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The redistribution of soil organic carbon (SOC) in response to soil erosion along the loess
slope, China, plays an important role in understanding the mechanisms that underlie
SOC’s spatial distribution and turnover. Consequently, SOC redistribution is key to
understanding the global carbon cycle. Vegetation restoration has been identified as
an effective method to alleviate soil erosion on the Loess Plateau; however, little research
has addressed vegetation restoration’s effect on the SOC redistribution processes,
particularly SOC’s spatial distribution and stability. This study quantified the SOC stock
and pool distribution on slopes along geomorphic gradients in naturally regenerating
forests (NF) and an artificial black locust plantation (BP) and used a corn field as a control
(CK). The following results were obtained: 1) vegetation restoration, particularly NF, slowed
the migration of SOC and reduced the heterogeneity of its distribution effectively. The
topsoil SOC ratios of the sedimentary area to the stable area were 109%, 143%, and
210% for NF, BP, and CK, respectively; 2) during migration, vegetation restoration
decreased the loss of labile organic carbon by alleviating the loss of dissolved organic
carbon (DOC) and easily oxidized organic carbon (EOC). The DOC/SOC in the BP and NF
increased significantly and was 13.14 and 17.57 times higher, respectively, than that in the
CK (p < 0.05), while the EOC/SOC in the BP and NF was slightly higher than that in the CK.
A relevant schematic diagram of SOC cycle patterns and redistribution along the loess
slope was drawn under vegetation restoration. The results suggest that vegetation
restoration in the loess slope, NF in particular, is an effective means to alleviate the
redistribution and spatial heterogeneity of SOC and reduce soil erosion.
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INTRODUCTION

Soil is considered the most significant terrestrial carbon sink. It is a critical factor in the regulation of
the global carbon cycle, as well as in the supply of pivotal ecosystem services (Muñoz-Rojas et al.,
2016; Pereira et al., 2018; Brevik et al., 2020). Soil organic carbon (SOC) is the amount of organic
carbon contained in the soil fraction and contributes to a variety of important biological, physical,
and chemical functions (Muñoz-Rojas et al., 2016; Willaarts et al., 2016; Wiesmeier et al., 2019;
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Pereira et al., 2020). SOC’s depletion has a negative influence on
water storage capacity, soil fertility, and the supply of other
significant ecosystem services, such as climate regulation, and is
therefore a major factor that leads to soil degradation (Kiani-
Harchegani and Sadeghi, 2020). In water-limited ecosystems,
vegetation restoration is one of the options to prevent land
degradation and soil erosion (Yu et al., 2016; Shi et al., 2019a).
Ongoing vegetation restoration and climate change processes are
having a far-reaching effect on soil carbon stocks, which creates an
imbalance in carbon input/output ratios and results frequently in
net releases back into the atmosphere (Haigh et al., 2019; Petrakis
et al., 2020; van der Bank and Karsten, 2020). SOC is the most
susceptible to changes in site conditions and is therefore the target
of most evaluations (García-Díaz et al., 2016; Yeasmin et al., 2020).

