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Legionella is an opportunistic waterborne pathogen associated with Legionnaires’

disease and Pontiac fever. Despite improved public awareness, the incidence

of Legionella associated infections has been increasing. Aerosols generated from

engineered potable water systems are a demonstrated cause of both nosocomial and

community-acquired legionellosis. The ecology of Legionella in these systems is complex

with multiple factors impacting their colonization and persistence. Flow dynamics has

been identified as an important factor and stagnation in cooling towers is an accepted

risk for increased Legionella growth; however, less is known about the impact of

flow dynamic on Legionella in potable water systems. This is especially complex due

to the inherent intermittent and variable usage observed within outlets of a potable

water system. This systematic literature review examines the role of fluid dynamics

and stagnation on the colonization and growth of Legionella in potable water systems.

Twenty two of 24 identified studies show a positive association between stagnation

zones and increased colonization of Legionella. These zones included dead legs, dead

ends, storage tanks, and obstructed water flow (such as intermittent usage or flow

restriction). Prolonged stagnation in building plumbing systems also deteriorates the

quality of thermally or chemically treated potable water. This stimulates the colonization

of Legionella established biofilms. Such biofilms are intrinsically resistant to disinfection

procedures and accelerate the rate of decay of chemical disinfectants. Sub-lethal doses

of disinfectants and the presence of protozoan hosts in stationary water promote

generation of viable but non-culturable Legionella cells. This results in false negatives

in surveillance methods that use culture methodology. In conclusion, elimination of

temporal and permanent stagnation points can improve the quality of potable water,

efficacy of disinfectants, and reduce the risk of legionellosis. Current guidelines and water

safety plans recognize the risks associated with permanent stagnation point (dead ends

and dead legs); however, there is a need for greater emphasis on controlling temporal

stagnation arising from intermittent usage.

Keywords: Legionnaires’ disease, legionellosis, building, plumbing, water stagnation, flow dynamics, dead legs,

dead ends
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INTRODUCTION

The importance of Legionella as an opportunistic waterborne
intracellular human pathogen is well-documented (Berjeaud
et al., 2016). It is frequently associated with nosocomial
and community-acquired legionellosis (Pontiac fever and
Legionnaires’ disease [LD]) in immunocompromised
and immunosuppressed individuals (Fields et al., 2002).
Legionella is ubiquitously present in constructed water
systems. It is frequently detected in domestic and
hospital water systems, cooling towers, humidifiers,
fountains, and pools, (Bartram et al., 2007; Fitzhenry et al.,
2017).

Despite recent advancements in disease surveillance
and management systems, the legionellosis incidence and
outbreak rate remains high. In the USA, there were 290
reported outbreaks of legionellosis from 2009 to 2017
(Centers for Disease Control Prevention, 2020) and in
2017, 28 outbreaks were reported in nine European Union
countries. In Europe, the legionellosis notification rate also
increased from 12 cases/million in 2013 to 18 cases/million in
2017 (European Centre for Disease Prevention and Control,
2019).

According to the USA Centers for Disease Control and
Prevention, from 2013 to 2015 ∼67% potable waterborne
outbreaks were caused by Legionella pneumophila (Shah et al.,
2018). Plumbing networks and potable water distribution
systems of hotels, healthcare facilities, and residential
buildings were identified as Legionella hotspots (Benedict
et al., 2017). Clearly, understanding the environmental factors
that affect the survival and growth of Legionella in potable
water is essential to inform improved management and
control strategies.

The growth of Legionella in potable water systems is primarily
associated with biofilms and the free-living amoeba hosts feeding
on biofilms (Ashbolt, 2015). This provides Legionella protection
from severe physiochemical stresses (Thomas et al., 2004; Dupuy
et al., 2011). The environmental conditions that influence the
formation of biofilms are essential for the control of Legionella.
These include stagnation and the presence of plumbing dead legs
and dead ends that provide favorable conditions for microbial
growth (Bartram et al., 2007). Dead legs (isolated pipes with
limited or no water flow) and dead ends (redundant capped
pipe which completely obstruct water flow) are well-established
as factors contributing to stagnation (National Academies of
Sciences Engineering Medicine, 2019). Stagnation or areas with
inappropriate hydraulic dynamics are likely to result in the
failure of disinfection procedures (Ling et al., 2018). Due
to the complex relationship between different environmental
variables it can be challenging to study role of stagnation in
Legionella growth. This systematic literature review examines
the specific role that water stagnation plays in Legionella
colonization and growth within potable water systems. Studies
on potable water systems including surveillance and laboratory-
based studies that examine the relationship between stagnation
and fluid dynamics on water quality and Legionella colonization
are explored.

MATERIALS AND METHODS

The protocol of this systematic literature review was designed
according to the instructions of the PRISMA statement
(Figure 1). The databases Scopus and Web of Science were
searched for all articles written in English and published
prior to April 2020. In the databases the search terms
(“Legionella pneumophila” OR “L. pneumophila” OR Legionella
OR legionellosis OR “Legionnaires’ disease” OR “Pontiac fever”)
AND (flow∗ OR “dead end∗” OR “dead leg∗” OR “water
circulation” OR “water recirculation” OR “Reynolds number”
OR stagnation OR stagnant OR “stationary water” OR turbid
OR turbidity OR usage∗) AND (plumbing OR pipework OR
pipe OR artificial OR piping OR building OR manufactured OR
engineered OR potable OR manmade∗ OR biofilm OR water)
were applied. Initially, all identified records were combined
and duplicates removed. Subsequently, articles were manually
screened by reading the titles and abstracts and excluding
those that discussed engineering works, bacterial colonization
or biofilms without specifically referring to Legionella. Papers
were also excluded that referred to stagnation in municipal water
supplies as this is a different issue compared with building water
supplies. Finally, the remaining articles were analyzed in full and
excluded if they did not examine or describe the relationship
between Legionella colonization, growth, survival, and water
stagnation, or recirculation in building water systems.

