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Radon and heavy metal (HM) contamination in drinking water and their impact on health
have been reported earlier. However, relatively little is known about the microbial
community in drinking water with gradients of radon and the drivers of microbial
community patterns in such water. With this view, we first examine microbial dynamics
of drinking water in the permissible level of 93 ± 2 Bq/l as control, 510 ± 1.5 6 Bq/l and
576 ± 2 Bq/l asmedium, and 728 ± 3 Bq/l as high radon-containing tube wells fromDumka
and Godda districts, which comes under a major fault of the eastern fringes of India.
Attempts have also been made to predict the impact of the radon contamination gradient
and other water environmental parameters on community structure. The measured
physicochemical character revealed strong clustering by the sampling site with respect
to its radon and HM content. The radon-contaminated sites represent HM-rich nutrient-
limited sites compared to the control. Radon (Rn), HM (Pb, Cu, and As), and total
suspended solids (TSSs) were the most determinant variable among the parameters
and influenced the microbial community composition of that region. The microbial diversity
of those sites was lower, and this measured diversity decreased gradually on the sites with
an increased gradient of radon contamination. The dominant microbial families in the
contaminated sites were Moraxellaceae, Chitinophagaceae, unclassified Candidatus
Azambacteria, unclassified Candidatus Moranbacteria, unclassified Candidatus
Collierbacteria, and Gammaproteobacterial members, which are reported to
abundantly inhabit radiation and chemolithotrophic environments and pose better
radionuclide protective mechanisms, while the bacterial members dominant in the
control site were Comamonadaceae, Rhodocyclaceae, Nitrospirales Incertae Sedis,
cvE6, unclassified Woesearchaeota (DHVEG-6), and Holophagaceae, which are
reported to be abundant in natural soil and drinking water, and labile in harsh
environments. Relative sequence abundance of Comamonadaceae was decreasing on
the sites with an increasing radon gradient, while the opposite trend was observed for
Chitinophagaceae. The distribution of such microbial assemblages is linked to radon and
heavy metal, highlighting that taxa with distinct environmental preferences underlie
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apparent clustering by sites; thus, we can utilize them for biostimulation-based in situ
bioremediation purposes.

Keywords: radon contamination, drinking water, heavymetal, bioremediation, microbial community, 16S rRNA gene
amplicon sequencing

INTRODUCTION

Radon (222Rn) is a water-soluble, colorless, and odorless noble gas
produced via alpha decay of radium (226Ra) in uranium (238U)
decay series, which emits an alpha particle (Somlai et al., 2007).
Long-term radon exposure can cause serious health issues. It is
the second leading reason for lung cancer, followed by tobacco
smoking (Thompson, 2011; Binesh et al., 2012). Radon
continuously enters the water from radionuclide-containing
rocks of the terrestrial crust and migrates with groundwater in
large areas due to its water solubility (Naskar et al., 2018).
According to the EU Commission and the WHO, the
proposed permissible limit for drinking water is 100 Bq/l, and
the lowest maximum contamination level (MCL) of drinking
water is 11.1 Bq/l, as proposed by the U.S. Environmental
Protection Agency (Naskar et al., 2018). It is frequently
observed that radon-containing groundwater is also co-
contaminated with other radionuclides and toxic heavy metals
(HM) (Majumdar et al., 2000). The population living on the
surface of those areas use such toxic water for their drinking and
all other domestic purposes, which may be associated with
carcinogenic risk and frequent death (Al-Zoughool and
Krewski, 2009).

While most of the higher organisms are labile against this
toxicity of radon and other radionuclides, the inhabitant
microorganisms show resistance due to their protective
mechanisms that are provided by extremozymes and
extremolytes (Shukla et al., 2007). The radiation survival pure
culture may not be effective in the relatively nutrient-limited
different amounts of radiation-contaminated environments for
bioremediation purposes due to community competition and
other selective stress (Brown et al., 2015). However, indigenous
microbial-based biostimulation or bioaugmentation is a more
efficient approach than others that can be exploiting
(Hassanshahian et al., 2014; Shukla et al., 2017). Therefore,
characterization of these indigenous microbial communities
from a gradient dose of radon-contaminated environment is
extremely important to decipher their mode of interaction
with radon, HM, and other environmental parameters to
formulate effective bioremediation strategies. In this regard,
the changes of the microbial community, if any, with respect
to gradient concentration of the contaminants, also need to be
addressed.

There are several reports on the measurement of radon
concentration in groundwater, hot springs, soil, thermal
plants, and indoor air. Attempts have also been made to
correlate earthquakes with the radon level in groundwater and
soil (Negarestani et al., 2002; Darby et al., 2005; Singh et al., 2008;
Kansal et al., 2012). However, the microbiology of radon-
contaminated drinking water has not been researched yet.

