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The aim of this paper is to provide an overview of the interrelationship between data

science and climate studies, as well as describes how sustainability climate issues can

be managed using the Big Data tools. Climate-related Big Data articles are analyzed

and categorized, which revealed the increasing number of applications of data-driven

solutions in specific areas, however, broad integrative analyses are gaining less of a focus.

Our major objective is to highlight the potential in the System of Systems (SoS) theorem,

as the synergies between diverse disciplines and research ideas must be explored

to gain a comprehensive overview of the issue. Data and systems science enables a

large amount of heterogeneous data to be integrated and simulation models developed,

while considering socio-environmental interrelations in parallel. The improved knowledge

integration offered by the System of Systems thinking or climate computing has been

demonstrated by analysing the possible inter-linkages of the latest Big Data application

papers. The analysis highlights how data and models focusing on the specific areas of

sustainability can be bridged to study the complex problems of climate change.

Keywords: big data, climate change, modeling, systems of systems, data science, climate computing

1. INTRODUCTION

Climate change is a pressing issue of today, for which data-based models and decision support
techniques offer a more comprehensive understanding of its complexity. The aim of this paper is to
reveal data-based techniques and their applicability in terms of climate researches. More precisely,
how can Big Data, through data science answer sustainability climate issues and be applicable in
scientific researches and decision sciences in an integrated manner.

The overview is guided through three closely related notions, namely, (1) data science as a novel
interdisciplinary field connected to (2) machine learning that is a tool for improving automatic
prediction or decision processes, and (3) Big Data which foster processing and connecting large
amount of heterogeneous data. The focus point of this research is the interconnectedness of the
complex climate-related systems, for which exploration Big Data provides an efficient toolbox.
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Research questions formulated three aspects, which answering
kept in focus through the whole paper:

• How and when Big Data appears in climate-related studies?
• What researches have been made in regard with Big Data

applications in climate studies, and how they are structured?
• How to integrate the knowledge accumulated in diverse

specific researches?

The year 2015 brought about further excitement in the field of
research directions concerning climate change, as the United
Nations declared 17 sustainable development goals, of which
SDG13 is “Take urgent action to combat climate and its
impacts” (UN, 2016) and the Paris Agreement has been signed,
that concerning the mitigation of greenhouse gas emissions,
adaptation and finance in 2015 with the specific aim of keeping
global average temperature rises well below 2◦C above pre-
industrial levels and then continuing efforts to keep global
temperature rises below 1.5◦C above pre-industrial levels,
recognizing that this will significantly reduce the risks and
impacts of climate change (Rogelj et al., 2016). This kind
of organizing principle supports the complex analysis of the
classical disciplinary sciences with a holistic, interdisciplinary
approach. New types of approaches require much more complex
analyses and models and, therefore, several orders of magnitude
more data, which brought Big Data to life as a stand-alone
scientific discipline.

Big Data-based tools are already widespread in this new
complex science, for example, to monitor seasonal changes in
climate change (Manogaran et al., 2018), understand climate
change as a theory-guided data science paradigm (Faghmous
et al., 2014), learn how to manage the risks of climate change
(Ford et al., 2016), explore soft data sources, e.g., Twitter
(Jang et al., 2015), or demonstrate the potential of Systems of
Systems (SoS), for instance, the exploration of the structure and
relationships across institutions and disciplines of a global Big
Earth Data cyber-infrastructure: the Global Earth Observation
System of Systems (GEOSS) (Craglia et al., 2017).

Today, it is obvious that sustainability science is intertwined
with data science, however, with the support of the business
model of the circular economy (Jabbour et al., 2019), the
complexity of the problem repository has further increased, so
there is an urgent need to include data and analysis methods
in the framework, whereas research results from different fields
can be used in other fields. Furthermore, trends in climate
and sustainability science are driving models toward higher
resolution, greater complexity, and larger ensembles, which
calls for multidisciplinary approaches in climate computational
sciences (Balaji, 2015). This research provides a higher-level
overview of the interconnectedness of disciplines, systems, data,
and tools related to climate change, exploring further focal
points concerning the need a deeper level of integration, because
a disconnection between important industry initiatives and
scientific research is still experienced (Nobre and Tavares, 2017).
We propose to solve these integration tasks and disconnections
by the System of Systems thinking.

This overview seeks to address these shortcomings.
Information sources (data, news, scientific databases) can
be linked, drawing attention to the future importance of open
linked data. The present research draws attention to System
of Systems (SoS) thinking, as the drivers and effects of climate
change, as well as resilience and adaptation, can only be achieved
through the timely recognition and exploitation of synergies and
trade-offs between the new research directions.

