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Large-scale climate oscillations, particularly the Atlantic Multidecadal Oscillation (AMO) and
the Pacific Decadal Oscillation (PDO), have widespread influences on climate systems
across the Tibetan Plateau (TP). It is understudied how the temporal changes in AMO and
PDO affected growth of vegetation through modifying the local climatic factors in different
areas across the TP. We used the AMO and PDO indices, gridded growing season mean
temperature (TGS), cumulative precipitation (PGS), and normalized difference vegetation
index (NDVIGS) data from 1982 to 2015 to investigate the temporal trends of these
variables and the correlations of the TGS and PGS with each of the AMO and PDO indices as
well as their correlations with the NDVIGS. The results showed that the warming of the TGS
over the TP and the increases of the PGS in western, central, and northeastern areas of the
TP may have been related to an increase of the AMO index and a decrease of the PDO
index. Combining those relationships with the spatial patterns of the TGS-NDVIGS and PGS-
NDVIGS correlations suggested that the changes of the AMO and PDOmay have indirectly
increased the NDVIGS in the central and northeastern areas of the TP by increasing TGS and
PGS, in most parts of the southwestern TP by increasing PGS, and in the eastern and south-
central regions of the TP by increasing TGS. In contrast, the decrease of the NDVIGS in
some areas of the southeastern and southwestern TP may have been associated with a
negative effect of warming as a result of changes in the AMO and PDO. These results
highlight the indirect impacts of changes in large-scale climate oscillations on the growth of
vegetation through modification of local climatic factors across the TP, and they suggest
the substantial spatial heterogeneity of these impacts largely depends on the responses of
vegetation to local climatic factors.
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INTRODUCTION

The Tibetan Plateau (TP), known as the roof of the world, is the
largest and highest highland in the world, with an average
elevation of over 4,000 m and an area of about 2.5 × 106 km2

(Tang et al., 2009). The TP has experienced environmental
degradation aggravated by rapid climate changes (Kang et al.,
2010; Duan and Xiao, 2015). The Atlantic Multidecadal
Oscillation (AMO), a major source of temperature variability
in the Northern Hemisphere (Li et al., 2013; Delworth et al., 2016)
has been shown to modulate TP summer temperatures at
interannual to multidecadal time scales (R2 as high as
0.36–0.50, P < 0.001) (Shi et al., 2019). Most precipitation that
falls on the vegetated portion of the TP during the growing season
is attributable to the South Asian Summer Monsoon (SASM)
(Conroy and Overpeck, 2011), while a recent study claimed 63%
water vapor of TP precipitation is provided by local moisture
recycling (Curio et al., 2015). Both the AMO and SASM are
controlled by sea surface temperature (SST) over the North
Pacific region [e.g., the Pacific Decadal Oscillation (PDO)]
through alternating SST of the tropical Indian Ocean and
hence by the thermal contrast between the TP and tropical
Indian Ocean (Li and Yanai, 1996; Krishnamurthy and
Krishnamurthy, 2014). Other large-scale climate variabilities,
such as the ENSO (El Niño Southern Oscillation) signal, are
detected in the SASM as well, but the impacts are highly variable
(Kumar et al., 1999) and dependent on the phases of the PDO
(Yoon and Yeh, 2010; Feng et al., 2014), and the Indian Ocean
Dipole Mode (Ashok et al., 2001). The changes of the AMO and
PDO may therefore have major impacts on climate over areas of
the TP where the growth of vegetation is sensitive to climate
change.

Mean annual temperature ranges from −15 to +10°C from the
high to low elevations, and cumulative annual precipitation
ranges from less than 100 mm to more than 1,000 mm from
the northwestern to southeastern TP (You et al., 2013; Maussion
et al., 2014), whereas the potential evapotranspiration, which
ranges from about 700 mm year−1 to about 1,500 mm year−1