RESULTS

A total of 395 abstracts were obtained from the Web of Science
and Scopus. After applying the described inclusion and exclusion
criteria (as presented in Figure 1), 24 research articles describing
a relationship between water stagnation and Legionella or L.
pneumophila survival and colonization were identified as suitable
for inclusion in this review (Table 1).

Study Sites
Seventeen of 24 studies (Table 1) investigated hot or cold
water storage tanks and building water distribution systems;
7/24 studies were in vitro modeling experiments. The majority
of the real-world studies were from investigations of hospital
water systems (12/17) and almost half of these were conducted
in response to a legionellosis outbreak (5/12). Half of the
studies (14/24) discussed the relationship between Legionella
contamination or colonization and permanent stagnation points
(dead ends 6/24, dead legs 8/24). In the majority of studies,
there was limited information provided describing fluid or
water dynamics.

Building and Plumbing System Studies
According toTable 1, L. pneumophila serogroup (sg) 1 frequently
contaminates water and plumbing system of hospitals and
municipal buildings. L. pneumophila sg1 is the most common
serogroup associated with legionellosis. Few studies reported
contamination of other L. pneumophila serotypes (sg2–4, sg2–14,
sg2–16, sg3, sg4, sg6, sg10, and sg10–14) and Legionella species
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FIGURE 1 | Overview of the PRISMA strategy used for selection of articles.

(L. anisa, L. steigerwaltii, L. feelii, L. longbeachae, L. micdadei, and
L. rubrilucens).

Sixteen out of 17 studies examining building plumbing
systems showed a positive association between stagnation

and increased Legionella colonization/persistence. Ten
out of 17 studies of the building plumbing systems
demonstrated that permanent stagnation points (dead
ends 5/17, dead legs 5/17) were positively associated
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TABLE 1 | Relationship between water stagnation and Legionella colonization.

Settings Species/Serogroup/

Sequence type/

Type culture

Comments Geographic

location

References

Building and plumbing system

studies

Hospital hot water storage tanks

(capacity 7,600 L each)

L. pneumophila

sg1

Post nosocomial LD outbreak prevention

measures adopted. Prevention of stagnation in

hot water (45.5–47.5◦C) tanks reduced L.

pneumophila population.

Colorado, USA Ciesielski et al.,

1984

Residential and institutional cold

and hot water distribution system

L. pneumophila

sg1

Stagnation, low hydraulic flow and low chlorine

concentration (0–0.7 mg/L) resulted in L.

pneumophila contamination.

Ohio, USA Voss et al., 1985

Hospital hot water storage tanks

(capacity 10,000 L) and

distribution system

L. pneumophila

sg1 (0.7%), sg6

(87%), and sg10

(7%)

L. longbeachae

(4.3%)

L. micdadei (1.3%)

Post nosocomial legionellosis infections in

immunocompromised patients control

measures adopted. Increase in flow rate,

maintaining temperature at 60◦C and

elimination of dead ends reduced bacterial

population in hot water.

Brussels, Belgium Ezzeddine et al.,

1989

Hospital hot and cold water

storage distribution system

L. pneumophila

sg1

L. anisa

L. steigerwaltii

L. feelii

Post fatal nosocomial LD outbreak prevention

measures adopted. Removal of fire hydrant

spurs (dead legs) connected to storage tanks

reduced the bacterial contamination.

Glasgow, Scotland Patterson et al.,

1994

Hospital hot water storage

(15,000 L) and distribution system

L. pneumophila

sg1

10 year surveillance program designed to

control nosocomial LD. Circulation of hot water

(>55◦C) identified as the best way to reduce

risk of nosocomial LD.

Jönköping,

Sweden

Darelid et al., 2002

Hospital water storage (capacity

≈ 19,68,000 L) and water (hot

and cold) distribution system

Legionella Removal of dead legs and plumbing system

repair unable to produce any profound effect

on Legionella control. Disinfection of water with

ClO2 (0.3–0.5 mg/L) best way to control

Legionella.

Pennsylvania, USA Sidari et al., 2004

Hospital water distribution system L. pneumophila

sg1

Probing of nosocomial legionellosis infections

demonstrated that dead end pipe source of

Legionella.

Jesenice, Slovenia Tercelj-Zorman

et al., 2004

Hotel, office, school, store, and

assembly hall hot water

distribution system

L. pneumophila

sg1 and sg4

L. anisa

Non-

culturable Legionella

Hot water system of 40% buildings found

contaminated with Legionella. Buildings with

central hot water storage system (66.7%)

showed higher prevalence of Legionella than

buildings with central hot water circulation

system (38.5%) or local instantaneous hot

water production system (20%).

