to cyanobacterial growth
and were readily available at the state and U.S. national scale
on a weekly basis for operational forecasting. Land use and
nutrients are not readily available on a weekly time frame for the
continental US. In addition, nutrient transport and availability is
complex and system specific, with data lacking for most systems.
Wind speed and direction were not included as it was not
available for the entire OLCI time period during our analysis.

We retrieved and processed raster and GIS datasets into a set
of covariates for the state of Florida at 300m× 300m resolution.
These data were identified in our review of the cyanobacterial
modeling literature as environmental determinants likely to
be associated with cyanobacteria bloom occurrence including
ambient temperature, surface water temperature, precipitation,
and static geomorphic lake conditions (Table 1). All data
were obtained from public sources. We scaled all covariates
to the same resolution as our satellite imagery in order to
exclude measures along the land and water interface, because
we masked our lake imagery with a 300m buffer to exclude
mixed pixel contamination. Landsat surface water temperature
(WTEMP) was upscaled from 30 to 300m, while PRISM
precipitation (PRECIP) and ambient air temperature (ATEMP)
were downscaled from 4 km to 300m. Upscaling is a process
that transfers information from local scale to large scale.
Downscaling, conversely, transfers from large scale to local
scale. Processes that are heterogenous at small scales become

homogenous at larger scales. All covariate data were temporally
binned into weekly means by taking the arithmetic mean
of 7 days within the numerical week (1 through 53) that
bound each observation. Due to cloud cover and non-uniform
scene acquisition, the monthly climatology of the Landsat
Analysis Ready Data (ARD) surface water temperature product
(Cook et al., 2014; Schaeffer et al., 2018) was used when the
corresponding weekly data were not available. Spatial geographic
coordinates were represented in kilometers using the Albers
equal-area conic projection. Parameter-elevation Regressions
on Independent Slopes Model (PRISM) mean, maximum, and
minimum air temperatures and precipitation for North America
was downloaded from the Oregon State PRISM Climate Group
(PRISM Climate Group, 2004) through June 2019. Landsat
ARD surface temperature was downloaded through USGS Earth
Explorer through May 2019 in horizontal tiles 25, 26, and 27 and
vertical tiles 16, 17, and 18.

All variables were averaged over all resolvable pixels within
each water body each week, resulting in one summary
observation per week for each water body. To aid in
interpretation of relative variable influences on the response,
predictor variables were centered and scaled by subtracting the
mean and dividing by the standard deviation, transforming them
into Z-scores. On this scale, a value of zero represents the mean,
the units are standard deviations from the mean, and the value
of the variable’s coefficient in the model represents the effect in
log-odds of a one standard deviation increase.

To identify the set of predictor variables most appropriate
for modeling inland cyanobacterial bloom presence in
Florida, we used non-spatial generalized linear models
(Supplementary Formula 4), implemented in the R glmulti
package (Calcagno and de Mazancourt, 2010), confirming
the choice using stepwise-selection implemented in the R
stepAIC package (Ripley, 2002). In this way, we constructed
all possible non-redundant models with every combination
of covariates. The best model was determined using Akaike’s
information criterion (AIC, Supplementary Formula 6), which
is an estimator of out-of-sample prediction error and is used for
model comparison (Akaike, 1998). See Supplementary Material

for a discussion of the use of AIC. This step eliminated two
variables, Maximum Lake Depth and Estimated Lake Volume.
The best model, with the resulting fixed effect variables, was then
used in the Bayesian spatio-temporal model.

TABLE 1 | Summary information for environmental datasets used for covariate selection.

Source Variable name Abbreviation Units Resolution

PRISM (Daly et al., 1997) Air temperature ATEMP Degrees celsius (◦C) 4 km; daily

Precipitation PRECIP Millimeters rainfall (mm) 13.8 km; hourly

Landsat Analysis Ready Data

(ARD) (Cook et al., 2014)

Surface water temperature WTEMP Degrees celsius (◦C) 30m; 16 and 8-day

lakeMorpho R-package (Hollister

and Stachelek, 2017)