In past years, numerous estimates of SOC stocks have been
conducted at multiple scales (from slope to watershed, regional and
global), using different approaches (Abdalla et al., 2018; Álvaro-
Fuentes et al., 2014; Grebliunas et al., 2016; García-Díaz et al., 2018;
Shi et al., 2019b; Rodrigo-Comino et al., 2020). Quantitative
assessments of the redistribution of SOC along geomorphic
gradients and the processes involved have become increasingly
important in a changing climate (Bloom et al., 2016; Yu et al.,
2019a; Olson and Gennadiev, 2020). At the same time, the storage
of SOC showed significant differences within ecological units
because of the effect of such local factors as soil properties,
topographic conditions, soil depth, and land use and
management (Novara et al., 2019). Among these, topography is
one of the five major soil surface formation factors (Jenny, 1994).
Topography affects soil erosion and thus affects SOC’s spatial
distribution either directly or indirectly (Sun et al., 2010;
Rodrigo-Comino et al., 2016, 2017; Cagnarini et al., 2019; Cerdà
and Rodrigo-Comino, 2020). Several studies have demonstrated
the effects of topography and soil erosion on SOC’s distribution
(Beguería et al., 2015). For example, a previous study reported a
close relationship between soil erosion and SOC content and
indicated further that the SOC content is generally higher in a
slope’s middle and lower reach than in the upper reach (Sanderman
and Chappell, 2013; Hancock et al., 2019). A typical hill slope can
be divided into a stable area, eroding area, and sedimentary area
according to its position and gradient on the slope (Wang et al.,
2014a; Wang et al., 2017). Topography affects the stable area less,
but the SOC in the eroding area will continue tomigrate toward the
sedimentary area, where it will accumulate (Doetterl et al., 2016). At
the same time, the slope system also affects the composition and
stability of SOC (Wang et al., 2014b; Wiaux et al., 2014). In some
simulations in hillslope plots, the distribution of labile organic
carbon varied markedly along slopes (Berhe and Torn, 2017), and
most followed the trend: sedimentary area > stable area > eroded
area (Doetterl et al., 2012; Patton et al., 2019; Wang et al., 2019).
However, current research on the distribution of the SOC in the
extension of slopes focuses primarily on agricultural land or
grassland (Kirkels et al., 2014; Doetterl et al., 2016; Li et al.,
2019). Vegetation restoration is recognized widely as an effective
way to enhance SOC content and control soil erosion (Kim and
Kirschbaum, 2015; Xin et al., 2016; Hancock et al.,2019). Therefore,
it seems likely that vegetation restoration may also affect the SOC
redistribution process in areas with complex terrain.

The Chinese Loess Plateau covers approximately 64 ×
104 km2, lies in the semiarid zone of China, and is
characterized by thick (50–300 m), yet highly erodible soil
(Feng et al., 2013). Hundreds of years of intensive cultivation
and severe erosion have incised the plateau and thus fragmented
the vast flat area into tableland and slopes, with notable
depositions in valley bottoms (Wang et al., 2017; Yu et al.,
2019b). To alleviate soil erosion, large-scale ecological
restoration efforts have been implemented in the Loess
Plateau, the most notable example of which is the Grain for
Green Project (GGP) that was initiated in the 1980s (Feng et al.,
2013; Yu et al., 2020a). These projects have improved vegetation
restoration greatly and affected SOC sequences and the carbon
cycle on the Loess Plateau (Chang et al.,2011; Ran et al., 2013;
Wang et al., 2017). However, systematic investigations of the
results of vegetation restoration on SOC redistribution and its
stability have not been reported to date. Particularly, the
topographic positions of SOC in the hilly-gully region on the
fragmented Loess Plateau remain unknown.

To offer new insights to fill this gap, hillslope positions and
vegetation-induced changes in SOC in the first 0–30 cm were
investigated on three different hillslopes of the loess hilly
watershed where farmland has been transformed into forestland.
Accordingly, this study’s primary goals were to 1) detect changes in
SOC at different soil depths (0–10, 10–20, and 20–30 cm) and
different vegetation types at the hillslope scale and 2) assess the
effects of vegetation species and topography on soil carbon stability
during ecological restoration. Our study hypothesized that
vegetation restoration alleviates the spatial heterogeneity of SOC
by increasing organic input and decreasing soil erosion and the
slow SOC mineralization or loss of unstable carbon.

MATERIALS AND METHODS

Study Area
As a typical loess gully area, the Caijiachuan Watershed (110027′-
111007′E, 35053′-36021′ N, elevation 868–1553m) is located on
the Loess Plateau in Ji County, Shanxi province, China (Figure 1).
This area has a warm, temperate continental climate with an
average mean temperature of 10°C, a mean duration of 2,563 h
of sunshine, a frost-free period of 172 days, and a mean annual
precipitation of 575.9 mm. The precipitation varies greatly between
years and seasons and is concentrated largely between June and
September of each year (Zhou et al., 2013). The study area is
characterized by a deeply incised hilly-gully loess landscape. The
soils are the result of a high wind-deposited loess process and can
be classified as Haplic Luvisols (IUSS Working Group, 2006).