Osaka, Japan Edagawa et al.,

2008

Hospital hot water distribution

system

L. pneumophila

sg1 (18.8%),

sg2–4 (68.3%),

and other sg

(12.9%)

2 year hyperchlorination, regular maintenance

of boiler and storage tanks, replacement of

showerheads and increase in boiler outlet

temperature (60◦C) were unable to eliminate

Legionella contamination for longer period of

time. Dead legs suspected as reason of

recolonization of Legionella in hot water

system. High temperature (50–60◦C), ClO2

(0.2–0.7 mg/L) disinfection and removal of

dead legs reduced Legionella contamination.

Milan, Italy Tesauro et al.,

2010

Nursing home hot and cold water

distribution system

L. pneumophila

sg1 (ST23)

Probing of nosocomial legionellosis outbreak

demonstrated that closed pipes and

disturbance in water flow sites promoted

bacterial contamination.

Ljubljana, Slovenia Trop Skaza et al.,

2012

Hospital hot water distribution

system

L. pneumophila By increasing flow rate (> 0.2 m/s) and

maintaining 55◦C temperature in tap resulted in

93.1–46.1% reduction of L. pneumophila

population within 4 weeks in tap water.

Québec, Canada Boppe et al., 2016

(Continued)
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TABLE 1 | Continued

Settings Species/Serogroup/

Sequence type/

Type culture

Comments Geographic

location

References

Residential building, nursing

home, sports facilities, hotels, and

kitchen water distribution system

Legionella Comprehensive surveillance study

demonstrated that temperature, pipe length

measures, and stagnation are three parameters

to predict Legionella contamination in drinking

waters system. Stagnant hot water (45◦C) can

easily get contaminate with Legionella

(predicted risk 77.2%).

Cologne, Germany Volker et al., 2016

Hospital hot water distribution

system

L. pneumophila

sg3, sg2–4, sg6,

and sg10–14

Installation of time flow taps (flow rate 64–192

L/day) in proximity of dead legs reduced the

bacterial contamination in hot water system

(temperature: 38.2 ± 2.1–46.8 ± 2.1◦C and

free chlorine: 0.05 ± 0.007–0.30 ± 0.01 mg/L).

North western

Tuscany, Italy

Totaro et al., 2018

Hospital hot water distribution

system

L. pneumophila

sg2– 4

(predominant) and

sg1

Dead legs and low-use taps identified as sites

of Legionella colonization in hot water system.

Maintaining temperature at 55◦C and water

recirculation managed bacterial colonization.

Catalonia, Spain Gavalda et al.,

2019

Hospital hot water distribution

system

L. pneumophila

sg1 (ST1 and

ST104)

L. rubrilucens

L. anisa

WTP828 (water team process 828: 34% wt/wt

H2O2 and 0.003% wt/wt Ag+ salt) disinfectant

efficiently reduced bacterial load. Efficacy of

disinfectant increased by plumbing repairs i.e.,

removal of dead ends and management of

water stagnation.

Cotignola, Italy Girolamini et al.,

2019

Hotel water distribution system L. pneumophila

sg1 (ST763)

Probing of LD infections demonstrated that

potable water (temperature: 60.4–122.9◦F,

chlorine: 0.4–2 mg/L, bromine: 2–4 ppm)

system was contaminated due to dead end

and stagnation.

Missouri, USA Ahmed et al., 2019

Hospital hot water distribution

system

L. pneumophila

sg1, sg2–14, and

sg2–16

Installation of time flow taps (flow rate: 192

L/day) in correspondence to dead ends, proper

hot water recirculation (44.8–53.2◦C) and

chlorination (0.23–0.36 mg/L) effectively

reduced the bacterial population within 24

h−15 days.

Pisa, Italy Totaro et al., 2020

In vitro model plumbing studies

Pilot scale domestic water system

of loops and dead legs

L. pneumophila

sg1

Continuous flow of ClO2 (0.5 mg/L) and

chlorine (2.5 mg/L) treated water reduces the

bacterial population in loops, whereas

continuous flow (7 days) of ClO2 treated water

is only effective way to reduce bacterial

population in dead legs. Copper dead legs

possess intrinsic antibacterial property and

inhibits proper colonization and growth of

Legionella.

France Thomas et al.,

2004

Pilot scale domestic water

distribution model

Legionella Regular 20% renewal of dead legs water

unable to produce any impact on Legionella

population. However, regular complete

replacement of dead legs water eliminates

culturable Legionella within 7 days.

France Loret et al., 2005

Stagnant water model L. pneumophila

sg1 (ATCC 33152)

Heat treated (60◦C) stagnant tap water in dead

ends promotes growth of L. pneumophila in

biofilms. Moreover, it also increases the

diversity of eukaryotic microbes in the biofilm.

Belgium Vervaeren et al.,

2006

Plumbing model of three parallel

pipe

L. pneumophila

sg1 and sg6

Bacteria survived and proliferated in turbulent

flowing (Re: 10,000–40,000), laminar flowing

(Re: 355–2000) and stagnant water. Stagnation

did not promote Legionella colonization.

USA Liu et al., 2006

Pilot scale 1 stainless steel hot

water system (volume: 316 L)

L. pneumophila

Legionella

Dead legs (stagnant point) water harbored 1–2

log higher concentration of bacteria than loops

(flow rate 15 L/min)

France Farhat et al., 2010

(Continued)
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TABLE 1 | Continued

Settings Species/Serogroup/

Sequence type/

Type culture

Comments Geographic

location

References

Dual pipe loop system (50 L

volume)

Legionella Biofilm of Legionella and Naegleria fowleri

ATCC 30894 developed in stagnant water

(dead-end, reservoirs, and hydrant source).