Surface area Area Square meters (m2 ) Static

Mean lake depth dMean Meters (m) Static
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Hierarchical Bayesian Model Specification
and Accuracy
We employed a hierarchical Bayesian spatio-temporal model
to estimate exceedance probability over the WHO high-
risk threshold with respect to environmental predictors. The
response variable was the presence or absence of a high-risk
cyanobacteria bloom, defined as a waterbody-wide average cell
count above 100,000 cells/mL. Bayesian parameter estimates
and prediction in the form of marginal posterior probability
distributions were obtained via the R-INLA approach. For
this study, weakly informative penalized-complexity priors
were generated for all regression coefficients (fixed-effect
parameters) and hyperparameters, allowing our large number of
observations (n = 11,096) to inform the posterior distributions
(Simpson et al., 2017). For the temporal component, we
used a first order temporal autoregressive process (AR1,
Supplementary Formula 5), which models the effect of time
on bloom probability in each location as a function of the
concentration in the previous week at that location plus an
error term (Potzelberger, 1990). Spatial covariance was addressed
using the INLA SPDE approach (Lindgren et al., 2011). The
spatial effect represents residual error that can be attributed to
location and may reflect the influence of an unmeasured or
unmeasurable predictor that varies in space. We used a binomial
logistic spatiotemporal model to predict harmful algal blooms
(Formula 1).

logit
(

yst
)

= β1X1 + . . . + βnXn + us + µt

Formula 1. Generalized model structure for a binomial logistic
model with spatial and temporal components.

yst is the odds in favor of harmful bloom exceedance at
location s and week t, β1, ..., βn are the n regression coefficients,
X1, ..., Xn are the n fixed independent variables, us is the value of
the spatial random effect at location s, and µt is the value of the
AR1 temporal random effect at time t. The logit is the logarithm
of the odds in favor of an event and is also referred to as log odds.
The βn coefficients are in the logit or log-odds scale, which can be
converted to probabilities as shown in Formula (2).

P (event) =
elog−odds

1+ elog−odds

Formula 2. Converting log-odds to probability.
The odds were converted to probabilities of harmful

algal bloom exceedance for model evaluation and predictive
performance evaluation. A comprehensive mathematical
overview of INLA SPDE can be found elsewhere (Rue et al., 2009;
Lindgren and Rue, 2015). More detailed technical explanations of
INLA SPDE applied to ecological and epidemiological modeling
are available (Cosandey-Godin et al., 2014; Khana et al., 2018;
Myer and Johnston, 2018). See Supplementary Material for a
general discussion and explanation of the statistical methods
used in this study along with definitions and further equations.

The utility of the spatial and temporal effects was assessed by
fitting the model with and without random effects. The models
were compared using the Deviance Information Criterion (DIC,

Supplementary Formula 7) to determine if the inclusion of
the spatial and temporal effects improved model fit. Model
performance was evaluated through holdout cross-validation in
which the dataset was divided into three compartments: 80% of
the data was randomly selected for training, 20% of the data was
held out for validation, and the most recent week of data available
at the time of the study was obtained for prediction. The model
was created based on the training data only, and then model
predictive power was assessed on the validation and prediction
datasets. Model predictive power was determined by calculating
the Area Under Curve (AUC), and by evaluating the sensitivity
(true positive rate, Supplementary Formula 8), and specificity
(true negative rate, Supplementary Formula 9) in predicting the
holdout validation and prediction datasets after optimizing the
logistic cutoff. Cutoff optimization, which chooses a value for the
logistic predictor above which we consider a bloom prediction
as positive, was performed by maximizing Youden’s index on the
validation dataset. Youden’s index, sometimes referred to as the
J-statistic, is defined in Formula (3).

J = sensitivity+ specificity− 1

Formula 3. Youden’s Index, or the J-statistic. Maximizing the
value of this statistic provides the maximum overall accuracy for
a binomial predictor.

Youden optimization attempts to find the cutoff at which
sensitivity and specificity are balanced and at a maximum. All
statistical analyses were conducted using R 3.3.4 on a compute
cluster with 128 nodes and 4,096 cores.

RESULTS

The likelihood of high-risk cyanoHAB presence was estimated
for 103 lakes and waterbodies in Florida. The number of high-
risk blooms in individual lakes across Florida ranged from
0 to 146 weeks from 2016 to 2019 (Figure 2). During the
study period, 22.5% of total bloom weeks were classified as
high risk (n = 3,149 bloom weeks). Average waterbody-wide
cyanobacterial concentration in lakes classified as high-risk was
376,504 cells/mL, more than three times the WHO “high”
threshold of 100,000 cells/mL.