The researchmethodology outlines firstly, the identification of
sustainability science problems in section 2, which revealed the
connected issues and tasks as well as the requirements needed
to succeed. It ensured that sustainable operation of nature and
society demands the approach of systems of system along with
the integration of Big Data applications into climate-related
scientific, societal, and political researches. This is in line with
the growing risk of uncertainty zones highlighted in the planetary
boundary framework (Steffen et al., 2015). Then, the existing
applications of the related data analysis in the field was explored.
For a deeper and narrowed insight, literature review was based
on the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) method, which contributes to the
exploration and evaluation of related articles. The search has
a clear and narrowed focus on the multidisciplinary nature of
the issue, therefore the generic evaluation is not in purpose.
Fifty-seven review articles were individually analyzed to identify
focus areas and research gaps in the Big Data applications
in climate change researches. Systematic meta-analysis was
used to identify how data are clustering into diverse focus
ares and to extract valuable structural information. The co-
occurrences of keywords were examined with regard to 442
articles describing the relationship between climate change and
Big Data.

In the following sections, the aforementioned research
questions are being unfolded and answered through revealing
the increasing importance of the System of Systems theorem.
Synergies between new research directions and disciplines must
be explored to determine the drivers and effects of climate
issues as well as provide an efficient strategic adaptation
and mitigation plan that also consider socio-environmental
factors. Our proposed SoS framework is a response to this
integrated knowledge management , as a first step toward
climate computing.

In section 2, the sustainability science theorem questions
are answered considering the essential need of data science
applications. In section 3, heterogeneous data management as
well as Big Data tools and techniques are emphasized.

The systematic review of climate change analyses can be found
in section 4, which includes the connections between Big Data
and climate in section 4.1 as well as a critical summary of different
methods in section 4.2. The social aspects are highlighted in
section 4.3. Based on the overview, from the new climate-related
research findings, a specific SoS framework is presented in section
4.4 and the intertwining of the SoS and SDGs are discussed in
section 5, where the suggestions for future research directions
and applications are summarized.
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2. PROBLEMS OF SUSTAINABILITY
SCIENCE

The complexity of climate issues requires adaptive strategies for
public policy (Di Gregorio et al., 2019), actions to incite social
behavior (Xie B. et al., 2019), and the development of regulatory
and market-simulating responses to economic life (Wright and
Nyberg, 2017). To meet this complex societal need, research has
focused on understanding the causes of climate change (Hegerl
et al., 2019), the development of predictive models (Du et al.,
2019), and mitigation solutions (Gomez-Zavaglia et al., 2020), as
well as the exploration of opportunities to shape social attitudes
(Iturriza et al., 2020).

An interdisciplinary approach is essential in terms of
the identification of almost every climate-related problem
and development of their solutions. This interdisciplinary
perspective has formed sustainability science theorem to gain a
comprehensive understanding of the interrelationship between
environment and society (Kates et al., 2001). This theory focuses
on transdisciplinary questions, which can only be answered by
applying of data science tools.

• How can the dynamic relationship between nature and society

be described and analyzed?
Systems Dynamics Modeling tends to be a commonly used
tool when describing and analysing the dynamic interrelation
of environment, economy, and society (Honti and Abonyi,
2019). This concept is clearly characterized by the World3
model, which describes the relationship between population,
industrial growth, food production, and ecosystem constraints
over time for the Club of Rome in the book entitled “The
Limits to Growth” (Meadows et al., 1972). The exploration
of the relationship between the state variables of the model
requires targeted interdisciplinary research. The tools of
data science can render this research more efficient with
the automated generation and validation of relationship
hypotheses (Sebestyén et al., 2019), as data-based models
beyond the exploration of probabilistic correlations can
provide information on causation (Dörgő et al., 2018). One
of the most significant tasks for the more in depth analysis
of climate effects is the integration and joint management
of heterogeneous data and information. The proof of this
potential approach is a case study that interlinks socio-
economic variables to explore the effect of the climate on
global food production systems (Fischer et al., 2005).

• How can delays, inertia, and uncertainty in models be handled?
To quantify the impact of uncertainties inherent in climate
variables, the evaluation of Representative Concentration
Pathways RCP 4.5 and RCP 8.5 CMIP models developed to
forecast climate change (Taylor et al., 2012; Eyring et al., 2016),
by using Monte Carlo simulations can be suitable (Mallick
et al., 2018). The most important task ahead is the integrated
development of targeted solutions for designing, evaluating
and integrating simulation studies to quantify uncertainty and
risk in the light of environmental and social data (Climate
Change, 2014). For this reason DKRZ carried out extensive
simulations with the Earth system model MPI-ESM with

respect to the CMIP5 project and the IPCC AR5, presenting
a selection of visualizations for different key climate variables
and for the different scenarios (Klimarechenzentrum, 2021).