(Zhang et al., 2007), is substantially higher than precipitation in
most areas of the TP. The vegetation types from the southeast to
northwest are mainly forest, alpine meadow, alpine steppe, and
alpine desert; alpine shrubland and alpine cushion vegetation are
found in some areas (Geng et al., 2012). The growth of vegetation
in the TP is known to be sensitive to climate change (Shen et al.,
2015a; Shen et al., 2015b; Gao et al., 2016; Shen et al., 2016; Dorji
et al., 2018; Hopping et al., 2018; Wang et al., 2020). The
responses of the growth of TP vegetation to climate changes
have major impacts on carbon cycles and terrestrial surface water,
regulating climate both within and beyond the TP (Zeng et al.,
2008; Shang et al., 2013; Shen et al., 2015c; Zhao et al., 2016; Ma
et al., 2018; Zhao et al., 2019; Fu et al., 2020). Moreover, the
changes in the growth of vegetation can also influence ecosystem
services in the TP (Klein et al., 2008; Tang et al., 2015; Huang
et al., 2016b; Hopping et al., 2018; Kan et al., 2018). Determining
how the growth of vegetation responds to climate changes should
therefore enhance our understanding of how ecosystems within
the TP respond to climate change and allow for a more realistic

representation of relevant processes in land surface models,
which are essential for the simulation and management of
ecosystems within the TP.

The TP has experienced significant climatic warming over the
past five decades (Lu and Liu, 2010; Cai et al., 2017; Zhong et al.,
2019), and the warming has accelerated since the 1980s (Lu and
Liu, 2010; Zhong et al., 2019). The mean annual temperature has
increased faster in the northeastern and northwestern areas than
in the southeastern areas of the TP over the past five decades (Li
et al., 2010; Deng et al., 2017). Annual precipitation has increased
substantially in the western, central, and northeastern areas but
has decreased slightly along the southeastern and southwestern
edges of the TP over the past 40 years (Zhang et al., 2017).
Climatic change has resulted in substantial changes in the growth
of vegetation across the TP (Piao et al., 2012; Lehnert et al., 2016;
Zhu et al., 2016; Zhang et al., 2018; Zhong et al., 2019). For
instance, climate warming not only advanced vegetation green-up
date but also extended the length of the growing season across the
TP (Liu et al., 2006; Piao et al., 2011; Dong et al., 2012) Shen et al.
(2016) have reported that nighttime warming advanced
vegetation green-up date in most area across the TP, likely
nighttime warming reduced low temperature constraints.
Meanwhile, increasing temperatures are the main factors for
the increase in net primary productivity of vegetation on the
TP (Gao et al., 2013). However, climate warming has a negative
impact on the net primary productivity in arid regions, mainly
due to increasing temperatures leading to decline in water
availability (Fu et al., 2013). However, the manner by which
the growth of vegetation has responded to climatic factors shows
considerable spatial heterogeneity (Piao et al., 2012; Huang et al.,
2016a; Hua and Wang, 2018; Li et al., 2018; Zhong et al., 2019).
Increasing temperatures are recognized to have enhanced
vegetation growth in central and southeastern areas of the TP,
but they have depressed vegetation growth in southwestern and
northeastern areas, likely by causing drought stress (Du et al.,
2015; Hua and Wang, 2018; Li et al., 2018). Moreover, when we
focused on the areas where higher temperatures enhanced the
growth of vegetation, we found that the growth of vegetation was
more sensitive to temperature in alpine meadow than in alpine
steppe (Zhang et al., 2014). This is mainly because the alpine
meadow is distributed in the eastern and southern TP with more
precipitation. Therefore, increasing temperatures are the main
factor to enhance the growth of vegetation (Zheng et al., 2020).
The effects of temporal changes in precipitation on the growth of
vegetation have also varied spatially. An increase of precipitation
had positive impacts on the growth of vegetation in the northeast
and southwest of the TP (Du et al., 2015; Li et al., 2018; Li et al.,
2020) but negative impacts in the southeast of the TP (Du et al.,
2015; Hua and Wang, 2018). In addition, in both alpine steppe
and alpine meadow, higher precipitation had positive impacts on
the growth of vegetation, but the vegetation growth of alpine
steppe was more sensitive to precipitation than that of alpine
meadow. This is mainly because the alpine steppe is distributed in
arid regions of the TP, where precipitation plays a primarily
regulating role in the growth of vegetation (Zheng et al., 2020).
Overall, there was high spatial heterogeneity in terms of the
correlation between the growth of vegetation and local climatic
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factors as well as in the sensitivities of the growth of vegetation to
temperature and precipitation.