Model Selection
The model fit of our four candidate models was evaluated using
the Deviance Information Criterion (DIC), with lower DIC
values indicating better fit (Table 2). All four models included
the same fixed effect predictors. The first model (M1), a non-
hierarchical baseline model that did not incorporate random
effects nor correlation features, exhibited a DIC of 14,195 and
a ∼7 s computation time. The addition of a temporal effect
(M2) improved the DIC value and only slightly increased
the computation time. The addition of a spatial component
(M3) dramatically improved the DIC value, but approximately
quadrupled computation time. The addition of the spatial
and temporal autocorrelation structure (M4) further improved
the DIC value but increased the computation time to ∼53 s.
We concluded that computational time was not an issue of
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FIGURE 2 | Choropleth map of the number of high-risk bloom weeks in Florida lakes from 2016 to 2019.

TABLE 2 | Models considered with corresponding performance information.

Model Model description DIC Computation

time (s)

M1 Non-hierarchical model 21,381 ∼7

M2 Temporal component only 21,294 ∼10

M3 Spatial component only 7,758 ∼45

M4 Spatial + temporal model 7,601 ∼53

concern with this model, due to the favorable computational
characteristics of the INLA SPDE method. Thus, the M4
hierarchical model with a full set of time varying, fixed effect
covariates and spatio-temporal correlation effects provided the
best model fit and was selected as the best model with subsequent
results presented as follows.

Fixed Effect Covariates
The mean posterior coefficients of the fixed effect covariates
are presented in log-odds and signify the estimated response
to a one standard deviation change in the predictor variable
when all other variables are held constant. For the purposes
of determining statistical importance, we utilized an alpha
level of 0.05 and considered a variable with a 95% credible

interval that did not encompass zero to have an important
effect on the response. Using stepwise-selection and the
resulting AIC values, ambient air temperature, surface water
temperature, precipitation, lake area, and mean lake depth
were selected as fixed effect predictors in the bloom estimation
models (Supplementary Table 1). Fixed effect coefficients and
95% Bayesian credible intervals for the covariates included
in the full spatio-temporal model (M4) are provided in
Table 3. Posterior distributions of these fixed effect variables
are presented as log-odds of the scaled covariate variables.
As expected, a significant positive association is observed
between surface water temperature (WTEMP) and high-risk
bloom presence in Florida. For a one standard deviation
increase in surface water temperature (6.23◦C), the expected
change in high-risk bloom log odds is 0.17 (or 1.18 times
greater odds). Further, mean lake depth (DMEAN) exhibited a
significant positive association with high-risk bloom presence,
with an increase in one standard deviation (0.75m) leading
to an expected increase in log odds of 2.70 (or 14.88 times
greater odds). Ambient air temperature (ATEMP) had a
significant and negative effect on the likelihood of high-risk
bloom presence in Florida, with a one standard deviation
increase in ambient air temperature (4.79◦C) resulting in
change in high-risk bloom log odds of −0.23 (or 0.79 times
lower odds).
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TABLE 3 | Posterior estimates (mean, St. Dev., quantiles) for fixed effects.

Variable Mean posterior St.

Dev.

0.025 0.5 0.975

ATEMP −0.23 0.07 −0.37 −0.23 −0.08

WTEMP 0.17 0.05 0.08 0.17 0.26

PRECIP −0.01 0.04 −0.09 −0.01 0.07

AREA −0.11 0.66 −1.40 −0.11 1.19

DMEAN 2.70 0.52 1.68 2.70 3.72

TABLE 4 | Posterior estimates (mean, St. Dev., quantiles) for random effects.

Parameter (random effect) Posterior mean St. Dev. 0.025 0.5 0.975

Temporal variance 0.19 0.09 0.05 0.15 0.62

Spatial variance 38.51 7.85 25.63 37.61 56.35

Spatial correlation range ρ 16.76 3.44 10.72 16.54 24.14

AR (1) parameter α 0.90 0.09 0.68 0.92 0.99

Random Effects and Hyperparameters
The temporal model component (Figure 3) shows how the
temporal effect on the odds of a high-risk bloom event vary
throughout the year. This effect represents residual error that
can be attributed to time and can be interpreted as the influence
in the model of an unmeasured or unmeasurable predictor that
varies in time. The log odds of high-risk bloom presence were
higher from spring (week 15, approximately April 6) to late
summer (week 35, approximately August 17) all other variables
held constant. The posterior mean of the AR (1) parameter
indicated an autocorrelation effect of 0.90 (95% CI = 0.68:0.99),
which indicates that the temporal effect depends strongly on
previous values and does not change quickly throughout the year
(Table 4).