Nevertheless, this is the first report on the microbial
community composition of radon- and HM-contaminated
drinking water. In this investigation, the samples were
collected from already reported radon- and HM-contaminated
drinking water tube wells from Dumka and Godda districts of
Jharkhand, which is the part of Son–Narmada–Tapti, a major
fault of the eastern fringes of India. It was reported that more than
42% of the drinking water tube wells of this region are highly
contaminated with radon and HM (Naskar et al., 2018; Nayak
et al., 2020). That contaminated water is being used for drinking
and other domestic purposes by the native population. However,
the aim of this investigation was as follows: 1) characterization of
the sampling sites based on their major environmental
parameters, 2) phylogenetics of the indigenous microbial
community (based on 16S rRNA marker gene amplicon
sequencing on the Illumina MiSeq platform) in different
drinking water samples with gradient contamination of radon,
and 3) evaluation of the role of measured environmental
parameters for their influential role in community composition.

MATERIALS AND METHODS

Site Description and Sample Collection
Groundwater was collected in July 2016 from four different deep
tube wells with a depth of 24–76 m based on previously reported
radon contamination (Naskar et al., 2018). Among the sampling
sites, Station-4 (S4) was reported to have the highest radon
concentration, Station-3 (S3) and Station-2 (S2) were reported
to have medium radon contamination, and Station-1 (S1), which
came under the permissible dose of radon in drinking water, was
considered in the study for better comparison. After pumping the
tube wells for 5 min, samples were collected in autoclaved bottles,
and the bottles were overfilled and then capped under the water to
avoid air bubbles. All the samples were collected in triplicate and
brought to the laboratory within 4°C insulated chambers for
further study. Therefore, a total of twelve samples, three from
each of the four sites, were considered for this investigation, and
the coordinates of the sampling sites were placed on the map
(Figure 1).

Water Physiochemical Parameter
The water temperature and pH were measured in situ by using a
mercury thermometer and a pH meter (Thermo Scientific™
Orion Star™ A211), respectively. Radon concentration was
analyzed on the spot by using AlphaGuard portable radon
monitor systems along with an AquaKit (Instruments G,
Germany) (Naskar et al., 2018). Heavy metal (Zn, As, Cu, and
Pb) concentration was measured using an atomic absorption
spectrophotometer (AAS) (PerkinElmer, Analyst 300,
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United States), while Cr concentration was measured
colorimetrically (Rice et al., 2017). Nutrient contents were also
analyzed, which included total nitrogen (TN) (Macro-Kjeldahl
method), total phosphate (TPH) (stannous chloride method),
total potassium (TP) (flame photometric method), total
suspended solids (TSSs) (total suspended solids were dried),
and volatile suspended solids (VSSs) (fixed and volatile solids
were ignited), guided by Rice et al. (2017) (Supplementary
Table S2).

Meta-Genomic DNA Extraction and Illumina
Amplicon Sequencing
One liter of water from each of the samples was filtered aseptically
using a 0.22 µ filter paper. Those filter papers were further used
for meta-genomic extraction using a PowerWater® DNA
Isolation Kit (MO BIO), and DNA concentration was
determined by using a Qubit 4 fluorometer (ThermoFisher
SCIENTIFIC). The hypervariable V3–V4 regions of the
bacterial 16S rRNA gene were amplified from the extracted
metagenomic DNA samples using universal 16S rRNA primer
(Dhal et al., 2020) to generate an amplicon library using the
Nextera XT Index kit (Illuminainc) and the Nextera XT DNA
Library Prep Kit (Part # 15044223 Rev. B). Next, the amplicon
sequencing data were generated on the Illumina MiSeq platform
in a 2 × 300 bp paired-end run. The primer-trimmed raw paired-
end sequences were provided by Eurofins, India.

Sequence Processing
All the raw fastq datasets were processed using the following
sequence processing protocol (Hassenrück et al., 2016). The
paired-end amplicon sequences were trimmed based on a
minimum quality filter score of 15 and a window size of 4
bases using trimmomatic v0.32 (Bolger et al., 2014). Then
trimmed sequences were merged using PEAR v0.9.5 (Zhang
et al., 2014), and OTU (operational taxonomic unit) clustering
was performed using swarm v2.0 with the default value (Mahé
et al., 2014). Sequence OTUs were taxonomically classified using
SINA v1.2.11 and SILVA rRNA project reference database 128
with a minimum similarity alignment of 0.9 (Pruesse et al., 2012).
The obtained OTUs were further curated to exclude the absolute
singleton (occurring only once in the complete dataset),
mitochondria/chloroplast DNA, and unclassified sequences on
the phylum level using well-standardized R scripts (Hassenrück
et al., 2016).