However, a few studies have assessed the direct correlation
between the growth of vegetation in the TP and large-scale
climate oscillations (Shi et al., 2018; Yu et al., 2018; Cheng
et al., 2019). For example, Cheng et al. (2019) have calculated
the correlation coefficient between four ENSO indices and tree
growth in the southern TP and have reported that tree growth has
been sensitive to the ENSO since the 1970s. On the basis of a
correlation coefficient between the spring Arctic Oscillation index
and the start of the vegetation growing season, Yu et al. (2018)
have reported that the changes in the start of the vegetation
growing season in the eastern area of the Three-River Source
Region were influenced by the Arctic Oscillation from 2000 to
2013. Shi et al. (2018) have calculated the correlation coefficients
between the growth of vegetation in the TP and the PDO or the
North Atlantic Oscillation. Their results show considerable
spatial variations in both the sign and magnitude of those
correlations. The oversimplified correlations between large-
scale climate oscillations and vegetation growth have ignored
the high spatial heterogeneity of the vegetation growth response
to local climatic conditions and the complex teleconnections
between local climatic conditions and large-scale climate
oscillations. Numerous studies have shown that the PDO and
AMO are key factors that drive the thermal and hydrological
conditions over the TP (Gou et al., 2014; Li and Li, 2017; Shi et al.,
2017; Shi et al., 2019). We believe exploring the effects of PDO
and AMO on vegetation growth required detailed inspections of
the teleconnections of local and large scale climatic factors, and
the response pattern of vegetation growth to local climate.

In this study, we investigated how temporal changes in the
AMO and PDO impact the growth of vegetation through
modifying local climatic conditions in different areas across
the TP. We first determined the correlation coefficients
between either the AMO or PDO index and one or the other
of the growing season mean temperature (TGS) or cumulative
precipitation (PGS). We also calculated the correlation coefficients
between the growing season–normalized difference vegetation
index (NDVIGS) and either the TGS or PGS across the TP during
the period 1982–2015. We then examined the temporal trends of
those variables (AMO index, PDO index, TGS, PGS, and NDVIGS).
Finally, we explained how the interaction between temporal
variations of the large-scale climate oscillations and local
climatic factors led to variations of the growth of vegetation
across the TP.

MATERIALS AND METHODS

Large-Scale Climate Oscillation Index
The AMO index was defined as the average of monthly SST over
the extra-tropical North Atlantic (25–60°N, 7–75°W) minus the
linear trend of global mean temperature (van Oldenborgh et al.,
2009). This approach can remove the influence of ENSO at
tropical latitudes and reduce the influence of global warming
on the average SST. The PDO index, which was first developed by
Mantua et al. (1997), is defined as the leading principal

component of monthly SST anomalies in the North Pacific
Ocean (poleward of 20°N). These data were obtained from the
Koninklijk Nederlands Meteorologisch Instituut climate explorer
at https://climexp.knmi.nl/. Seasonally averaged AMO and PDO
indices from January to August and from April to July (Shi et al.,
2010; Shi et al., 2019), respectively, for every year from 1982 to
2015 were used to study the impacts of large-scale climate
oscillations on local climatic factors.

Gridded Temperature and Precipitation
Gridded monthly mean temperature and cumulative
precipitation data over the period 1982–2015 were taken from
the Climatic Research Unit, University of East Anglia (http://data.
ceda.ac.uk, accessed on 11 June 2019). The Climatic Research
Unit Time-Series version 4.03 (CRU TS4.03) has a spatial
resolution of 0.5° by 0.5° (Harris et al., 2014). For each pixel,
TGS and PGS were calculated as the mean temperature and
cumulative precipitation, respectively, during the growing
season (May–September) (Shen et al., 2015c) for every year.