USA Biyela et al., 2012

Pilot scale household hot water

system (volume: 71.9 L)

L. pneumophila L. pneumophila population persisted at a high

density in stagnant/low frequency usage taps

than dynamic water. Hot stagnant water

(temperature 51◦C) supported selection of L.

pneumophila (125 times more) than dynamic

hot water.

USA Rhoads et al.,

2015

LD, Legionnaires’ disease; ClO2, Chlorine dioxide gas; wt/wt, weight/weight; Re, Reynolds number.

with increased Legionella contamination. Three studies
presented in Table 1 specifically demonstrated that restricted
water circulation resulted in persistence of Legionella in hospital
hot water storage tanks with capacities of ≈7,600–15,000 L
(Ciesielski et al., 1984; Ezzeddine et al., 1989; Darelid et al., 2002).

Ten building water system studies reported a reduction in
Legionella numbers after increasing water flow rates and removal
of dead legs or dead ends. Some studies specifically used hot
water recirculation (Darelid et al., 2002; Gavalda et al., 2019) or
an increase in the flow rate of hot water (Ezzeddine et al., 1989;
Boppe et al., 2016) to reduce Legionella contamination. In Italy
(2018–2020), installation of time flow taps with 64–192 L/day
flow rate in the vicinity of dead legs and dead ends effectively
reduced L. pneumophila contamination from hot water supplies
of hospitals (Totaro et al., 2018, 2020).

The one study that did not find any positive association
between stagnation and Legionella growth was by Sidari et al.
(2004). This study examined water storage and distribution
in a 437 bed hospital in Pennsylvania after numerous
cases of nosocomial LD over a 5 year period (1994–1999).
Flushing of hot water temporarily reduced the concentration
of Legionella; however, this study found that removal of
dead legs and routine chlorination was not sufficient to
reduce Legionella contamination. Finally, ClO2 (0.3–0.5 mg/L)
treatment for 21 months resulted in complete removal of
Legionella (culture negative).

In vitro Model Plumbing Studies
As with the real-world studies, in 6/7 in vitro model plumbing
studies a positive relationship between water stagnation and
Legionella colonization was identified (Table 1). Several model
systems demonstrated that stagnation promoted genesis of stable
Legionella–eukaryotic microbe biofilms (Vervaeren et al., 2006;
Biyela et al., 2012). Farhat et al. (2010) constructed a pilot
scale hot water system consisting of both dynamic water loops
(flow rate: 15 L/min) and dead leg stagnation areas. They
estimated the Legionella concentration (using culture, qPCR,
and epifluorescent microscopic counts) was 1–2 log greater in
stagnant points. Two studies also investigated the role of ClO2

treated water in elimination of Legionella contamination from
dead legs (Thomas et al., 2004; Loret et al., 2005). It was found

that 20% replacement of dead leg water with ClO2 treated water
was not sufficient to completely eliminate culturable Legionella.
However, regular complete replacement of ClO2 treated water
in dead legs was able to eliminate culturable Legionella within
7 days (Loret et al., 2005). Another pilot scale domestic water
model consisting of both dynamic and stagnant water channels
demonstrated that continuous flow of ClO2 treated water for 7
days significantly reduced L. pneumophila from copper dead legs
(Thomas et al., 2004).

The one in situ model study that did not find any positive
association with stagnation and Legionella colonization was
conducted by Liu et al. (2006). This model consisted of three
parallel pipes within a partially open system (5% of water
continuously flowed through the system while 95% of the water
was recirculated). The water temperature was maintained at
24◦C, one pipe had laminar flow (Re: 355–2,000), one turbulent
flow (Re: 10,000–40,000), and one was stagnant. Significantly
higher concentrations of culturable Legionella were recovered
from the biofilm in the pipe with turbulent flow followed by
laminar flow with the lowest Legionella concentrations observed
in the biofilm in the pipe with stagnant flow. However, a
significant difference in Legionella concentrations in biofilm was
observed after 1 week. These concentrations remained static
for the remaining 5 weeks of sampling. The authors attributed
this result to the turbulent flow increasing the mass transfer
of the nutrients and oxygen from the water in the seeding
tank. They also noted that the turbulence created may have
been insufficient to detach the biofilm. There was no significant
difference in planktonic Legionella between any of the treatments.
This study concluded that intermittently used pipe work (dead
legs) sustained aerobic microbial populations than dead ends
(where nutrient depletion is more likely).

DISCUSSION

Legionella is a typical premise plumbing pathogen that can
tolerate disinfectants, develop biofilms, survive in waterborne
protozoa, and thrive in low levels of nutrients (Fields et al.,
2002). Prolonged water stagnation can result in accumulation of
nutrients and compromises disinfection, promoting colonization
of premise plumbing pathogens in potable water systems
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(Gauthier et al., 1999; Rhoads et al., 2016; Ling et al., 2018; Xu
et al., 2018).

Influence of Water Stagnation on Bacterial
Colonization
Microbial ecology of potable water is very complex. From water
source to point of use, the varying environmental conditions
modulate growth and composition of microbial communities.
In building plumbing systems, water can stagnate permanently
or temporarily (Prévost et al., 1997). Dead ends permanently
stagnate water (Tercelj-Zorman et al., 2004); whereas, water
storage tanks and temporal water usage can result in intermittent
stagnation (Peter and Routledge, 2018). Prior to consumption,
water can stagnate from a few hours to weeks in a building piping
system (Manuel et al., 2009). This may result in the deterioration
of water quality, and promote accumulation of biomass thereby
increasing the concentration of intact and cultivable cells.

