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Monitoring Droughts From GRACE

Bramha Dutt Vishwakarma*

School of Geographical Sciences, University of Bristol, Bristol, United Kingdom

With ongoing climate change, we are staring at possibly longer andmore severe droughts

in the future. Therefore, monitoring and understanding duration and intensity of droughts,

and how are they evolving in space and time is imperative for global socio-economic

security. Satellite remote sensing has helped us a lot in this endeavor, but most of the

satellite missions observe only near-surface properties of the Earth. A recent geodetic

satellite mission, GRACE, measured the water storage change both on and beneath the

surface, which makes it unique and valuable for drought research. This novel dataset

comes with unique problems and characteristics that we should acknowledge before

using it. In this perspective article, I elucidate important characteristics of various available

GRACE products that are important for drought research. I also discuss limitations of

GRACE mission that one should be aware of, and finally I shed some light on latest

developments in GRACE data processing that may open numerous possibilities in

near future.
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1. INTRODUCTION

Drought is one of the extremes of water availability and one of the biggest threat to sustainable
socio-economic development of a region (Nagarajan, 2010; West et al., 2019). In 2019, a quarter
of the world’s population was reported under severe water stress by water resource institute, and
by 2050 this fraction is predicted to double itself (Schlosser et al., 2014). These future predictions
are based on models, and they are only as good as our contemporary understanding of the
spatiotemporal characteristics of droughts. Therefore, numerous research groups are investigating
ongoing and past drought events to obtain novel insights.

Droughts can be classified into four categories that are linked to each other (Mishra and Singh,
2010; Nagarajan, 2010; West et al., 2019). Meteorological drought is driven by a dry weather,
usually triggered by less than normal precipitation, high temperature, wind, and sunshine duration.
This condition over a prolonged period leads to a drop in soil moisture that cannot support the
vegetation, triggering agricultural drought. This usually leads to exploitation of water resources
on and beneath the surface of the Earth, which when combined with low runoff and recharge
announces the arrival of hydrological drought. Another category is socio-economic drought,
defined as the gap between supply and demand of water, which can be a consequence of agricultural
or hydrological drought for an agriculture based economy, or due to an unsustainable increase in
water demand due to rise in population or changes in lifestyle. Furthermore, onset of drought, its
duration, and its impact varies from region to region based on its climate zone, human intervention,
socio-economic structure, and impact of climate change and natural variability on the regional
water availability (Van Loon et al., 2016). Therefore, monitoring, modeling, and mitigating drought
at continental to global scales are few of the biggest challenges in drought research.

Different type of droughts are characterized by different hydrological variables, for example,
Meteorological drought is assessed by precipitation, hydrological drought by runoff or reservoir
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level, and agricultural drought by soil moisture (West
et al., 2019). Therefore, to study droughts we require long
uninterrupted hydrological observations. Recording and sharing
in-situ observations require a strong political will and financial
commitment, which is missing. A partial solution to this
problem has been offered by satellite remote sensing, but it
brings several other challenges with it. For example, remote
sensing observations and required hydrological variable are not
the same, and requires various assumptions to approximate
the latter from the former (e.g., altimetry records river height
changes which can then be related to runoff) (Tourian et al.,
2013). Another issue is the difference in the spatio-temporal
scales of remote sensing observations and the hydrological
variable of interest. Therefore, how to use remote sensing
observations efficiently for drought research is one of the most
important challenges being tackled at various fronts (Liu Q.
et al., 2020).

Nevertheless, fueled by decades of scientific developments,
several satellite based products are being used. For example,
soil moisture time series from SMOS, SMAP, and Sentinel 1,
precipitation products from TRMM and GPM missions, snow
volume from MODIS, and Lansat based NDVI have been
used to study droughts (West et al., 2019; Modanesi et al.,
2020). These products were able to provide great insights into
meteorological and agricultural drought, but struggled with
hydrological drought because of their ability to sense surface
processes only. Gravity Recovery And Climate Experiment
(GRACE), a geodetic satellite mission launched in 2002, was the
first remote sensing platform to provide an estimate of ground
water storage change as well (Wouters et al., 2014; Frappart and
Ramillien, 2018; Tapley et al., 2019). Therefore, GRACE attracted
a lot of interest from the hydrology community to map extremes
of water availability (Ramillien et al., 2008; Houborg et al., 2012;
Long et al., 2013; Vishwakarma et al., 2013; Thomas et al., 2014;
Forootan et al., 2019; Kvas et al., 2019; Liu X. et al., 2020).
However, complicated geo-physical inversion behind GRACE
products, its post-processing, its debated spatial resolution, a
short GRACE time-series, and its disagreement with hydrology
models, have prevented us from taping the full potential of
GRACE mission.