In general, soils are characterized by a high content of sand
(45–60%) and silt (36–55%) material with certain variations
depending on the hillslope position and previous land uses
(Zhang et al., 2013b). The soil bulk density is approximately
1.15–1.30 g cm−3, with a low organic matter content
(5–15 g kg−1). The principal forest types are naturally
regenerating forests (NF) dominated by aspens (Populus
davidiana) and oaks (Quercus liaotungesis) and reforested areas
of black locust (Robinia pseudoacacia), Chinese pine (Pinus
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tabulaeformis), and cypresses (Platycladus orientalis). All forests
were planted in 1990 as part of the GGP.

Experimental Design
Three typical hillslopes characterized by similar landforms
(considering the gradient, aspect, and length fully) and different
vegetation types (Table 1) were selected, representing 1) a black locust
plantation (BP), 2) NF, and 3) a corn field as a control (CK). Both the
BP andNFwere converted from corn filed in 1990, and themain tree
species in the NF was secondary Quercus aliena Bl. Both the BP and
CK are located in the same gully at similar elevations (1120m a.s.l.).
TheNF is located in an area affected by a gully of approximately 4 km
southeast and an elevation of approximately 1040m a.s.l. Corn fields
in this area adopt the traditional cultivation model with few
management measures, such as ploughing and fertilization.

In this study, the hillslopes were divided into three erosional
areas based on the slope gradient and soil erosion conditions
(Figure 2). Specifically, the stable area was defined as the area at
the shoulder of a slope with a low gradient (<50) and light soil

erosion marks. The eroding area was defined as the area in the
backslope with a steeper gradient (>100) and clearer soil erosion
signs. Finally, the sedimentary area was defined as the area at the
footslope with a lower gradient (<50). Because the eroded
material from the eroding areas is used to accumulate in the
sedimentary parts, the soils therein consist largely of a mixture of
sediment setting on loess parent materials in deeper layers
(Doetterl et al., 2012; Doetterl et al., 2016; Wang et al., 2017).

Field Sampling
In mid-August, 2017, three plots of 10 × 10 m (separated by at
least 10 m) were established representing the typical erosional
area of each typical hillslope. Detailed site conditions (including
elevation, slope length, angle, and aspect), as well as a vegetation
inventory, were conducted in each plot. Five sampling points
were set randomly and soil samples were collected at 10 cm
intervals from a depth of 0–30 cm using a cylindrical soil
driller (4 cm diameter and 20 cm long). Soil from
corresponding layers was mixed to form one soil composite

TABLE 1 |Basic information on the research site (Caijiachuan catchment, Shanxi Province, North China). DBH � diameter at breast height; canopy density is provided for the
forested sites and coverage is provided for the corn farmland; “−” � not measured. The values presented are the means and SD in brackets.

Vegetation
type

Slope
length
(m)

Slope
angle
( 0 )

Slope
aspect

Altitude
(m)

DBH (cm) Tree
height
(m)

Tree
density
(hm−2)

Canopy
density/coverage

(%)

Black locust
plantation

281 19 South 1 120 11.48 (0.26) 8.39 (0.40) 1864 (12) 84.6 (2.3)

Natural
recovery forest

302 20 Southeast 1 040 10.96 (0.35) 6.68 (0.22) 1942 (15) 87.3 (5.1)

Corn farmland 278 18 South 1 120 — — — 84.5 (1.6)

FIGURE 1 | Locations of the research sites (a: China, b: Shanxi Province, and c the Caijiachuan Watershed). NF is the naturally regenerating forest, BP is the black
locust plantation, and CK is the cropland as control.
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sample. Five replicate soil samples were collected in each plot, and
135 soil samples were collected in total. Each soil sample was
divided evenly into two parts after visible roots and other
impurities were removed, and one was naturally air-dried,
while the other was refrigerated at 4°C until further use.