The spatial random effect (Figure 4) indicates that there is a
significant amount of spatial variation in the mean concentration
of cyanoHABs in lakes across Florida. The spatial random effect
represents residual error that can be attributed to location and
may reflect the influence of an unmeasured or unmeasurable
predictor that varies in space. The posterior estimates (mean,
standard deviation, 95% CI) for the random hyperparameters are
collected in Table 4. The variance of the spatial effect showed
a wide posterior distribution (95% CI = 25:56), indicating that
the variability in bloom odds attributable to location is high.
The posterior mean of the spatial correlation range (the distance
at which spatial correlation declines to ∼0.1) was 16.8 km
with a standard deviation of 3.4 km. This range indicates the
approximate distance between lakes within which the odds of an
algal bloom can be considered correlated.

Model Performance
In order to test the performance of the final spatio-temporal
model (M4), we used holdout data to determine if M4 correctly
estimates the observed data in space and time. Twenty percent
(20%) of the data were randomly set aside as a holdout validation

TABLE 5 | Results of the statistical evaluation metrics obtained using a cutoff

point of 0.365.

Metric Validation dataset Prediction dataset

AUC 0.95 0.89

Sensitivity 0.88 0.82

Specificity 0.88 0.82

Accuracy 0.88 0.82

dataset (n = 2,775 observations). Instead of using an arbitrary
cutoff threshold to assign the predicted high-risk bloom value
as positive or negative, we calculated a Youden-optimized cutoff
point of 0.365. Traditional logistic model evaluation statistics
including Area Under Curve (AUC), sensitivity (true positive
rate), and specificity (true negative rate) provide insight into the
model performance for both holdout dataset scenarios (Table 5).
An AUC > 0.5 indicates that the model predicts better than
chance alone. The resulting AUC between observations and
predictions of the holdout validation dataset was 0.95, sensitivity
was 0.88, specificity was 0.88, and accuracy was 0.88.

Prediction
For practical application reasons, we were also interested in
assessing the model’s capability to predict or forecast future
bloom presence for a week in which the model was untrained.
Predictive power of M4 was tested by reserving response and
fixed effect data for the most recent week of available data at the
time of analysis (May 27th through June 2nd, 2019) as a holdout
prediction dataset (n = 103 observations). The resulting AUC
between observations and predictions of the holdout prediction
dataset is 0.89, sensitivity is 0.82, and specificity is 0.82 (Table 5).
Our prediction objective was to get a probability of high-
risk bloom exceedance, for a given week, using a threshold of
100,000 cyanobacteria cells/mL. As expected, higher exceedance
probabilities are detected in lakes with >100 bloom weeks such
as Lake Apopka located in central Florida (Figure 5).

DISCUSSION

Here we present a hierarchical Bayesian spatio-temporal
modeling approach in R-INLA to estimate the likelihood of high-
risk cyanoHABs in Florida inland waterbodies. Using DIC to
evaluatemodel performance, the full spatio-temporalmodel (M4,
Table 2) was selected as the best model and used to forecast
the likelihood of bloom occurrence across Florida lakes for a
week outside of the dataset, with AUC 0.93 (Table 5). The spatial
random effect (Figure 4) identified residual error attributed to
location that may reflect the influence of an unmeasured or
unmeasurable predictor that varies across the landscape. The
variance of the spatial effect also indicated the variability in
cyanoHAB bloom odds for each lake is high. The distance at
which spatial correlation declines below a meaningful threshold
(0.1) indicates ∼17 km as the inter-lake distance within which
the odds of cyanoHAB can be considered correlated. Because
our model did not include any measures of nutrient input or
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FIGURE 3 | Mean AR (1) temporal trend corresponding to week of year across all study years and lakes. The shaded area represents the 95% credible interval.

land use, we believe that it is likely the spatial component of
the model is related to land cover and its resultant effect on
eutrophication. This landscape effect varies at long spatial scales
and is known to have a significant effect on the likelihood of
cyanoHABs (Doubek et al., 2015; Marion et al., 2017). Another
related possibility is that the spatial correlation represents the
distance between watersheds experiencing similar environmental
stressors such as nutrient input, making the lakes fed by those
watersheds more similar in terms of cyanoHAB risk.