Statistical Analysis
All statistical analyses were conducted in the core distribution of
R v3.4.2 (R Core Team, 2017) and R-Studio, v1.0.153 (RStudio
Team, 2017). A principal component analysis (PCA) was
performed to perceive patterns among the samples based on
their environmental characteristics. Temperature and pH were
excluded in this analysis as their values did not significantly differ
between sample sites. Volatile suspended solids were also
excluded because they were covered up within the total

FIGURE 1 |Map of the sampling sites. The permissible level of radon-contaminated drinking water (S1) was collected from Godda, whereas medium (S2 and S3)
and highly contaminated water (S4) was taken from Dumka district of Jharkhand, India. The GPS data of sampling sites were compiled in QGIS software for mapping
(https://www.qgis.org/en/site/).
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suspended solids. Variations in the water parameter between the
contaminated and control sites were measured by two-way
ANOVA, and correlation of radon with other physiochemical
parameters was analyzed through the Spearman rank correlation
test (Nayak et al., 2020).

The α-diversity indices were calculated based on repeated
random subsampling of the amplicon datasets after randomly
rarefying the data. To assess the richness and evenness, OTU
number, abundance-based coverage estimator, inverse Simpson
index, and Shannon diversity index were calculated. The
significant difference in species richness between the sites was
measured by the Kruskal–Wallis test. The relationship between
α-diversity and water parameters (if any) was also assessed by the
Spearman rank correlation test.

For the amplicon datasets, we excluded the rare biosphere by
retaining OTUs that were present in more than two sequences in
more than 10% of the samples. This reduction of the datasets did
not change β-diversity patterns (Mantel test; r � 0.99, p < 0.001).
Permutational multivariate analysis of variance (PERMANOVA)
was calculated to check the differences in community-level
between radon-contaminated and non-contaminated sites. The
changes in community structure (β-diversity) between the
studied sites were explored mainly by calculating the
Bray–Curtis dissimilarity matrix using their respective relative
OTU abundance datasets. This was used for nonmetric
multidimensional scaling (NMDS) plot to visualize the
patterns in the bacterial community composition for each
habitat, and an envfit model was used for correlation pattern
analysis within the water parameters and microbial community.
The length of the arrow is proportional to the correlation between
ordination and environmental variable.

The contribution of environmental parameters to explaining the
variation in community structure redundancy analysis (RDA) was
calculated using centered log-transformed relative OTU
abundances. Before significance testing, parameters were
excluded using forward model selection until the minimum
Akaike information criterion (AIC), and the maximum adjusted
R2 value was reached. Sequence counts were clr-transformed with
aldex.clr function with amedian of 128Monte Carlo Dirichlet using
the ALDEx2 package. The differentially abundant OTU among the
radon-contaminated and non-contaminated sites was reflected in
Dotplot prior to this test.

All statistical analyses and figure visualizations were
performed in R v3.4.2 (R Core Team, 2017) with the packages
vegan (Oksanen et al., 2019) and ALDEx2 (Fernandes et al.,
2014).

Nucleotide Accession Number
Raw sequences used in this study were submitted to the NCBI
with the biosample accession numbers SRX5391781,
SRX5391782, SRX5391783, and SRX5391784. Each of the
biosamples represents each site, and within every biosample,
three raw sequence reads were submitted. The direct link to
the deposited data is https://www.ncbi.nlm.nih.gov/sra/
PRJNA522844.

RESULTS

Water Quality Parameters
In this investigation, sampling sites were selected based on the
radon concentration gradient of the drinking water (Nayak et al.,
2020). The radon concentration of site S1 was 93 ± 2 Bq/l, which
lies within the permissible dose of radon (100 Bq/l)
recommended by the WHO (2011), and it served as a control
site. The samples of sites S2 and S3 contained medium
concentrations (510 ± 1.5 and 576 ± 2 Bq/l, respectively), and
later, site S4 contained the highest radon concentration (728 ±
3 Bq/l). Noteworthily, radon- and HM-contaminated sites S2,
S3, and S4 varied significantly with respect to the control
(ANOVA, p < 0.01). Based on our data, the nutrient contents
of our studied samples were more or less similar to the
groundwater nutrient content of New Jersey, where they
mention such nutrient concentration as low, which may be
designated as nutrient-limited environments (Nayak et al.,
2020). The Spearman rank correlation test indicated that
within the measured water parameters, Pb, Cr, Cu, As, and
TSSs had a significant level of positive correlation with radon,
while TP had negative correlation with radon (Supplementary
Table S3A). Therefore, it was observed that along the radon
gradient selected, HM (Pb, Cr, Cu, and As) and TSS
concentration increased, while TP content decreased
significantly. The PCA analysis indicated that the first two
principal components accounted for 91.5% of the variation
among the sites based on their measured water quality
parameters (Figure 2). The PC1 which alone explained 73.2%
of the variation was majorly contributed by the radon, HM (As,
Cu, Cr, and Pb), TN, TP, and TSS content, while the PC2
responsible for the remaining 18.3% of the total variation was
mainly derived from the Zn and TPH content of the sites. As
indicated in Figure 2, the sampling sites were segregated into
three (S1, S2, and S3 as a single cluster as they were placed nearby
and S4) distinct clusters according to their radon concentration
gradients. The contaminated and non-contaminated sites were
separated along with the opposite orientation of the PC1 axis. The
ordinations of contaminated sites were driven by radon and
major heavy metals (As, Cu, Cr, and Pb), whereas the control
site was driven by TN, TP, and TSSs (Figure 2; Supplementary
Figure S1).