Laboratory Analysis
The air-dried soil was passed through a 0.2 mm sieve to ensure
complete removal of gravel. The SOC content was determined by
the potassium dichromate external heating method (Bao, 2000).
The dissolved organic carbon (DOC) content was analyzed as
follows: 10 g of a soil sample was added to a triangular flask with
40ml of distilled water. The sample was shocked and leached for
approximately 30min at room temperature after 10min of high-
velocity centrifugation (6000 r/min at 4°C). The supernatant
obtained was filtered through a 0.45 μm filter into separate vials
and the extracts were analyzed for DOC using a total organic
carbon analyzer (Multi N/C 3100, Analytik Jena AG, Thuringia,
Germany). The level of easily oxidized organic carbon (EOC) in the
organic phases was measured using 333 mmol/L of KMnO4 by
shaking for 1 h, centrifugation for 5 min at 4000 g, diluting
10 times with deionized water, and using a spectrophotometer
(AQ8100, Thermo Scientific™, MA) to measure the absorbance at
565 nm (Von Lützow et al., 2007). The KMnO4 standard curve and
calculation method were based on Blaire et al. (1995) report.

Statistical Analysis
An analysis of variance (ANOVA) was used to analyze vegetation
restoration’s effects on SOC content, DOC/SOC, and EOC/SOC
between forest types, slope areas, and soil depth (p < 0.05). The
means for each vegetation type in Table 1 were calculated by
averaging the values of nine plots within the same slope, and the
means in the figures for each area were calculated by averaging
the values from three replicated plots in the corresponding soil
layers. All data analyses were performed using SPSS v. 23.0 (SPSS
Inc. 2016; NC) and R software v. 3.6 (R Development Core Team,
2012; R Project for Statistical Computing, Vienna, Austria).

RESULTS

Effect of Vegetation Restoration on SOC
Content
Figure 3 shows that the SOC content increased significantly in
response to vegetation restoration (p < 0.05). For the BP, the
average SOC content was 6.85 g/kg, 1.38 times higher than that of
the CK. For NF, the average SOC content was 14.28 g/kg,
2.88 times higher than that of the CK. The SOC content in
the same area decreased significantly with increasing soil depth
(p < 0.05).

The SOC content followed the same distributions throughout
the three vegetation types: sedimentary area > stable area >
eroding area. However, the range of the changes observed was
smaller after vegetation restoration. The ratio of the SOC
content in the sedimentary to eroding areas in the CK was
247.0%, which decreased to 158.4% and 129.3% in response to
the BP and NF, respectively. The change in the SOC distribution
along the slope was most obvious in the 0–10 cm soil layer
following vegetation recovery. In BP and CK, the SOC content
in the deposition area was significantly higher than that in both
the stable and eroding areas (p < 0.05). However, in NF, no
significant difference was found in the surface soil between the
three areas tested (p < 0.05). In the 20–30 cm soil layer, the SOC
contents of NF, BP, and CK were all significantly higher in the
deposition area than in the stable area and the content in the
stable area was significantly higher than that in the eroding area
(p < 0.05).

Effects of Vegetation Restoration on SOC
Stability
Effects on Dissolved Organic Carbon
The proportion of DOC in SOC increased significantly (p <
0.05) after vegetation restoration (Figure 4). The DOC/SOC of
the BP and NF was 0.92% and 1.23%, respectively, 13.14 times
and 17.57 times higher, respectively, compared to the CK

FIGURE 2 | Topographical transect showing stable, eroding, and sedimentary areas. The stable area is on the top of the slope and has a small gradient (<50) and
little erosion. The eroding area is in the middle of the slope and has a steep gradient (>100) and strong soil erosion. The sedimentary area is at the bottom of a slope and
has a small gradient (<50) and notable sediment deposit.
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(0.07%). The DOC/SOC differed significantly in different soil
layers; however, no consistent pattern of change was identified
(p < 0.05). In the BP, the DOC fluctuated with the soil layer,

but without apparent regularity; in the same area of NF, DOC/
SOC decreased with increasing soil depth but increased in
the CK.

FIGURE 3 | Soil organic carbon content of the 0–30 cm soil layer (in 10 cm intervals) in the three areas defined in Figure 2 under naturally regenerating forests (NF), black
locust plantation (BP), and the corn field as the control (CK). Vertical bars represent the standard deviations of five replicated soil samples. Different capital letters for the same areas
indicate significant differences at p < 0.05 of soil layers, while different lowercase letters for the same soil layers indicate significant differences at p < 0.05 of different regions.