2. AN OVERVIEW OF AVAILABLE GRACE

PRODUCTS

GRACE mission consisted of two satellite launched in the same
near-polar orbit, one following the other with a distance of 220
km between them, at an altitude of 500 km from the surface of
the Earth. By measuring changes in the inter-satellite distance
with micrometer precision, we are able to map the gravity field
of the Earth, which varies in space due to Earth’s interior density
distribution and topography, and also varies in time due to
mass redistribution (Ramillien et al., 2008; Wouters et al., 2014;
Tapley et al., 2019). Water being adequately dense and mobile,
constitutes the majority of the time-variable signal in GRACE.
The second largest signal comes from the visco-elastic response
of the solid Earth to past glacial cycles, known as Glacial Isostatic

Adjustment (GIA) (Wouters et al., 2014; Peltier et al., 2015).
Various GRACE products are freely available to users. We can
categorize them into:

1. Level 2, Spherical Harmonic fields: these are dimensionless
spherical harmonic coefficients truncated up to a maximum
degree, for example lmax = 96. They are made available
by science data centers: GFZ, CSR, and JPL (Dahle et al.,
2018; Save, 2018). These coefficients, representing full gravity
field of the Earth, must be reduced to residual coefficients by
subtracting a mean gravity field. To separate hydrology from
GIA, a forward model based GIA trends are also subtracted.
Then less accurate low degree coefficients (degree 1, C2,0,C3,0)
are replaced by those estimated from other sources Then
using the relations in Wahr et al. (1998), we can obtain
global water mass change estimates in terms of Equivalent
Water Height (EWH); an imaginary uniform water (density
= 1000 kg/m3) layer of thickness h over a grid cell, which
represents the Total Water Storage (TWS) anomaly in that
region. It should be pointed out that level 2 GRACE spherical
harmonic fields are noisy, hence filtering is essential to extract
meaningful information (Swenson and Wahr, 2006; Kusche,
2007; Rangelova et al., 2007). Filtering is known to damage
signal amplitude and spatial resolution, therefore, one must
apply a correction method to obtain more accurate results
(Klees et al., 2007; Vishwakarma et al., 2016, 2017). Since, there
are a number of GIA models, filters and corrections method
that one can choose from, the final output can vary depending
on user’s choice.

2. Level 3, gridded EWH fields: these are processed level 2 data
with a specific GIA model, filter and correction method. Their
spatial resolution and accuracy is dependent on the filter and
correction method used (Vishwakarma et al., 2018). They are
available from various data centers in a ready to use format
that requires minimum effort on the user side, but offers
minimum flexibility.

3. Mascons: they are equivalent to level 3 products, but with
a different processing strategy. They predict mass changes
(in terms of EWH) in concentrated blocks on the surface
of the Earth, which would lead to the observed satellite
orbit and inter-satellite range rate (Luthcke et al., 2013). The
method uses a-prior signal information, physical boundary
assumptions (such as continents and oceans), and GRACE
variance co-variance information to solve a regularized least
squares problem (Luthcke et al., 2013; Watkins et al., 2015;
Save et al., 2016). There is no need for an additional filtering
and the method claims to tackle signal leakage better than
other approaches. These products are available from three
centers: JPL, CSR, and GSFC, at a grid sampling of ≤ 1◦.
However, it should be made clear that GRACE cannot resolve
signals at spatial scales smaller than ≈ 3◦ on the surface of
the Earth (Luthcke et al., 2013; Watkins et al., 2015; Devaraju
and Sneeuw, 2016; Vishwakarma, 2017; Vishwakarma et al.,
2018; Tapley et al., 2019). These high resolution products
are interpolated products sampled at ≤ 1◦ grid, and should
be aggregated to capture mass change signal accurately. In
other words, Mascon products should not be used at single
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grid cell scale. If we want to observe mass change at higher
resolution, the satellites should be placed in a lower altitude,
which will affect the mission’s life-time due to atmospheric
drag (Wouters et al., 2014).