Diversity Analysis and Taxonomy
Composition
A total of 85,32,914 clipped reads were generated after removing
the primer sequences of the microbial hypervariable V3–V4
region of the 16S rRNA gene amplicon sequences. After
removing absolute singletons and OTUs that classified to
mitochondria/chloroplast DNA and unclassified sequences on
the phylum level, a total of 54,813 swarm OTUs were obtained
(Supplementary Table S1). Absolute singletons were removed in
this study to reduce the rare biosphere, potential chimera effects,
and PCR artifact (Hassenrück et al., 2016).
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The α-diversity of each site was calculated based on the
rarefied average OTUs per site, which ranged from 10,303 ±
356 to 8556 ± 301. Interestingly, species richness and evenness
of the sites represented by abundance-based coverage estimator
(invS), and Shannon diversity indices were decreasing with
increasing gradient of radon contamination (Figure 3). This
significant level of changes in species richness between the
sites was confirmed by the Kruskal–Wallis test (χ2 � 9.4, df �
3, p-value < 0.05). The Spearman rank correlation test indicated
that within the measured water parameters, radon, TSSs, and four

other heavy metals (As, Cr, Pb, and Cu) significantly influenced
the α-diversity (Supplementary Table S3B).

The ten (R Core Team, 2017) most dominant sequences
obtained in this study were affiliated to Proteobacteria
(32–41% within all samples), Percubacteria (19–30%),
Bacteriodetes (5–33%), and Nitrospirae (3–7%), followed by
Chlamydiae, Microgenomates, Acitobacteria, Chloroflexi,
Omnitrophica, Woesearchaeota (DHVEG–8), Euryarchaeota,
Planctomycetes, Omnitrophica, Thaumarchaeota, and
Ignavibacteria (Figure 5B). The relative sequence abundance

FIGURE 2 | Principal component analysis (PCA) of water physiochemical parameters. The sample sites named S1 (blue), S2 (black), and S3 (red) are radon-
contaminated, while S4 (green) is normal groundwater. PC1 and PC2 explained 73.17 and 18.33% of the total variation, respectively. Here, Rn: radon, and five heavy
metals are As: arsenic, Cu: copper, Pb: lead, Cr: chromium, and Zn: zinc; TN: total nitrogen, TP: total potassium, TPH: total phosphate, and TSS: total suspended solid.

FIGURE 3 | α-diversity of water samples. The α-diversity of the studied sites was measured based on their richness number of OTU (nOTU), inverse Simpson index
(invS), and evenness (Shannon index). The lines here are corresponding median values.
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of the bacterial phylum Nitrospirae showed decreasing trends
(Spearman rank correlation; R � - 0.99, p-value < 0.01) in the sites
with an increase in the concentration of radon, and a reversed
result was observed for the phylum Bacteroidetes (Spearman rank
correlation; R � - 0.71, p-value < 0.02). Among the dominant
phyla, Proteobacteria, Parcubacteria, and Nitrospirae showed
significant differences between the contaminated and non-
contaminated sites (t-test, p < 0.01). In the lower taxonomy
level, the relative sequence abundance affiliated to the family
Comamonadaceae showed decreasing trends (Spearman rank
correlation; R � - 0.80, p-value < 0.01) in the sites with a
radon-contaminated gradient (S1 to S4), while a reversed
order was observed for Chitinophagaceae (Spearman rank
correlation; R � 0.98, p-value < 0.01; Figure 4). At the family
level, a significant difference between the contaminated and
control sites followed a similar result as described in their
respective phylum levels.

At the OTU level, a significant difference in the bacterial
community was observed between radon-contaminated and non-
contaminated sites as indicated in PERMANOVA (R � 0.91, p �
0.001). This was confirmed by cluster analysis based on
Bray–Curtis dissimilarities, which separate the contaminated
(S4) and non-contaminated (S1) sites with an average of 0.85
dissimilarities (Figure 5A). To identify the OTUs responsible for
this difference in community composition between the sampling