Normalized Difference Vegetation Index
Growth of vegetation across the TP over the period 1982–2015
was quantified by the NDVI. Calculation of the NDVI makes use
of the spectral signature of chlorophyll absorption and mesophyll
scattering on reflected radiation (Tucker, 1979; Shen et al., 2008)
and has been widely used as a surrogate of the growth and
productivity of vegetation at regional and global spatial scales
(Beck and Goetz, 2011; Gonsamo et al., 2016; Huang et al., 2016a;
Pan et al., 2018). We used the third-generation NDVI derived
from the Advanced Very High Resolution Radiometer (AVHRR)
produced by the Global Inventory Modeling and Mapping
Studies (GIMMS) group at a spatial resolution of 1/12° and a
temporal resolution of 15 days (https://ecocast.arc.nasa.gov/data/
pub/gimms/3g.v1/, accessed in November 2017). Multiple
measures were taken to minimize the errors caused by the
update of sensors, atmospheric effects, orbital drift, and sensor
attenuation (Pinzon and Tucker, 2014). To match the gridded
temperature and precipitation data, the NDVI data were
aggregated to 0.5° by averaging the gridded NDVI values.
Pixels with mean annual NDVIs less than 0.10 were
considered to contain sparse vegetation and were excluded in
this study (Cong et al., 2017). The NDVIGS was then calculated as
the mean of the maximum NDVI for each month from May to
September (An et al., 2018).

Analyses
To assess the impacts of temporal changes of the climate
oscillations on local climatic factors, we calculated the Pearson
correlation coefficient between the time series (1982 to 2015) of
each of the AMO and PDO indices and the time series of each of
the TGS and PGS for each pixel. Then, to assess the impact of TGS

or PGS on NDVIGS, we also calculated the Pearson correlation
coefficient between the NDVIGS and TGS or PGS, respectively.
Finally, the temporal trends of these variables (AMO index, PDO
index, TGS, PGS, and NDVIGS) over the period 1982–2015 were
assessed on the basis of the slopes of the ordinary least-squares
regression lines relating year (independent variable) to the
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variable (dependent variable). All statistical significance levels
reported in this study were determined on the basis of two-tailed
Student’s t-tests.

RESULTS

Correlation Between AMO and PDO Indices
and Climatic Factors
The correlation coefficients between each of the large-scale
climate oscillation indices and the annual mean TGS or PGS for
each pixel showed that both the TGS and PGS were influenced by
the AMO and PDO indices across the TP (Figure 1). Regionally
averaged TGS values were significantly related to AMO indices
(R � 0.57, P < 0.01). Almost throughout the vegetated portion
of the TP (98.7% of the pixels), AMO indices and TGS values
were significantly (P < 0.05; hereafter, “significant” means P <
0.05 unless otherwise stated), positively correlated (Figure 1A).
The correlation coefficient between regionally averaged PGS
values and AMO indices was also significant and positive (R �
0.41). In 93.4% of all pixels, PGS values were positively
correlated with AMO indices, and the positive correlations
were significant in 24.4% of the pixels, most of which were
distributed in the northeastern and central portion of the TP
and in the region between 84 and 90°E (Figure 1B). Negative
correlations between PGS values and AMO indices were found
only at the eastern and southwestern edges of the TP, and none
were significant.

In contrast, regional averages of both TGS (R � −0.42, P <
0.05) and PGS (R � −0.49, P < 0.01) were negatively correlated

with the PDO index. The TGS was negatively correlated with
the PDO index in all the pixels. The correlations were
significant in 55.2% of the pixels, mainly in the center-
northeast and northwest areas of the TP (Figure 1C). The
correlations between the PGS and the PDO were negative in
85.8% of the pixels. Those correlations were significant in
36.0% of the pixels, mainly in the center of the TP and in the
region between 84 and 92°E (Figure 1D). The areas where
there were positive correlations between the PGS and the PDO
index were in the eastern and northwestern edges; all of those
correlations were insignificant. In the remaining areas, most of
the correlations were negative and insignificant.