4. Level 4 time series: there are several institutes that provide
GRACE time series for a region/catchment. The philosophy
behind providing these products is that GRACE is more
accurate and meaningful at catchment scale (Vishwakarma,
2017). Therefore, researchers aggregate GRACE EWH
estimates over a minimum spatial area before carrying out
hydrological investigations. The accuracy of GRACE products
depend on the post-processing method employed, but as a
general rule it decreases with the catchment area (Long et al.,
2015; Vishwakarma et al., 2018).

The EWH fields from GRACE represents the total hydrological
mass change in a region, also referred to as the TWS anomaly that
is a sum of change in groundwater, surface water, soil moisture,
snow mass, and canopy water. Therefore, estimating change
in one component is not simple, and we require model-based
estimates or in-situ observations of other components (Long
et al., 2013; Sun, 2013; Li B. et al., 2019). Sincemodel uncertainties
vary in space and time and in situ information is scarce, using
GRACE for hydrological studies concerning one component of
TWS is a challenge (Zaitchik et al., 2008; Sun, 2013; Sneeuw et al.,
2014).

3. GRACE BASED DROUGHT INDICES

GRACE is sensitive to a change in TWS that includes
groundwater, soil moisture, and surface water, which means
it should be able to detect hydrological drought (including
groundwater drought) and severe agricultural drought
(Ramillien et al., 2008; Thomas et al., 2014; Frappart and
Ramillien, 2018; Li B. et al., 2019). This motivated researchers to
develop GRACE based drought indicators, such as Total Storage
Deficit Index (TSDI), GRACE-drought severity index (DSI),
water storage deficit index (WSDI), GRACE-based Hydrological
Drought Index (GHDI), and so on. Most of these indices are
derived by following the concept behind conventional drought
indices (such as PDSI, SPI, SPEI, SMDI) (Zhao et al., 2017;
Hosseini-Moghari et al., 2019). For example, Yirdaw et al. (2008)
proposed TSDI, written as

TSDI = pTSDk−1 + qTSDk, where (1)

TSD =
100× (TWSi,j − TWSj)

max(TWSj)−min(TWSj)
; p = 1−

m

m+ b
, and

q =
c

m+ b
. (2)

Where TWSi,j is the TWS from GRACE for year i and month j,

TWSj is the mean TWS value for month j. p and q parameters are
obtained from cumulative TSD time series. c is the TSDI value
obtained from the best-fit line for the period of dryness, m is the

slope and b is the intercept of the cumulative TSD time series.
Zhao et al. (2017) introduced GRACE-DSI, defined as

GDSI =
TWSi,j − TWSj

σj
, (3)

where σj is the standard deviation for month j. GRACE-
DSI normalizes the difference between TWS for a time epoch
and mean TWS for the corresponding month, with standard
deviation of TWS for thatmonth. Similarly there isWater Storage
Deficit Index (WSDI) from Sun et al. (2018) :

WSDI =
WSD− µ

σ
, whereWSD = TWSi,j − TWSj. (4)

Here µ is the standard deviation of WSD. Another index called
total water deficit is written as Leblanc et al. (2009):

D(t) = [TWS(t0)− TWS(t)] I, where

I =

{

1 if TWS(t) ≤ TWS(t0)

0 if TWS(t) > TWS(t0).
(5)

Here TWS(t) is the TWS anomaly at current epoch and TWS(t0)
is the TWS anomaly observed at time t0 when a drought
threshold was observed. The concept behind these indices relies
on the assumption that the short GRACE time series is able to
capture the climatology signal represented by TWSj, which is
not true. Therefore, efficacy of GRACE based drought indicators
has been questioned. Nevertheless, they have been compared
with traditional drought indices and over many regions they
have shown exciting potential (Zhao et al., 2017). A recent study
showed that GRACE based drought indices when computed with
detrended GRACE time series can help us capture meteorological
and agricultural droughts (Liu X. et al., 2020). The assumption in
this study is that the linear trend is completely anthropogenic,
which can be a reasonable assumption in some cases, and
removing the linear part will help us get rid of the anthropogenic
component and target meteorological and agricultural droughts
due to climatic variability. However, such analysis should be
carried out with caution as decadal climatic variability could
appear to be a linear trend in a short time series (Parker et al.,
2007), such as from GRACE.