sites, ALDEx2 was performed. A total of 52 OTUs representing
Betaproteobacteria (9.7% of the total community), Parcubacteria
(9%), Gammaproteobacteria (5.6%), Sphingobacteriia (5%),
Flavobacteriia (3%), Alphaproteobacteria (2.7%), Candidatus
Azambacteria (2.7%), Candidatus Nomurabacteria (1.5%),
Candidatus Moranbacteria (1.5%), Candidatus Collierbacteria
(1.5%), Nitrospira (1.3%), Chalamydiae (1%), Holophagae
(0.6), Elusimicrobia (0.4%), and Omnitrophica Incertae Sedis
(0.2%) were deferred as differential abundant between the radon-
contaminated and non-contaminated sites (Figure 5C;
Supplementary Figure S2). Within the Betaproteobacteria
OTUs affiliated with Candidatus Nitrotoga (otu24),
unclassified Comamonadaceae (otu25) was significantly
enriched in contaminated sites, whereas Aquabacterium (otu6),
Pseudorhodoferax (otu13), and unclassified Rhodocyclaceae
(otu15) dominated in the control site. The unclassified genera
Parcubacteria (otu4) was significantly dominant in contaminated
sites. It was also observed that within the Gamaproteobacteria,
Nitrospira, and Omnitrophica Incertae Sedis genera, unclassified
Moraxellaceae (otu81), Candidatus Methylomirabillis (otu44),
and Candidatus Omnitrophus (otu56) were significantly
dominant in the non-contaminated site, respectively. Within
the Alphaproteobacteria, the genera Rhizobium (otu36)
showed higher abundance in contaminated sites, which varied
significantly from the noncontaminated site. Similarly, among the

FIGURE 4 | Taxonomic composition of radon-contaminated drinking water samples. Relative sequence abundance of 10 most dominant microbes in the family
level of all samples.
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class Chlamydiae, the Elusimicrobia, and Flavobacteriia genera,
unclassified cvE6 (otu67), unclassified Lineage IV (otu42), and
Chryseobacterium (otu18) significantly showed a higher presence
in the non-contaminated site, respectively.

According to dissimilarities, the sampling sites were projected
in an ordination space and their associated environmental
parameters on NMDS plots with a stress value < 0.01
(Figure 6). Based on this plot, contaminated communities
were dissimilar to the non-contaminated site and were mainly
associated with radon and HM, while the non-contaminated site
was associated with nutrients of the water. The envfit result
showed that Rn, TSSs, HM (Pb, Cu, and As), and TP
coincided most strongly with the microbial community
composition. Redundancy analysis, which was performed to
assess the significant contribution of the tested parameters in
describing the variations in bacterial communities, revealed that
Rn, TSSs, HM (Pb, Cu, As, Cr, and Zn), TP, TN, and TPH
explained 84% of the variation in bacterial communities
(Table 1). Among the parameters, radon itself contributed
24.7%, followed by TSSs (24.5%), Pb (24.2%), Cu (24.2%), As
(23.6%), and TP (22.7%), further confirming the NMDS plot
ordination. Together, NMDS and RDA supported each other’s
results and suggested that Rn, TSSs, Pb, Cu, and As were the most
determinant variables among the parameters and showed
dominancy in the explanation of the microbial community
composition.

DISCUSSION

Radon contamination in the subsurface drinking water and its
effects on human health were well investigated around the world,
including India (Thabayneh, 2015; Naskar et al., 2018). But no
report so far is available on the microbiology of such toxic water.
In this context, this is the first attempt on the characterization of
the indigenous microbial community in drinking water
contaminated with radon and their community difference with
increased radon levels with respect to control water from the
same region, if any. In this respect, the aim of our study was to
reveal the microbial community of radon-contaminated drinking
water while trying to answer the following hypotheses: 1) radon-
contaminated drinking water is a toxic, HM-rich, and nutrient-
limited environment compared to normal water; 2) microbial
richness and evenness change in the water with gradient radon
concentration; 3) the composition of the microbial community
differs with the radon contamination level; and 4) important
environmental parameters including radon may play an
influential role in community changes.

Defining the Sampling Sites Based on
Measured Water Parameters
Sampling sites are selected from Dumka and Godda districts of
Jharkhand, which is a part of a major fault of
Son–Narmada–Tapti, India. Average radon contamination in

FIGURE 5 | Dominant bacterial community of the investigated sites.
Plots’ order from top to bottom: (A) hierarchical cluster dendrogrammeasured
based on Bray–Curtis dissimilarity. (B) Taxonomy composition of 10 most
dominant phyla with higher relative sequence proportions in bar plot. (C)
Differentially abundant OTUs within four sites represented in Dotplot. Dotplot
represents class-level taxonomy on the left side and genus-level taxonomy on
the right side. The size of each dot (0, 5, 10, and 15) represents centered log
ratio (clr)-transformed sequence counts.
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the groundwater of this region is 106.8 Bq/l, higher than that in
Extremadura, Spain (98 Bq/l), but below that in other regions of
India like Garhwal (510 Bq/l) and Jaduguda (123.5 Bq/l) (Naskar
et al., 2018). It is significantly above the safe limit of drinking

water radon (WHO, 2011). The contaminated samples
considered in this investigation showed a significantly elevated
amount of radon and HM but a lower amount of nutrient than
the control sample (ANOVA, p < 0.01). Noteworthily, the radon

FIGURE 6 | Nonmetric multidimensional scaling (NMDS) plot of the bacterial communities of each site (stress � 0.01). Arrows of the NMDS plot indicate envfit
correlations of bacterial community composition with water quality parameters.