Water surface temperature had a positive effect on cyanoHAB
risk, an association that has been observed in many studies to
date (Paerl and Huisman, 2008; Wynne et al., 2010; Kosten
et al., 2012; Taranu et al., 2012; Beaulieu et al., 2013; Cha et al.,
2017). Several mechanisms operate concurrently to the advantage
of cyanobacteria at higher water temperatures. The optimal
temperature for cyanobacterial growth and photosynthesis is
above 20◦C, with some species experiencing optimal growth
at 30◦C or higher (Konopka and Brock, 1978; Lürling et al.,
2013; Giannuzzi et al., 2016; Melina Celeste et al., 2017). At
high temperatures cyanobacteria have a competitive advantage
over green algae, diatoms, and other phytoplankton which favors
cyanobacteria dominance. However, some common species of
cyanoHAB in the genus Microcystis have been found to produce
fewer toxins at high temperatures which may mitigate health
risks (Runnegar et al., 1983; Rapala et al., 1997; Melina Celeste
et al., 2017), although these findings are disputed (Lehman et al.,
2008; Davis et al., 2009). Bloom-forming cyanobacteria contain
many cylindrical gas vacuoles that impart buoyancy (Walsby,
1977). This buoyancy causes the cells to float to the surface

where they are exposed to more light and can outcompete
sinking phytoplankton, and there is evidence that increased water
temperature improves the ability of cyanobacteria to stay afloat
(Kromkamp et al., 1988; Huisman et al., 2004).

Contrary to our expectations, mean lake depth (DMEAN) was
a strongly positive correlate of cyanoHAB bloom odds. Our prior
belief was that a shallower lake would have a diminished capacity
to buffer changes in nutrient input, leading to a heightened risk
for HAB blooms. However, in our data this does not seem to be
the case. The lakes in our dataset, and Florida lakes in general,
are shallow. The average lake in our study had a mean lake depth
of only 0.75m, and the deepest lake had a mean depth of 3.68m.
To contextualize the large positive coefficient of the lake depth
effect, we note that an increase in mean depth of 0.75m, the unit
of increase in our model, represents a doubling in depth for the
average lake. Satellite penetration in the red spectrum is 2m or
less in oligotrophic waters (Mishra et al., 2005). Given the focus of
our model on cyanoHABs at the>100,000 cells/ml threshold, the
penetration depth is likely only a few centimeters. It is possible
that optically shallow water could cause bottom reflectance or
benthic cyanobacteria could cause artifacts. However, Coffer et al.
(2020) found the satellite derived phenology of cyanobacteria in
Florida followed well-accepted ecological trends and a few lakes
that had a peak of biomass in the winter were supported by
independent field observations.

Classic models of lake eutrophication posit a strong effect
of mixing between the epilimnion and hypolimnion (O’Melia,
1972; Imboden, 1974). Deep lakes are considered to have a
greater inertia with respect to changing nutrient conditions;
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FIGURE 4 | Mean of spatial random effect mapped across lakes in Florida. Lakes with relatively higher log-odds of a high-risk cyanobacteria bloom are indicated with

warm colors, while cool colors represent lakes with relatively lower log-odds of high-risk blooms.

FIGURE 5 | Map of mean (A) and standard deviation (B) of probability of exceedance of high-risk bloom event for the week of May 27, 2019 through June 2, 2019.

Imboden called this effect a “memory” and found that deep lakes
take longer to change from oligotrophy to eutrophy and vice-
versa. Shallow lakes do not form the distinctive temperature-
delineated layers of a stratified lake and are polymictic:
experiencing constant mixing by wind and temperature that

leaves the water at a generally homogenous state. This mixing
leads to resuspension of nutrients from sediment a higher
nutrient load in the water column (Taranu and Gregory-
Eaves, 2008; Liu et al., 2012). The lakes in our study are not
deep enough to stratify and should be considered polymictic.
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Because all of our lakes are shallow, nutrients cannot sequester
within the hypolimnion and sediment and the association
between depth and oligotrophy found in stratified lakes does
not apply.