Temporary Stagnation
Water in municipal distribution pipelines rarely gets obstructed.
As it enters domestic building plumbing systems it stagnates and
changes the diversity of microbial communities (Pepper et al.,
2004). It has been observed that overnight stagnation resulted in
a 4 to 580-fold increase in microbial load (using heterotrophic
plate counts), a 2 to 3-fold increase in total cell concentration
(using flow cytometry), and a 2 to 8-fold increase in microbial
activity (ATP analysis) (Lautenschlager et al., 2010). This was
supported by a study which showed that a 2 week stagnation of a
domestic buildings plumbing system resulted in a 2 log increase
in microbial load (using flow cytometry) (Lipphaus et al., 2014).

Building design also impacts on stagnation and microbial
water quality. A recent study demonstrated that water from
the plumbing system of a net-zero energy residential building
contained 5 log higher amount of bacterial 16S rDNA (6.46
× 107 gene unit/mL) and Legionella 16S rDNA (8.91 × 104

gene copies/mL) compared with a typical residential building
plumbing system (400 gene unit/mL and 100–2.3 × 103 gene
copies/mL, respectively). This variation, due to building structure
and design, could be attributed to increased stagnation prior
to consumption as the average stagnation time for a net-
zero energy residential building is 2.7 days compared with 1
day in a typical residential building (Rhoads et al., 2016). In
vitro green building hot water plumbing model studies also
suggested limited water flushing and inadequate temperature
(51◦C) support colonization of Legionella and host protozoa
(Rhoads et al., 2015). In conclusion, stagnation and aging of
water in plumbing system of green energy buildings resulted in
persistence of microbial contamination.

Permanent Stagnation
Dead legs and dead ends have been implicated in several
nosocomial outbreaks of LD (Patterson et al., 1994; Tercelj-
Zorman et al., 2004; Bartley et al., 2016). These permanent
stagnation points should be avoided or managed during building
construction or modifications (Bartram et al., 2007). However, it
is impractical to remove them all. Recently, two studies of Italian
hospitals demonstrated that installation of time flow taps (flow

rate 64–192 L/day) in the vicinity of dead legs was successful in
reducing L. pneumophila contamination in the hot water system
(Totaro et al., 2018, 2020). In the first study, L. pneumophila
from various serogroups including sg3, sg2–4, sg6, and sg10–14,
with concentrations ranging from 1 × 102 to 1.3 × 105 CFU/L,
was present in hospital hot water (temperature: 38.2 ± 2.1–46.8
± 2.1◦C and free chlorine: 0.05 ± 0.007–0.30 ± 0.01 mg/L).
Instead of removing dead legs, time flow taps were installed in the
outlet closest to each identified dead leg. This strategy successfully
eliminated all culturable L. pneumophila (Totaro et al., 2018). In
the second study, it was found that within 15 days of installation
of time flow taps (flow rates 192 L/day) in the proximity of dead
ends, L. pneumophila sg1, sg2–14, and sg2–16 contamination in
hospital hot water (temperature: 44.8–53.2◦C and free chlorine:
0.23–0.36mg/L) was reduced from 2× 102 to 1.4× 105 CFU/L to
no culturability (Totaro et al., 2020). These studies demonstrate
that reducing temporary stagnation and increasing flow, even in
the presence of permanent stagnation points, reduces the risk of
Legionella contamination.

Several model studies have explored the impact of permanent
stagnation on Legionella colonization. In a pilot scale model,
bacterial biofilms in dead legs (pre-treatment population density
107 CFU/L and 108 genomic unit/L) survived thermal shock
treatment and promoted rapid recolonization within 48 h (Farhat
et al., 2010). Thus, permanent stagnation sites act as a reservoir
of Legionella biofilms that play an important role in re-
contamination of water.

Water Stagnation and Failure of
Disinfection Procedures
The accelerated decay of residual disinfectant significantly
increases the risk of LD (Voss et al., 1985). Prolonged
water stagnation, microbial communities, and organic nutrients
accelerate the decay of disinfectants (Rhoads et al., 2016; Ling
et al., 2018; Xu et al., 2018). According to the US CDC, from
2000 to 2014 70% of LD outbreaks were due to inadequate
disinfectant concentrations in water supplies (Garrison et al.,
2016). Currently in the USA, six disinfection procedures: Cu–
Ag ionization, chlorine, chlorine dioxide, monochloramine,
ozonisation, and ultraviolet disinfection, are used to control
Legionella (Environmental Protection Agency, 2016b). In the
USA, the concentration of chemical disinfectant is maintained
in 95% potable water delivered to consumers (Environmental
Protection Agency, 2016a). In studies from Austria, Germany,
Netherlands, and Switzerland, the concentration of residual
disinfectant in potable water (delivered to consumers) is not
maintained (Rosario-Ortiz et al., 2016).