TABLE 1 | Contribution of water parameters to variation in bacterial communities of studied groundwater. Total and pure effects (i.e., individual controlling factors of the
analysis) of explanatory factors were calculated by using redundancy 610 analysis (RDA) models. The community variation is expressed by R2 as percentage values. For
the significance test, the respective F-ratios were calculated by performing 1000 Monte Carlo permutation tests indicated by * � significant (p ≤ 0.05), ** � very significant (p ≤
0.01), *** � highly significant (p ≤ 0.001), and not significant (p > 0.05). df: degrees of freedom (numerator, denominator).

Parameter Effect AIC Radj df F p

Radon (Rn) Pure and total 130.50 0.119 1,9 2.864 0.05*
0.247 1,10 4.611 0.001***

Total suspended solid (TSS) Pure and total 130.53 0.117 1,9 2.833 0.05*
0.245 1,10 4.572 0.001***

Cu Total 116.94 0.242 1,10 4.518 0.001***
Pb Total 113.84 0.242 1,10 4.517 0.002**
As Total 112.93 0.236 1,10 4.397 0.001***
Total potassium (TP) Total 113.45 0.227 1,10 4.228 0.004**
Total phosphate (TPH) Total 112.93 0.217 1,10 4.051 0.007**
Zn Total 126.49 0.200 1,10 3.743 0.005**
Cr Total 131.69 0.168 1,10 3.225 0.008**
Total nitrogen (TN) Total 113.16 0.098 1,10 2.194 0.056*
All Pure and total 133.05 0.364 2,9 4.148 0.002**

0.840 7,4 9.239 0.001***

Frontiers in Environmental Science | www.frontiersin.org May 2021 | Volume 9 | Article 5764008

Nayak et al. Microbiology of Radon Water

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


and HM concentrations of the water samples collected from
contaminated sites are much higher, while the nutrient
conditions are lower than their respective permissible limits in
drinking water as proposed by the Bureau of Indian Standard
(BIS) and the WHO (Chaurasia et al., 2018). Heavy metals in our
water samples have a higher value than those in previously
reported hydrocarbon- and radionuclide-contaminated
groundwater (Reimann et al., 1996; Abbai and Pillay, 2013)
and a lower level of nitrogen, phosphate, potassium, and
dissolved solids than other radon-contaminated groundwater
(Idriss et al., 2011). Within the observed water parameters,
radon, HM (As, Cu, Cr, and Pb), and nutrients (TN, TP, and
TSSs) show dominant explanatory power with regard to the
environmental condition of that region and support the
differentiation of the sampling sites as contaminated and non-
contaminated, respectively. The major contaminants in the
groundwater are the main driving forces of groundwater
quality (Yan et al., 2003), which supports our observation as
well. Therefore, our study sites can be defined as nutrient-limited,
and radon- and HM-contaminated environments.

Microbial Richness and Evenness With
Respect to Gradient Radon Contamination
This investigation indicates a gradient decrease of microbial
richness and evenness in the samples with an increasing
gradient of radon contamination (Kruskal–Wallis test; p-value
< 0.05). Based on α-diversity indices, we observed a more diverse
microbial community in the control drinking water than in the
water from radon-contaminated sites. Our finding is in line with
the previously reported groundwater microbial community
where they observed a lower microbial diversity in terms of
reduced bacterial richness and evenness in contaminated
groundwater than normal (Hemme et al., 2015). Probably,
environmental stress including radon, HM, and limiting
nutrients are conditions that influence the diversity of the
microbial community and flourish some specific types of
communities in contaminated water.

Microbial Community Comparison Between
Contaminated and Non-Contaminated Sites
At the family level, significantly dominant sequences obtained
from contaminated sites are Moraxellaceae (under
Proteobacteria), Chitinophagaceae (Bacteroidetes), unclassified
Candidatus Azambacteria (Parcubacteria), unclassified
Candidatus Moranbacteria (Parcubacteria), unclassified
Candidatus Collierbacteria (Microgenomates), and unclassified
Gammaproteobacteria (Proteobacteria), while Comamonadaceae
(Proteobacteria), Rhodocyclaceae (Proteobacteria), Nitrospirales
Incertae Sedis (Nitrospirae), cvE6 (Chlamydiae), unclassified
Woesearchaeota (DHVEG-6) (Woesearchaeota), and
Holophagaceae (Acidobacteria) are abundant in control sites
(t-test; p < 0.05). The bacterial assemblages mentioned above
were found to be dominated in contaminated radon water and
were reported to be abundantly inhabitant in radiation and
chemolithotrophic environments (Poirel et al., 2008; Brown