FIGURE 4 | Ratio of dissolved organic carbon (DOC) to total soil organic carbon (SOC) of the 0–30 cm soil layer (in 10 cm intervals) in three areas under different
forest types. Vertical bars represent the standard deviations of five replicated soil samples. Different capital letters for the same areas indicate significant differences at p <
0.05 of soil layers, while different lowercase letters for the same soil layers indicate significant differences at p < 0.05 of different regions.
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Compared to the CK, the increasing extent of DOC/SOC in the
sedimentary area decreased significantly after vegetation
restoration (p < 0.05). In the BP, NF, and CK, the ratios of
DOC/SOC in the deposition areas were 1.29, 1.15, and
1.50 times that in the eroding area. For the BP, the DOC/SOC
in the sedimentary area in the 0–10 cm and 10–20 cm soil layers
was significantly higher than that in the stable and eroding areas
(p < 0.05). However, in the 20–30 cm soil layer, no significant
difference was found between the deposition and eroding areas (p <
0.05), and in NF, no significant erosion or accumulation of DOC in
a specific area was observed (p < 0.05). In the CK, the DOC/SOC of
each soil layer in the deposition area was significantly higher than
that in both the stable and eroding areas (p < 0.05).

Effects on the Easily Oxidized Organic Carbon
Figure 5 shows that the increase in EOC/SOC following
vegetation restoration was not significant (p < 0.05). The
average EOC/SOC values of the BP and NF were 20.52% and
22.56%, respectively, approximately 1.06 and 1.16 times higher
than that of the CK (19.38%). The EOC/SOC in both the stable
and sedimentary areas decreased with increasing soil depth;
however, no regular change was identified in the eroding area.
No significant difference was found between different soil layers
in any of the three regions (p < 0.05).

Among the three vegetation types, the EOC/SOC ratio was
slightly, but not significantly, lower in the eroding area than the
stable area, and the EOC/SOC in the deposition area was identical
to that in the stable area (p < 0.05). Vegetation restoration did not
affect this result significantly (p < 0.05). The ratios of EOC/SOC in
the sedimentary areas of the BP, NF, and CK were 1.06, 1.08, and
1.06 times higher, respectively, than that in the eroding area. The

EOC/SOC of the 0–10 cm layer in the BP and NF was significantly
higher than that in the eroding area (p < 0.05); however, in the
10–20 cm and the 20–30 cm soil layers, there were no significant
(p < 0.05) differences among the three areas. The CK showed no
significant difference between soil layers (p < 0.05).

DISCUSSION

Effect of Vegetation Restoration on SOC
Migration at the Soil Surface (0–30cm)
Soil erosion and SOC deposition along hillslopes can lead to
spatial redistribution of SOC, i.e., the removal of soils that are rich
in organic carbon from source hillslopes (shoulder and
backslope) and their accumulation at the footslope (Wang
et al., 2017). It has been confirmed that the SOC content in
the cultivated areas of the Loess Plateau had the following
distribution pattern: sedimentary area > stable area > eroded
area (Wang et al., 2014a; Li et al., 2019). In our study, considering
the first 30 cm, the SOC distribution along the hillslope after
vegetation restoration followed a similar trend. However, the
ratio of SOC content in the sedimentary area to the eroded area
decreased significantly (p < 0.05). This could indicate that
vegetation restoration reduced the migration of SOC
effectively in some areas. Further, while vegetation recovery
increased the SOC input, it decreased soil erosion effectively
(Wang et al., 2011; Qin et al., 2014). This could also explain the
fact that the SOC among these three areas of the 0–10 cm soil
layer after vegetation recovery decreased significantly; at the same
time, the change was not significant in the 20–30 cm soil layer
(p < 0.05). Further, in NF, the surface SOC did not differ

FIGURE 5 |Ratio of easily oxidized organic carbon (EOC) to SOC of the 0–30 cm soil layer (in 10 cm intervals) in the three areas under different forest types. Vertical
bars represent the standard deviations of five replicated soil samples. Different capital letters for the same areas indicate significant difference at p < 0.05 of soil layers,
while different lowercase letters of the same soil layers indicate significant differences at p < 0.05 of different regions.
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significantly between different areas, and thus, NF could be
considered to perform better in reducing SOC heterogeneity.
This could be the case because the BP vegetation types were
relatively simple over time and their diversity recovery was slower
than that of NF (Zhang et al., 2017). This led indirectly to a low
root density in the surface soil and a small cumulative amount of
litter on the surface (Ceccon et al., 2011; Vos et al., 2019).
Therefore, the resulting soil erosion-inhibiting effects were
weaker in the BP than in NF.