4. CHALLENGES AND MOVING FORWARD

Drought is a complex phenomenon and its signature can be
seen in various hydrological variables. Since the water availability
varies in space and in time, using different hydrological
observations in a robust framework could help us characterize
drought. This is the reason, more than 100 drought indices
have been proposed till now (Zargar et al., 2011). Each one
of them have been shown to characterize/analyze drought with
excellent efficacy for a case study, but their global performance is
questioned from time to time. GRACE added a unique dimension
to our observational capability by monitoring TWS anomaly,
which led to several GRACE based drought indices. There are a
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few things to note, (a) GRACE has a coarse spatial resolution and
it is more accurate at catchment scale, which means large scale
droughts are more likely to be efficiently studied using GRACE.
(b) Mascons and Level 3 GRACE TWS fields are heavily post-
processed, and based on the method chosen, the output quality
varies. Hence, users should carefully interpret these products. (c)
GRACEwas launched in 2002 and we do not have data for several
months here and there, which means the time series has gaps
and is not long enough (less than 20 years) to compute TWS
climatology, hence, available GRACE based drought index should
be used carefully. (d) The trade-off between temporal resolution
and the spatial resolution of GRACE fields is a big obstacle in
using GRACE for real-time regional applications.

The above mentioned issues with GRACE products are
currently being investigated by researchers, for example, (a)
spatial downscaling of GRACE by assimilating it with other
hydrological observations to produce higher spatial resolution
TWS products (Zaitchik et al., 2008; Miro and Famiglietti, 2018).
(b) With the launch of GRACE Follow On mission, we are
expecting another decade long GRACE data, and several efforts
are going on to reconstruct GRACE TWS for filling the data
gaps and reconstructing TWS prior to 2002 (Humphrey and
Gudmundsson, 2019; Li W. et al., 2019; Li et al., 2020), and (c)
novel daily and weekly GRACE products have been developed
and shown to detect short-lived extreme events, such as floods
(Kvas et al., 2019). Therefore, ongoing improvements will make
GRACE even more effective for drought research. There is no
doubt that GRACE based drought indices are an excellent tool
to study hydrological and agricultural drought, but comparing
them with other traditional drought indices to seek validation
is probably not a right approach. Can we expect a perfect
match between Palmer Drought Severity Index (PDSI) and Soil
Moisture Index (SMI) or between Standardized Precipitation
Index (SPI) and standardized runoff index (SRI)? The answer
is “no” because these indices deal with different variable that
are related to drought differently (Zargar et al., 2011). Hence,
GRACE should be used as an independent or a complementary
indicator for droughts (Zhao et al., 2017).

Using a longer TWS time series for obtaining TWS
climatology should be explored. Existing TWS reconstructions
for period before GRACE, such as from Humphrey and
Gudmundsson (2019), are not useful as they are able to
reconstruct only the inter-annual variability in TWS and

the seasonal part is derived from short GRACE time series
(Humphrey and Gudmundsson, 2019). GRACE can already
tell us about the water mass loss in a period of time (Tapley
et al., 2019), we must create a framework that can use this
information along with other hydro-meteorological observations
and forecasts to predict the probability of drought. This
is challenging because both natural variability and human
intervention are responsible for drought (Van Loon et al., 2016),
and separating their magnitude requires excellent understanding
of: (a) relation between climatic variability and regional
hydrology, (b) how this relation is affected by change in climate
and land use land cover, and (c) anthropogenic response to
dry conditions. Using surface observations alone or relying on
models will only provide us limited insight. GRACE, although
poor in its spatio-temporal resolution, provides us additional
information, i.e., TWS including groundwater storage change,
affected by both natural variability and human interventions
signal. Therefore, carefully integrating GRACEwith other hydro-
climatic observations and models can greatly benefit drought
studies, as was recently shown by Yang et al. (2020). A
few projects (such as EGSIEM and GlobalCDA) have been
undertaken with this objective, but we need more collaborative
efforts between research communities engaged in drought and
GRACE to obtain novel insights into prediction of drought,
assessing its impact on water resources, calculating recovery time,
and predicting its socio-economic cost in a changing climate.
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