et al., 2015; Rao et al., 2016; Danczak et al., 2017), thus
supporting our finding. On the other side, dominant families
present in the control water were generally reported to be present
in natural soil and drinking water (Li et al., 2016; Deja-Sikora
et al., 2019). This difference in communities between the
contaminated and control sites is supported by PERMANOVA
(p � 0.001) and Bray–Curtis dissimilarity cluster analysis that
separates the control site from the cluster of contaminated sites.
This investigation reports that within the dominated bacterial
phylum, Nitrospirae showed decreasing trends in the water with
an increased concentration of radon, and a reversed result was
observed for the phylum Bacteroidetes. Nitrospira is a
chemolithotrophic nitrite-oxidizing bacterium that shows the
highest phylogenetic diversity and widest environmental
distribution but is majorly found in fresh water and salt water
(Daims et al., 2016) probably because of its reduced survival and
adaptation strategies with a higher radionuclide-contaminated
water. Meanwhile, Bacteroidetes was previously reported to be
dominant in uranium-contaminated soils and γ-irradiated
sediments (Brown et al., 2015; Yan et al., 2016), so it must
have better survival strategies in such harsh environments. It
is also reported that Bacteroidetes utilizes the catalase gene in
order to show a resistance phenotype against oxidative stress
(Rocha et al., 1996). At the lower taxonomy level, the relative
sequence abundance affiliated to the family Chitinophagaceae
showed increasing trends in the sites with a radon-contaminated
gradient. Their presence in radiation-contaminated sediments is
well documented as they are reported to have catalase and oxidase
genes for radiation-related oxidative stress reduction potential
(Brown et al., 2015; Dahal et al., 2017).

In Dotplot analysis, out of a total of 52 differentially abundant
OTUs, the OTUs that were significantly enriched in
contaminated sites are affiliated to the genera Candidatus
Nitrotoga, unclassified Comamonadaceae, unclassified
Parcubacteria, and the genera Rhizobium. Nitrite-oxidizing
Candidatus Nitrotoga are widespread in a natural environment
(Kitzinger et al., 2018), while unclassified Comamonadaceae is a
dominant member of ancient subsurface and groundwater
microbial communities in sulfidic waters reported as potential
nitrate reducers and sulfur oxidizers (Deja-Sikora et al., 2019).
The bacterial member of Parcubacteria has been reported as a
dominant uncultivable microbe in a radiation-contaminated
groundwater environment with limited metabolic genes,
supporting their presence in contaminated sites which were
considered in this investigation as a radiation-rich nutrient-
deprived environment (Wrighton et al., 2012; Brown et al.,
2015). They are also known to have unique metabolic genome
sequences for energy and nutrient conservation and sustain in
nutrient-limited environments (Wrighton et al., 2012). The
abundance of Rhizobium is also observed in the microbial mat
of mine water contaminated with heavy metals and uranium
(Drewniak et al., 2016). On the other hand, the bacterial members
of the genera Aquabacterium, Pseudorhodoferax, unclassified
Rhodocyclaceae, unclassified Moraxellaceae, Candidatus
Methylomirabillis, Candidatus Omnitrophus, Lineage IV
(Elusimicrobia), cvE6 (Chlamydiae), and Chryseobacterium are
significantly enriched in the control site. Interestingly, most
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of the genera mentioned above are dominantly found in drinking
water biofilm (Aquabacterium), normal groundwater
(Pseudorhodoferax), hard-rock aquifers (unclassified
Rhodocyclaceae), freshwater ponds (unclassified Moraxellaceae and
Candidatus Methylomirabillis), and aquatic environments (cvE6,
Lineage IV, and Chryseobacterium) (Kalmbach et al., 1999; Corsaro
et al., 2002; Song et al., 2008; Herlemann et al., 2009; Wu et al., 2012;
Chen et al., 2013; Ben Maamar et al., 2015; Kolinko et al., 2016).

The presence of microbial members like unclassified
Parcubacteria, Pseudorhodoferax, Sideroxydans, Nitrospira,
unclassified Gammaproteobacteria, unclassified
Betaproteobacteria, unclassified Methylocystaceae, unclassified
Comamonadaceae, and Candidatus Methylomirabilis is well
reported in radionuclide-, HM-, and oil-contaminated
environments (Gihring et al., 2011; Maleke et al., 2015; Shukla
et al., 2017; Kitzinger et al., 2018). Their mechanisms of
interactions with such metal and radionuclide environments
are also well investigated (Gihring et al., 2011; Maleke et al.,
2015; Shukla et al., 2017; Kitzinger et al., 2018). However, a few of
the other genera, such as Aquabacterium, Chryseobacterium,
Acinetobacter, unclassified Woesearchaeota (DHVEG-6),
unclassified cvE6, Sediminibacterium, Dechloromonas,
Cloacibacterium, and Lacibacter, are neither reported to be
present in radionuclide- and HM-contaminated environments
nor are their metabolism and mechanism of interaction
investigated; therefore, they may be the unique microbial
assemblages for the studied areas.