With respect to the sampling depth, we cannot assume that
the SOC concentration below 30 cm was unimportant.
Therefore, future research should be devoted to assessing the
effects that the tree roots, root secretions, and the
microorganisms associated with them may affect, which,
subsequently, enrich the SOC pool themselves. Secondly, it
would be possible to observe whether dissolved SOC migrates
deep into the soil. Finally, soil organisms have a very large effect
(direct and indirect) on the distribution of SOM in soil (also at a
depth of over 30 cm). This is particularly common in soils
developed on loess and is associated particularly with
earthworms (anecic earthworms) (Lavelle, 1988).

Effect of Vegetation Restoration on the
Stability of SOC on Hillslopes
It is accepted generally that DOC, microbial biomass carbon, EOC,
and particulate organic carbon are the most active parts of SOC
(Von Lützow et al., 2007; Wang et al., 2014b). These indices reflect
small changes in the soil before it experiences changes in the total
organic carbon (Bloom et al., 2016; Yu et al., 2020b). EOC and
DOCwere considered themost sensitive indicators of labile organic
carbon in response to changes in vegetation areas (Haynes, 2005;
Zhang et al., 2013a). Hence, EOC/SOC andDOC/SOCwere chosen
to evaluate vegetation restoration’s effects on SOC stability.

Generally, DOC originates from plant litter, microbial
decomposition, and root exudation (Franzluebbers, 2002).
Although the DOC content is very low, it has strong mobility in
the soil and therefore is considered one of the main forms of soil
nutrient loss (Perakis and Hedin, 2002; Zhang et al., 2003). In this
study, the increment in DOC/SOC in the sedimentary area was
significantly lower in response to vegetation restoration, particularly
for NF compared to the CK (p < 0.05). This showed that vegetation
restoration could slow the migration of DOC to some extent. This
could be because of the higher litter inputs in NF and BP than that in
the CK, and decomposed litter add DOC to the surface soil.
Moreover, litter’s runoff interception function can reduce the
migration of DOC (Ma et al., 2016b). EOC refers to the part of
SOC that can be oxidized by 330mmol/L potassium permanganate
(Neff and Asner, 2001; Von Lützow et al., 2007). In NF, BP, and CK,
the distribution trends of EOC/SOC along the slopes were
fundamentally identical: EOC/SOC was identical in the stable and
sedimentary areas and slightly exceeded that in the eroded area. No
significant (p < 0.05) enrichment trend in EOC was found in the
sedimentary area, which Doetterl et al. (2012) also reported for
cropland in central Belgium. It has been suggested that most of the
EOCmay have beenmineralized during themigration process (Zhou
et al., 2005;Ma et al., 2016a). In the 0–10 cm layer in bothNF andBP,
the EOC/SOC ratios in the stable and the sedimentary areas were
significantly higher (p < 0.05) than that in the eroded area. However,
there was no significant difference among the three areas in the CK
(p < 0.05). This indicated that vegetation restoration could reduce
topsoil mineralization during erosion to some extent.

Several studies have concluded that the SOC is more active in
the foothills than in other areas (Doetterl et al., 2012; Zhang et al.,
2019), although naturally, anthropogenic effects can introduce
some variability in this final result. However, this study did not
find any significant enrichment of labile organic carbon in the
sedimentary area. This may be because the active components in

FIGURE 6 | (A) SOC cycle pattern. SOC reserves depend mainly on a dynamic balance between input and output. For SOC in a certain area, SOC input includes
largely soil migration input because of soil erosion and organic carbon contained in the vegetation litter; SOC output includes largely soil migration output because of soil
erosion, mineralization, and dissolution of active parts of SOC. The carbon dioxide (CO2) in the atmosphere is fixed by photosynthesis to achieve carbon circulation. (B)
SOC migration pattern in stable, eroding, and sedimentary areas along the slopes in response to vegetation restoration. The thickness of the arrows indicates the
amount of SOC migration.
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organic carbon have been mineralized already during the
migration process, or they may have migrated to deeper soil
layers because of leaching (Wang et al., 2015; Kelleway et al., 2016).