Decay of Disinfectant
Different chemical disinfectants are widely used to disinfectant
potable water supplies (Pontius, 1990; Kim et al., 2002;
World Health Organization, 2004). The residual disinfectant
concentration in treated water does not remain constant and
it gradually decreases within building plumbing systems. This
continuous process of decay may result in complete degradation
of chemical disinfectants, thereby increasing the chances of
persistence of microbial contamination in building plumbing
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systems (Vieira et al., 2004). Rates of decay have been associated
with temporary or permanent stagnation, aging of plumbing
systems, nature of plumbing material, and microbial biomass
(Vieira et al., 2004; Patrick et al., 2012; Ling et al., 2018). Goyal
and Patel (2015) reported continuous temporal stagnation in
storage tanks for 22 h decreased residual chlorine concentration
(from 0.2 to ∼0.12 mg/L) in domestic buildings. Similarly,
Barbeau et al. (2005) reported that 24 h of temporary stagnation
decreased chlorine content of water (from 0.6 to ∼0.3 mg/L
in cement line ductile and 0.4–0.05 mg/L in gray cast iron
pipe dead end) and increased the microbial count. Galvin
(2011) demonstrated that the lower flow velocity observed in
dead ends can result in a decrease in concentration of both
chlorine and chloramine within 200 h. Laboratory model based
experiments have also demonstrated that an increase in residence
time of water results in decreased concentrations of chlorine,
chloramine, and ozone and increased microbial contamination
(Clark et al., 1994). Another model system showed that complete
renewal of ClO2 (0.5 mg/L) disinfected water in dead legs
eliminated culturable Legionella (Loret et al., 2005).

Persistence of Intrinsically Disinfectant Resistant

Legionella

Intrinsic resistance is a natural tolerance and resistance
attributed to Legionella against physical and chemical
water treatments (Steinert et al., 1998; Cooper and Hanlon,
2010). Biofilm in areas of stagnation within plumbing
systems may harbor resistant populations and act as a
continuous source of microbial contamination (Bartley
et al., 2016). Studies have shown that currently available
water disinfection methods (i.e., chlorine, chlorine dioxide,
chloramines, hydrogen peroxide, ozone, copper, and silver
ions) are only successful in reducing or eliminating Legionella
populations transiently. Sidari et al. (2004) and Totaro et al.
(2018) (see Table 1) demonstrated the inability of chlorine
to eliminate all culturable Legionella. According to Totaro
et al. (2018), circulation of hot chlorinated water in dead legs
eliminated all chlorine sensitive culturable L. pneumophila
sg2–4 and sg10–14 serotypes, though chlorine resistant and
thermostable L. pneumophila sg3 and sg6 serotypes persisted in
low concentrations.

A study conducted in a century old hospital in Italy found
that continuous hyperchlorination (0.5–1 mg/L) for 5 years was
not sufficient to completely eliminate Legionella contamination.
Multiple factors including outdated piping, dead legs, improper
water circulation and corrosion of plumbing materials were
proposed as causes of Legionella persistence (Orsi et al., 2014).
Similarly, a study conducted in another Italian hospital plumbing
system demonstrated persistence of the same strain of L.
pneumophila for a period of 15 years (1990–2004) despite
thermal treatment, chlorination, and chlorine dioxide treatment
(Scaturro et al., 2007). This demonstrates the role permanent
stagnation (dead ends and dead legs) has in harboring and
potentially selecting for more resistant strains through constant
exposure to sub-lethal concentration of disinfectants (Cooper
and Hanlon, 2010; Dupuy et al., 2011).

Stagnation and Microbial Biofilms
In water storage and distribution systems, 95% of the microbial
population exists as biofilms attached to the inner surfaces and
only 5% in the water (Flemming et al., 2002). According to an
in vitro simulation experiment, plumbing coated with Legionella
biofilms decayed free chlorine in stagnant water (48 h stagnation
period) and increased the risk of legionellosis up to six times
(Huang et al., 2020). Available literature shows that in potable
water and building plumbing systems complex biofilms and
amoebae hosts protect Legionella (Kilvington and Price, 1990;
Thomas et al., 2004). Cargill et al. (1992) reported that in contrast
to free living cells, L. pneumophila existing in complex biofilms
can tolerate high doses of disinfectant. Specifically, the amoeba
Acanthamoeba and Vermamoeba provide additional protection
from prolonged and persistent water treatment processes
(Kilvington and Price, 1990; Dupuy et al., 2011; Cervero-Arago
et al., 2014; Dobrowsky et al., 2016). Donlan et al. (2005)
observed that for L. pneumophila–amoebae complex biofilms,
monochloramine (0.5 mg/L) was a more effective disinfectant
compared to free chlorine (0.5 mg/L). Stagnant potable water
allows formation of thick, dense, complex, and adherent biofilms,
which accelerate decay of disinfectants (Tsagkari and Sloan,
2018). More importantly, chemical disinfectants are unable to
penetrate such multispecies biofilms (Bridier et al., 2011).