In a study of cyanobacteria growth in shallow lakes (<6m),
Kosten et al. found similar results to our study, with water
temperature predicting a higher proportion of cyanobacteria
among the phytoplankton community (Kosten et al., 2012). A
study of the National Lake Assessment dataset, containing 1,147
lakes and spanning the continental U.S., found that when lakes
were divided into shallow (<6m) or deep, their models were
less able to predict cyanobacterial concentrations in the shallow
lakes (Beaulieu et al., 2013). Associations of HAB volume with
nitrogen content and water temperature were consistent across
all lakes, but there was a decrease of two-thirds in variation
explained when lakes were shallow. A national-scale study in the
United Kingdom that investigated both shallow and deep lakes
suggested that water residence time, a correlate of depth, was
a positive predictor of HAB biovolume, especially in lakes with
significant opacity (Carvalho et al., 2011). An in-depth study
of a shallow (mean depth 1.2m), warm, polymictic lake in the
Mediterranean that was substantially similar to the lakes in our
study found that water residence time was a strong predictor of
harmful algae concentration (Romo et al., 2013). We propose
that in our study, mean lake depth is acting as a correlate of
water residence time, explaining its positive association with
HAB blooms.

Air temperature had a negative effect on cyanoHAB risk, a
result that seems counterintuitive when considered alongside
the positive effect of water surface temperature. Our model
suggests that cyanoHAB risk is heightened when air temperature
is lower relative to surface water temperature, a condition that
can occur in shallow lakes during the transition from summer
to fall, or when lake temperature is artificially increased by
impervious surface runoff or industrial input (Sabouri et al.,
2013). In our dataset, the peak mean water temperature was
significantly higher than the peak mean air temperature observed
(36.5 and 30.3◦C, respectively). The higher specific heat of water
is responsible for this effect, with lakes serving as a heat sink that
can persist after air temperature has cooled.

The predictive accuracy of our model on a holdout dataset
was high, with ∼82% of held-out observations for the week
of May 27, 2019 predicted correctly. Accuracy was also good
in our validation dataset, with 88% of observations correctly
classified. The accuracy of our simple model is encouraging
but has a few caveats. This model is not expected to remain
accurate for more than 2 weeks into the future, because
wide spatial coverage meteorological estimates become less
reliable beyond that time scale. Additionally, the autocorrelation
parameter, or α, was 0.9, indicating that the change in
the temporal component of risk of a cyanoHAB is strongly
related to the past week’s bloom conditions. While this
temporal component was not as significant a contribution
to model fit as the spatial component that considered lake
location (Table 2), we caution that interpretation of our model’s
accuracy should consider that due to system inertia, a fairly
accurate prediction of near-future bloom conditions can be

made by simply extrapolating that current conditions will
continue unchanged.

Although we have developed a reliable model for forecasting
cyanoHAB odds for lakes in central Florida lakes for a week
of interest outside of the modeled dataset, there are several
limitations of this study. While remote sensing provides a
continuous cyanoHAB data source, the relatively coarse 300m
sensor resolution, presence of cloud cover, and occasional
missing data due to waterbody misclassification, limits our
predictive ability in smaller inland waterbodies. Additional
satellite limitations are reviewed in Coffer et al. (2020) and
Clark et al. (2017). Future work could assess the applicability of
higher resolution sensors such as the European Commission’s
Copernicus Sentinel-2. Our covariates were not all available
at the same spatial scale and had to be resampled to the
same 300m resolution as our lake imagery. As a result, lake
areas with highly irregular or elongated narrow reaches may be
underrepresented vs. lake areas with broader widths. It is possible
that CyanoHAB was present in a specific part of the lake, but
satellite data didn’t capture it because of land proximity. This
study incorporated several environmental covariates known to
be associated with cyanoHAB occurrence; however, our results
showed a strong spatially varying effect, the cause of which
is undetermined in the present analysis. Future studies could
explore additional environmental determinants such as nutrient
loadings. Nutrients certainly play a role related to cyanoHABs
and nutrient eutrophication is a “wicked” problem as defined
by Thornton et al. (2013), meaning that the issue is convoluted
and precludes a simple solution. However, modeling nutrient
transport and availability is complex and system specific, with
model validation data lacking for most systems. This complexity,
specificity and lack of data limits the ability to scale such models
across spatial and temporal scales as described in Soranno et al.
(2015). Therefore, we limited the model to data that would be
readily available and most relevant to cyanoHAB biomass.

In the present study we applied R-INLA for the purpose
of mapping/predicting exceedance probability of high-risk
cyanoHABs at the level of a whole lake. Future work will apply
the spatial-temporal modeling approach at the sub-lake level,
particularly in large systems with greater geographic bloom
variability such as Lake Okeechobee in South Florida.
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