This research concerns soil, and therefore in the future, more
aspects related to the lack of clear information about the way soil
properties affect (strongly in some cases) the process of soil organic
matter (SOM) mineralization and its transformation should be
included. For example, the potential presence of redox traces in soil
(which is likely in soils at the bottom part of the slope) would
indicate the contribution to the SOMmineralization of conditions
other than simply erosion or vegetation. Another soil process could
be related to soil oxygenation conditions and thus the conditions
for SOMmineralization as well. In this research, we did not include
information about the activity of soil fauna, but it could be an
interesting line of future research because even earthworms can
change the distribution of SOM (and also SOC) in soil significantly.

Schematic Diagram of SOC Cycle Patterns
on Hillslopes
Since Doetterl et al. (2012); Doetterl et al. (2016) proposed
agricultural land slopes’ effect on SOC content and its stability
explicitly, several models and regional organic carbon estimates
have introduced topographic factors (Bloom et al., 2016; Fissore
et al., 2017; Patton et al., 2019). Therefore, a model for the process
of SOC migration on the slope was proposed in this study. SOC
reserves depend mainly on a dynamic balance between input and
output (Bloom et al., 2016; Vos et al., 2019), as indicated in
Figure 6A. According to the findings of this study, SOC also
migrated and redistributed within the soil slope system, as shown
in Figure 6B. In stable areas, topographic factors affected SOC
less and the input and output along the slope were both very
small. In the vertical direction, the litter vegetation produced
increased the SOC input and improved the SOC activity to some
extent. The activated SOC was mineralized and then either
degassed in the form of carbon dioxide or continued to
migrate to lower layers because of leaching. However, stable
organic carbon is stored in the soil for a long period. In the
eroded area, SOC will migrate downward together with the
eroded soil because of the slope. Therefore, for a specific area,
SOC input and output will increase simultaneously. In the
vertical direction, the vegetation-induced organic carbon input
remains largely the same as in the stable area; however, soil
erosion will intensify the labile organic carbon’s mineralization
and leaching, thus causing organic carbon to decrease
continuously during its downward migration. In the sedimentary
area, the eroded soil is deposited and the SOC content increases in
response. However, the primary component is stable organic carbon.
The reason may be that most of the labile organic carbon either has
been mineralized during the migration process or could not be
enriched in the sedimentary area because of leaching. However, the
CK’s slope migration and conversion process differed notably from
that of the BP and NF. On the one hand, the SOC input on arable
land is relatively small and crop yield increases the SOC output, thus
decreasing the total SOC on the slope (Von Lützow et al., 2006; Vos
et al., 2019). On the other hand, because of the decreased coverage
with surface litter and low content of labile organic carbon, a large

amount of SOCmigrates downward from the eroded area because of
soil erosion and finally deposits in the sedimentary area.

Finally, we agree strongly that erosion changes the soil and affects
its morphology, properties, and taxonomic position. It cannot be
assumed that the same soil will be everywhere, but we consider that
although other soils occur in each of the transect sections studied,
which is attributable to erosion and other processes in the past, as
well as different water-air conditions in the soil, our results
correspond to the most representative possible patterns according
to the number of soil surface samples and low variability.

CONCLUSION

To examine vegetation restoration’s effects on SOC redistribution
along a loessial hillslope, soil samples were collected from stable,
eroding, and sedimentary areas of typical hillslopes with different
vegetation types in the hilly-gully loess area of China. Our results
demonstrated that, compared to croplands, the differences in SOC
content among these three areas decreased in NF and the BP, and the
proportion of labile carbon to total SOC increased significantly for
DOC/COC, but not for EOC/DOC. We conclude that this could
indicate that vegetation restoration in the typical Loess Plateau hillslopes
(NF in particular) is an effective measure to alleviate SOC’s
redistribution and spatial heterogeneity and reduce soil erosion,
which directly affects other ecosystem services. Therefore, the effect
of vegetation recovery considering the vegetation type should be taken
into account to better estimate the soil carbon storage and evaluate
ecosystem services in the sloping areas of the Loess Plateau in China.
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