Stagnation in Building Hot Water System
The studies presented in Table 1 demonstrate that due to
stagnation points and lowwater consumption, building hot water
systemswill develop Legionella contamination. Unlike cold water,
hot water systems contained diverse species and serotypes of
Legionella (Voss et al., 1985; Trop Skaza et al., 2012; Totaro et al.,
2018; Girolamini et al., 2019). An in vitro study demonstrated
colonization of diverse species of Legionella i.e., L. pneumophila,
L. anisa, L. taurinensis, and L. drancourtii, and protozoan
hosts i.e., alveolata members, Bodonidae, Euglenozoa, Neobodo
curvifilu, Thecamoebae, Vannella, and Vermamoeba vermiformis
in a hot water plumbingmodel. Moreover, it was also noticed that
pathogenic L. pneumophila and L. anisa developed stable biofilms
with protozoa (Thecamoebae, Vannella, and V. vermiformis)
in storage tanks and survived during thermal (70◦C/30min)
and chemical (biodispersant: tensio-active Ferrofos R© 5260 and
biocide: H2O2-peracetic acid) treatments. After such treatments,
these stable biofilms re-contaminated hot water within the
entire plumbing model (Farhat et al., 2012). Saby et al.
(2005) analyzed hot water plumbing system models (materials:
steel, galvanized steel, and chlorinated polyvinyl chloride)
and concluded that chemical disinfection procedures (H2O2,
continuous chlorination, hyperchlorination, and peracetic acid
treatment) temporarily eradicated established Legionella biofilm.
The only solution to eradicate Legionella biofilms was to
maintain water temperature at >55◦C at all points, which
required continuous circulation of hot water. In another pilot
study (material: stainless steel), it was noticed that thermal
treatment (70◦C/30min) of the plumbing system containing
a well-established Legionella (103 CFU/cm2) biofilm decreased
culturable Legionella. It was also observed that existence of dead
legs in plumbing system promoted rapid recontamination of
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remaining water (Farhat et al., 2010). All studies discussing
hot water supplies to buildings showed that stagnation of hot
water in storage tanks and dead legs or dead ends led to a
reduction in water temperature (<45◦C), and rapid decay of
disinfectants promoting colonization of Legionella. This was
exacerbated in warm water systems as dissipation of the residual
chemical disinfectant was further accelerated at high temperature
(Vasconcelos et al., 1997; Ndiongue et al., 2005).

Nutrient and Oxygen Supply Hypothesis
One argument presented by Liu et al. (2006) that counters the
positive association of stagnation with Legionella contamination
of biofilms is the reduced oxygen and nutrient content present
in areas of stagnation compared with areas of turbulent flow.
However, L. pneumophila sg1 has been shown to survive in
drinking water under low nutrient availability for more than
2 years (Paszko-Kolva et al., 1992). L. pneumophila can also
proliferate efficiently at 6–6.7 mg/L concentration of dissolved
oxygen. However, at oxygen concentration <2.2 mg/L it can
survive but stops multiplying (Wadowsky et al., 1985). L.
pneumophila (sg1, sg2, sg3, sg4, and sg6) has also been isolated
from different water bodies (i.e., lakes and rivers) with dissolved

oxygen concentrations of 0.3–9.6 mg/L (Fliermans et al., 1981).
In water at temperatures of 20–45◦C, the concentration of
dissolved oxygen ranges from 9.06 to 5.94 mg/L (Environmental
Protection Agency, 1989), which is sufficient for Legionella
survival and growth. Furthermore, upon environmental stresses
(nutrient starvation, low oxygen, osmolarity alterations, pH,
and temperature fluctuations) bacteria in biofilms activate stress
tolerance mechanisms, which can lead to genesis of viable
but non-culturable (VBNC) cells (Yamamoto et al., 1996; Fux
et al., 2005). Previous research has also shown replication within
protozoan hosts (Buse et al., 2013) and presence of disinfectants
(Allegra et al., 2008; Turetgen, 2008; Mustapha et al., 2015;
Whiley et al., 2017; Casini et al., 2018) promotes Legionella
transformation into VBNC cells. As such, studies that rely solely
on culture methods of detection [such as the study by Liu et al.
(2006)] will not detect VBNC Legionella and underestimate the
numbers present (Whiley, 2016).

Current Methods of Legionella Screening
In stagnation areas, limited nutrient availability and sub-
lethal doses of disinfectant promote generation of VBNC
Legionella (Li et al., 2014). According to Farhat et al. (2010)

TABLE 2 | Methods available for screening and detection of Legionella contamination from potable water and building plumbing system.

Techniques Description Limitations References

Microbiological

culturing and isolation

Gold standard to detect and identify Legionella

contamination. Processed water sample/biomass is

cultured on buffered charcoal yeast extract (BCYE) agar.

Isolated bacterial colonies are further identified by

serological/molecular assays. Its detection limit is 35

CFU/L.

Two weeks required to grow Legionella from

potable water samples.

Only detects culturable Legionella and is

unable to screen any VBNC Legionella.

Volker et al., 2016;

International Organization

for Standardization, 2017;

Standards Australia, 2017

Legionella–amoebae

co–culture assay

Most appropriate method to identify VBNC Legionella.

Processed samples are inoculated on amoebae (i.e.,

Acanthamoeba) culture plate. Then plates are regularly

examined microscopically to identify any cytological and

morphological modifications in amoebae cells.

Longer periods of incubation required to

resuscitate VBNC Legionella.

Difficult to quantify density of VBNC Legionella.

Garcia et al., 2007; Conza

et al., 2013; Epalle et al.,

2015

Fluorescent in situ

hybridization

It is a whole cell-based screening method. Nucleic acid

(16S rRNA) or antibody-based probes are used for visual

detection of cells. It can be modified to detect and

estimate VBNC Legionella.

Probes can interact with 16S rRNA of dead

cells.

Probes can cross react with background

environmental bacteria.

Declerck et al., 2003;

Delgado-Viscogliosi et al.,

2005; Kirschner et al., 2012

Flow cytometry It is a membrane integrity-based assay to identify VBNC

Legionella. In this method differential live/dead stains

(SYBR green/propidium iodide, Syto9/propidium iodide

and thiazole orange/propidium iodide) and/or labeled

probes are used to characterize VBNC and dead cells of

Legionella. Its detection limit is 45–150 cells/L.