Correlation Between NDVIGS and TGS or PGS
When the data were averaged over regions, the interannual
variations of NDVIGS were significantly related with TGS (R �
0.41) but not with PGS (R � 0.18, P > 0.05). For 73.0% of all pixels,
the NDVIGS was positively correlated with TGS, and the
correlations were significant for 23.7% of all pixels, most of
which were distributed in the northeast, center, and center-
east areas of the TP (Figure 2A). Negative correlations
between NDVIGS and TGS occurred mainly in the
southwestern quarter of the TP and were significant in only
2.7% of the pixels. The correlations between NDVIGS and PGS
were positive in 71.6% of the pixels and were significant for 18.5%
of the pixels, most of which were in the southwestern quarter and
northeast TP (Figure 2B). The negative correlations between
NDVIGS and PGS were associated with pixels locatedmostly in the
eastern and center-south areas of the TP, and the negative
correlations were significant in only 1.4% of the pixels. The

FIGURE 1 | Spatial pattern of correlation coefficients (R) between each of the AMO and PDO indices and each of the annual TGS and PGSmetrics across the TP over
the period 1982–2015. R � ±0.44, R � ±0.34, R � ±0.29, and R � ±0.23 correspond to significance levels P � 0.01, P � 0.05, P � 0.10, and P � 0.20, respectively. Pixels
with dots were statistically significant (P < 0.05). Bottom-left inset in each map shows the percentage of pixels in each interval of correlation coefficient with the interval
value indicated by the color in the legend in the right. The pixels with mean annual NDVI lower than 0.10 were excluded (see method for detail).
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partial correlation between NDVIGS and TGS (or PGS) controlling
PGS (or TGS) produced similar results (Figure S1).

Temporal Trends of the AMO and PDO
Indices, TGS, PGS, and NDVIGS
There was a significant (P < 0.01), positive temporal trend in
the AMO index, whereas the PDO index decreased
significantly over the period (Figure 3A). The regionally
averaged TGS increased substantially at a rate of 0.22°C
decade−1 (P < 0.01) over the period (Figure 3B). In most
areas, the trends were 0.10–0.30°C decade−1 (Figure 4A). The
temporal trend of the TGS in most (96.8%) of the pixels was
significant and positive, except for a few pixels to the south of
the center of the TP, where the trends were positive but
insignificant. In contrast, the temporal trend of the regional
average of the PGS was positive but not significant (P > 0.10)
(Figure 3B). This lack of significance was associated with the
spatial inconsistency of the PGS trends at the pixel level. The
PGS decreased insignificantly by less than 10 mm decade−1 in
the southeastern area and along the southwestern edge of the
TP (Figure 4B). In the remaining areas, the temporal trends
were mostly 0–20 mm decade−1, except for the center-south
area, where the trends were mostly 20–40 mm decade−1. The
trends of PGS were significantly positive in only 9.5% of the
pixels, in the center-north and in the northeast of the TP.

The temporal trend of the regional average of the NDVIGS
was positive, 2.67 × 10–3 decade−1, but marginally significant
(P < 0.10) (Figure 3C). The temporal trends of the NDVIGS
were positive in 75.6% of all the pixels, which were widely
distributed geographically, with the exception of the southeast
area of the TP (Figure 4C). In most areas with positive trends,
the trends were 0–10 × 10–3 decade−1; trends larger than 10 ×
10–3 decade−1 were mostly in the northeast of the TP. The
pixels where the trends of the NDVIGS were significant and
positive accounted for 29.0% of all the pixels and were
distributed mainly in the northeast and north of the center;
some were scattered in areas south of the center and along the
southwestern edge of the TP. NDVIGS decreased significantly
in only 4 pixels.

FIGURE 2 | Spatial pattern of correlation coefficients between the NDVIGS and annual TGS (A) or PGS (B).R � 0.44,R � ±0.34, R � ±0.29, andR � ±0.23 correspond
to significance levels P � 0.01, P � 0.05, P � 0.10, and P � 0.20, respectively. Pixels with dots were statistically significant (P < 0.05). Bottom-left inset in eachmap shows
the percentage of pixels in each interval of correlation coefficient with the interval value indicated by the color in the legend in the right.