Groundwater usually contains low concentrations of organic
carbon; microbial life there depends on oxidation and
reduction of inorganic compounds for energy (Ben Maamar
et al., 2015). Radiation is potentially lethal to organisms
because cytoplasmic water radiolysis generates quantities of
reactive oxygen species (e.g., HO−, H2O2, and O2

−), which may
react indiscriminately with essential biomolecules, such as
nucleic acids, proteins, and lipids, causing damage (Daly
et al., 2007). Radiation resistance bacteria express DNA
repair proteins, reactive oxygen species scavenger molecules,
and hydrolytic enzymes like oxidase, catalase, and hydrogen
peroxide. Therefore, radiation and HM help in the enrichment
of radiation-resistant, chemolithotrophic, and reactive oxygen
hydrolytic enzyme-producing microbes so that they are
sustained in contaminated sites over the inhabitant microbes
from normal water. A few of the selected members of the
microbial communities in the investigated sites from the
family level, that is, Comamonadaceae, Rhodocyclaceae, and
Pseudomonadaceae, unclassified Parcubacteria, Pseudorhodoferax,
Sideroxydans, Nitrospira, unclassified Gammaproteobacteria,
unclassified Betaproteobacteria, unclassified Methylocystaceae,
unclassified Comamonadaceae, and Candidatus Methylomirabilis,
are well reported to be abundant in radionuclide- and HM-
contaminated environments, and they also pose a strong
radionuclide- and HM-removing ability (Brown et al., 2015;
Drewniak et al., 2016; Yan et al., 2016; Dahal et al., 2017;
Kitzinger et al., 2018; Deja-Sikora et al., 2019); therefore, they
can serve as a potential target for in situ bioremediation through
bioaugmentation or biostimulation.

Influence of Environmental Parameters on
the Microbial Community
It is not easy to assess the environmental impacts on the microbial
community because some specific environmental parameters cannot
explain the total community of a site, as it is the combined effect of all
parameters (Li et al., 2016). Geochemical conditions, in particular the
availability of electron donors and acceptors, are the major driver of
microbial community composition and diversity in heavy
metal–contaminated groundwater (Ben Maamar et al., 2015). Except
TSSs, other toxic HMs and radon have a negative correlation with
bacterial diversity. This effect reflects on the NMDS, envfit, and RDA
results which show that Rn, TSSs, Pb, Cu, As, and TP coincided most
strongly with the microbial community composition of the
contaminated sites. Our observation is well supported by the previous
report that the environmental nutrients such as total carbon, nitrogen,
phosphate, pH, dissolved oxygen, and total suspended solids had strong
impacts on the microbial community, and heavy metals and radiation
have negative effects on environments and select some specific types of
microbes (Arroyo et al., 2015; Brown et al., 2015; Jiang et al., 2016; Li
et al., 2016;Hou et al., 2017).Our investigation is in linewith theprevious
report that indicates shifting of the microbial community where
Bacteroidetes is dominant in the sediments with increasing exposure
to radiation (Brown et al., 2015). Together, NMDS and RDA supported
each other’s results and suggested that Rn, TSSs, Pb, Cu, andAswere the
most determinant variables among the parameters and explained the
microbial community composition.

CONCLUSION

In situ bioremediation through biostimulation of the indigenous
microbial community is a better approach than culture-based
bioremediation (i.e., bioaugmentation), where community
competition and other environmental stress have a negative
impact on the whole process. In such a prospect, total community
characterization and determination of environmental condition is
one of the most important steps to start with. From the present
investigation with high-throughput next-generation sequencing of
16S rRNA gene–based microbial community study and
environmental condition of the radon- and HM-contaminated
drinking water, the following conclusions can be drawn.

(1) Radon-contaminated drinking water is also co-contaminated
with HM and creates high-stress conditions.

(2) This environmental stress reduces the microbial diversity
compared to that in the control and helps in the
enrichment of specific microbial communities
according to the contamination level.

(3) Among the environmental parameters, Rn, Pb, Cu, As,
and TSSs are major driving forces and community
explanatory parameters.

(4) The bacterial members of Moraxellaceae, Chitinophagaceae,
unclassified Candidatus, unclassified Gammaproteobacteria,
Comamonadaceae, Rhodocyclaceae, genus-level unclassified
Parcubacteria, Pseudorhodoferax, Sideroxydans, Nitrospira,
unclassified Gammaproteobacteria, unclassified
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Betaproteobacteria, unclassified Methylocystaceae,
unclassified Comamonadaceae, and Candidatus
Methylomirabilis are known for their environmental
stress resistance potential, and can be utilized for
biostimulation-based in situ bioremediation purposes.

(5) The genera Aquabacterium, Chryseobacterium,
Acinetobacter, unclassifiedWoesearchaeota (DHVEG-6),
unclassified cvE6, Sediminibacterium, Dechloromonas,
Cloacibacterium, and Lacibacter are unique microbial
members in the investigated sites from radon- and
HM-contaminated environments.
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