Only detects specific Legionella

species/strains/serogroups/serotypes, so

effective for controlled in vitro studies.

Universal probes which cover entire Legionella

complex are not available.

Allegra et al., 2008; Füchslin

et al., 2010; Keserue et al.,

2012

PCR detection and

enumeration

Rapid and efficient method to detect and quantify

Legionella contamination. Processed water

sample/biomass is subject to 16S rDNA (Legionella) and

mip (L. pneumophila) genes qPCR assay. Its detection

limit is 500 GU/L.

Only detects DNA of Legionella and unable to

differentiate culturable, VBNC and dead cells of

Legionella.

Wellinghausen et al., 2001;

International Organization

for Standardization, 2019

Viability–qPCR In this method, prior to nucleic acid extraction and qPCR

the sample is processed with cell membrane

impermeable nucleic acid intercalating dyes (ethidium

monoazide or propidium monoazide). It is a good

method to detect and quantify VBNC Legionella.

Presence of background bacteria in high

density (common in environmental samples)

challenges validity.

Not suitable for Legionella quantification from

biofilm samples.

Delgado-Viscogliosi et al.,

2009; Ditommaso et al.,

2014, 2015; Taylor et al.,

2014

CFU/L, colony–forming unit/liter; GU/L, genomic unit/liter.
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thermal treatment of water decreased the numbers of culturable
Legionella temporarily, but increased concentration of VBNC
cells. A 1 year pilot study demonstrated that chemical disinfection
(Ferrocid R© 8591, Ferrofos R© 5260, H2O2 and peracetic acid)
decreased culturable Legionella and L. pneumophila from 0.5 to
2 log, however application of a PCR analysis showed existence of
VBNC in high density (Farhat et al., 2011). As mentioned earlier,
at stagnation points Legionella also exists in complex biofilms,
and amoebae hosts dwell in such microbial communities as
well. It is well-known that amoebae hosts (V. vermiformis) are
capable to transform culturable Legionella into VBNC (Buse
et al., 2013). VBNC are pathogenic in nature and infect amoebae
and human cell lines (Cervero-Arago et al., 2019). Proteomic
profiling suggests VBNC are able to synthesize some virulence
factors and proteins involved in different metabolic pathways
(Alleron et al., 2013). Acanthamoeba castellanii and A. polyphaga
resuscitate VBNC synthesized by starvation (Steinert et al., 1997)
and disinfectant treatment (Garcia et al., 2007), respectively.
In vitro studies showed A. polyphaga resuscitated Legionella
are infectious for alveolar epithelial and macrophage like cells
(Epalle et al., 2015). So far the underlying mechanisms of VBNC
biogenesis and resuscitation are not yet well-understood.

Multiple methods are available to screen and detect Legionella
contamination in potable water and building plumbing systems
(Table 2). Any method that can identify and estimate both
culturable and VBNC Legionella is most appropriate to monitor
building plumbing system and potable water. Microbiological
culturing (International Organization for Standardization, 2017)
and qPCR (International Organization for Standardization,
2019) are approaches recommended by ISO (international
organization for standardization), however both methods
are unable to provide information about VBNC Legionella.
Fluorescence in situ hybridization (Delgado-Viscogliosi et al.,
2005) and viability qPCR (Ditommaso et al., 2014) are two
techniques that can be used to estimate populations of VBNC
Legionella, however validity of both assays is challenged by high
density of sample background bacteria other than Legionella.
Differential live/dead stain flow cytometry is widely used for
in vitro disinfectant efficacy and plumbing model experiments
to estimate the population of VBNC Legionella (Allegra et al.,
2008, 2011; Wang et al., 2010; Mustapha et al., 2015). Some
researchers have tried to develop and use dye labeled Legionella
specific antibodies for detection of VBNC, however these
antibodies are highly specific and can only detect specific

strain/serogroup/serotypes (Füchslin et al., 2010; Keserue et al.,
2012). A universal probe, which can cover all members of genus

Legionella, is required to be effective to detect and estimate VBNC
contamination from building plumbing systems. Legionella–
amoebae co–culturing is one of the best techniques to identify
VBNC contamination. In this assay, suspected samples are
cultivated on amoebae hosts (preferably Acanthamoeba) and
VBNC resuscitation is monitored microscopically (Conza et al.,
2013). Garcia et al. (2007) artificially generated VBNC and
then resuscitated them back into culturable Legionella using
an Acanthamoeba host. Using an Acanthamoeba co–culture
assay, Conza et al. (2013) estimated the quantity of VBNC
Legionella (102-106 cells/g) from a composting facility. A major
drawback of Legionella–amoebae co–culturing is the requirement
of incubation for prolonged time. However, to our knowledge
available literature has not discussed the application of co–
culture assays to estimate VBNC contamination from building
plumbing system.

CONCLUSION

Restricted water circulation and temporary or permanent water
stagnation allows Legionella to colonize in building plumbing
systems and water storage facilities. Aging of water, stagnation,
and microbial biofilms accelerate decay of residual disinfectants
and deteriorates water quality in buildings. Further research
is required to better understand role of complex Legionella–
protozoa biofilms in degradation of disinfectant in stationary
water. To achieve long term disinfection of potable water
continuous circulation of thermally or chemically treated
water in buildings is the only solution to prevent outbreaks
of legionellosis.
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