FIGURE 3 | Temporal trends of AMO and PDO indices (A); regionally
averaged TGS and PGS (B); and NDVIGS (C).
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Impact of Temporal Changes in AMO/PDO
on Vegetation Growth
We investigated the cross-correlations between the AMO/PDO
and TGS/PGS as well as between the NDVIGS and TGS/PGS. We
also investigated the temporal trends of these variables (AMO
index, PDO index, TGS, PGS, and NDVIGS). The interpretation of
those correlations and trends indicated that the increasing AMO
index (the decreasing PDO index) indirectly enhanced the
growth of vegetation in the northeast, central, and southwest
marginal areas of the TP. Those areas accounted for 36.4%

(32.3%) of the pixels associated with increasing trends of TGS

and PGS (Figures 5A,B). In the east and south central areas of
the TP, the increasing AMO index (decreasing PDO index) had
indirect positive effects on the growth of vegetation in 24.6%
(25.7%) of all pixels associated with increasing TGS. In most
areas of the southwestern TP, the increasing AMO index
(decreasing PDO index) could also have indirectly resulted in
the increasing trend of the NDVIGS that occurred in 13.1%
(13.1%) of the pixels associated with increasing PGS. In addition,
for 12.0% (12.0%) of all pixels, the increasing AMO index
(decreasing PDO index) had indirect negative effects on the
growth of vegetation associated with increasing TGS, mainly in
the areas southeast and southwest of the center of the TP. Using
the partial correlation between NDVIGS and TGS (or PGS) gave
similar results (Figure S2).

DISCUSSION

As has been indicated in previous studies, the growth of
vegetation, including an extension of the growing season and
increase of the NDVI and net primary production, has been
substantially enhanced as a result of rapid warming and increased
precipitation during the past 40 years (Liu et al., 2006; Chen et al.,
2014; Zhang et al., 2018). Moreover, because the changes in large-
scale climate oscillations have had a strong impact on local
climatic conditions across the TP (Gou et al., 2014; Shi et al.,
2017; Shi et al., 2019), some studies have asserted that these
climate oscillations have affected the growth of vegetation based
on the direct correlations between them (Shi et al., 2018; Yu et al.,
2018). Our results differed from these conclusions. Instead, they
suggested that the impacts of temporal changes of the AMO and
PDO on the growth of vegetation were largely dependent on the
responses of vegetation to local climatic factors that were affected
by the large-scale climate oscillations.

Moreover, our results indicated that the impacts of the AMO
and PDO on the growth of vegetation were spatially
heterogeneous. The spatial pattern of such impacts depended
mainly on the spatial characteristics of the responses of the
growth of vegetation to local climate factors rather than on
that of the impacts of large-scale climate oscillations on local
climate factors. (Figure 5). Such pattern is substantially different
from that for the direct correlation between AMO (PDO) index
and NDVIGS (Figure 6). A number of studies have tried to assess
the impacts of remote climate oscillations on the local growth of
vegetation by using direct correlations between them on the TP
(Shi et al., 2018) or elsewhere (Brown et al., 2010; Li et al., 2015;
Zhu et al., 2017; Araghi et al., 2019). However, our study indicated
that directly correlating the growth of vegetation with the AMO
or PDO while ignoring the underlying mechanisms linking them
could be misleading over the TP. Such correlations should be
interpreted with caution.

The oscillatory behavior between the warm and cold states of
the AMO has largely modulated the large-scale climate variations
in the northern hemisphere (Delworth et al., 2016). Our results
suggest that the AMO variation might have been associated with
changes of TGS throughout the TP and with the PGS in most areas

FIGURE 4 | Spatial pattern of temporal trends in TGS (A), PGS (B), and
NDVIGS (C). Pixels with dots were statistically significant (P < 0.05). Bottom-
left inset in each map shows the percentage of pixels in each trend interval.
The trend interval values are indicated by the color scale to the right.
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of the TP during the study period. These results are consistent
with the conclusions of several previous studies (Feng and Hu,
2008; Wang et al., 2013; Li and Li, 2017; Shi et al., 2017). A recent
study has shown that half of the variability of TP summer
temperatures can be explained by the AMO, and an
atmospheric general circulation model simulation has
suggested that a warm (cold) AMO leads to an anomalously
high (low) surface pressure, a corresponding downward (upward)
atmospheric motion over the TP, and hence high (low) TP
summer temperatures (Shi et al., 2019). The in-phase
teleconnection pattern of AMO and TP summer temperature
reflects the fact that the warm phase of AMO can cause land
surface heating over TP, which enhanced the thermal contrast

between TP and surrounding tropical oceans, therefore increased
summer monsoon intensity and concurrent precipitation (Feng
and Hu, 2008; Wang et al., 2013; Li and Li, 2017). The indirect
connection substantially explained the observed significant
correlation between growing-season precipitation and AMO.
While in the northern part of the TP where the precipitation
was dominated by the westerlies, Huang et al. (2015) have found
that the summer AMO index was significantly and positively
correlated with summer precipitation (R � 0.77, P < 0.01) as well.
The connection of Atlantic SST variability, westerlies intensity
and precipitation of the none-monsoon region of central Asia was
reported (Li et al., 2008; Yu et al., 2014; Zhang et al., 2016; Luo
et al., 2018).

FIGURE 5 |Different modes showing how the temporal changes of the AMO (A) and PDO (B) indices affected the NDVIGS by modifying the TGS or PGS. Bottom-left
inset in eachmap shows the percentage of pixels in eachmode. Themodes are indicated by the color in the legend at the bottom of eachmap. The upward or downward
arrow to the right of each variable indicates positive or negative trends of that variable. A positive or negative sign near the line between two variables indicates positive or
negative correlations between them. If two variables connected by a line were positively (negatively) correlated, we considered only the case in which the trends of
the two variables shared the same direction (opposite directions), and these pixels are colored in green and yellow on the map. Otherwise, the pixel was colored gray.

FIGURE 6 | Spatial pattern of correlation coefficients between the NDVIGS and annual AMO (A) or PDO (B) index. R � ±0.44, R � ±0.34, R � ±0.29, and R � ±0.23
correspond to significance levels P � 0.01, P � 0.05, P � 0.10, and P � 0.20, respectively. Pixels with dots were statistically significant (P < 0.05). Bottom-left inset in each
map shows the percentage of pixels in each interval of correlation coefficient with the interval value indicated by the color in the legend in the right.
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Shi et al. (2019) has reported that a warm (cold) AMO was
associated with decreased (increased) summer precipitation,
which is contradictory with our findings. However, the
precipitation and AMO index data used by Shi et al. (2019)
are completely different from ours in this study: the precipitation
data of Shi et al. (2019) are model output instead of instrumental
observation, and the AMO index was smoothed and
normalized data.

Consistent with earlier findings over TP (Gou et al., 2013; Gou
et al., 2014), the decreased PDO was apparently a key factor
responsible for the PGS increase in most regions of the TP during
the study period. PDO can regulate the intensity, persistence and
onset time of the SASM and thus precipitation over the TP (Wu
and Mao, 2019): A warm (cold) PDO induces a decreased
(increased) SST over the tropical Indian Ocean (Yang et al.,
2018), and therefore a reduced (enhanced) land-ocean thermal
contrast and weakened (strengthened) SASM intensity (Dong
and Xue, 2016), characterized by an earlier (delayed) onset of
monsoon precipitation (Watanabe and Yamazaki, 2014). In
contrast, the evidence for the impacts of the PDO on TGS is
still limited.

CONCLUSION

We investigated the impacts of temporal changes of the AMO and
PDO on local climate characteristics and subsequently on the
growth of vegetation across the TP during the period 1982–2015.
The increasing AMO (decreasing PDO) might have contributed
to the increases of the TGS throughout the TP and of the PGS in
most areas of the TP. The increase in the growth of vegetation in
the northern areas of the TP was likely related to the increases of
the TGS and PGS; in most areas of the southwestern TP to
increases of the PGS; and in the south central areas and in
some areas in the eastern TP to increasing TGS. The decrease
in the growth of vegetation in some areas of the southeastern and
southwestern TP was likely related to the increase of the TGS.

Collectively, these results suggest that the increase of the AMO
(decrease of the PDO) may have enhanced the growth of
vegetation in the central and northeastern areas of the TP by
increasing TGS and PGS, in most areas of the southwestern TP by
increasing PGS, and in the east and south central regions by

increasing the TGS. However, the increase of the AMO
(decrease of the PDO) apparently had negative effects on
the growth of vegetation in some areas of the southeastern
and southwestern TP by increasing the TGS. The spatial pattern
of the impacts of the AMO and PDO on the growth of
vegetation was therefore dependent on the responses of
growth of vegetation to local climatic factors. Our study
also suggests that correlations between remote, large-scale
climate oscillations and the local growth of vegetation
should be interpreted with caution.
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