• How can the features concerning the vulnerability of socio-
environmental systems be explored?
The conceptual framework of vulnerability is grounded by
the Intergovernmental Panel on Climate Change (IPCC).
The complex impact chains of vulnerability demand the
identification and integration of non-climatic factors into
climate models, in addition the development of models
describing adaptability as well as the estimation of expected
damage (Füssel and Klein, 2006). It is believed that the toolbox
of network science will play an increasing role in evaluating
vulnerability as the significance of state variables and their
relationships can be directly qualified regarding their role in
dynamic models (Leitold et al., 2020).

• How can the increasing risk be measured? What scientifically
based “boundaries” and “limits” can be defined?
The purpose of the planetary boundaries concept is to
define operating conditions and to account for adverse or
catastrophic abrupt environmental changes in the crossing
of one or more planetary boundaries (Rockström et al.,
2009). Quantifying the risks of climate-induced changes using
climate models shows that the risks will increase over the
next 200 years, even if the composition of the atmosphere
remains constant (Scholze et al., 2006). The socio-cultural
domain plays a crucial role in terms of risk perception
(Van der Linden, 2015), therefore, the integration of variables
describing socio-cultural factors into the models can be
particularly important. Analyses are essential to explore how
human-induced perturbations affect the delicate balance of
the ecosystem in addition to determining where the limits
and boundaries are, the crossing of which would pose an
unacceptable level of risk (Steffen et al., 2015). The integrated
application of simulation tools and machine learning toolbox
can efficiently explore these boundaries (Lenton, 2011).

• What support/motivation systems can be developed—rules,
norms, scientific information—to increase the capacity and
sustainability of society? What signs and guidelines are needed
to put society on a sustainable path? How can today’s isolated
research, analyses, and decision support systems be integrated
more efficiently?
The integration and targeted systematization of scientific
knowledge is needed to address the long-term causes of
climate change and reduce its effects (Pauliuk, 2020). Research
concerning sustainability and socio-ecological systems has
been partly interlinked to foster sustainability transformation
in a transdisciplinary manner. For bridging the gap between
science and society, the involvement of citizens in framing
research and processes may be a solution as “through their
relationship to a place, bounded often as a social-ecological
construct, stakeholders, and people at large play an essential
role in sustainability transformation research.” Furthermore,
the involvement of external parties can support research into
socio-ecological systems and sustainability science (Horcea-
Milcu et al., 2020). Methods of the co-production of
knowledge, e.g., triangulation, the Multiple Evidence Based
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approach and scenario building, by learning about cross-
border engagement, help to ensure that transdisciplinarity is
not only a precursor of integration (Klenk andMeehan, 2015).

To follow the aforementioned path toward sustainable dynamics
of nature and society, the data science toolbox and models must
be integrated into climate change-related scientific and societal
research as well as political agenda. In the following, the Big Data
tools and management are interpreted with a specific focus on
their role in climate change and we build a System of Systems
(climate computing) framework from the various applications.

3. DATA ANALYSIS TASKS OF CLIMATE
CHANGE RESEARCHES

The term Big Data has spread due to new technologies and
innovations that have emerged over the past decade (Chen and
Chiang, 2012) given the demand for the analysis of large amounts
of and rapidly generated diverse data, therefore, collection and
processing takes place at a high speed, which is difficult to
implement with calcareous analytical tools (Constantiou and
Kallinikos, 2015). The explosive leap in the amount of data has
also infiltrated health, finance, and education (Benjelloun et al.,
2015). With regard to the global economy, Big Data is key to
understanding and increasing performance (Maria et al., 2015).
Big Data is also gaining ground in the field of sustainability, so it
can be used to improve social and environmental sustainability
in supply chains (Dubey et al., 2019), augment the informational
landscape of smart sustainable cities (Bibri, 2018), and improve
the allocation and utilization of natural resources (Song et al.,
2017) as well as supply chain sustainability (Hazen et al., 2016).

Big and open data from “smart” government to
transformational government can facilitate collaboration. It
is possible to introduce real-time solutions into agriculture,
health, transport, and other challenges (Bertot et al., 2014). The
Big Data approach can be the most effective tool to improve
mutual governmental and civic understanding, thus embodying
the principles of digital governance as the most viable public
management model (Clarke and Margetts, 2014). There is a need
to collect large amounts of data that can be used tomodel and test
different scenarios to sustainably transform energy production
and consumption, improve food and water security, as well as
eradicate poverty. Initiatives such as the Intergovernmental Panel
on Climate Change and the Global Ocean Observing System can
fill gaps in scientific, technical and socio-economic data (Gijzen,
2013). The analysis of sustainable business performance forecasts
through the analysis of Big Data in the context of developing
countries shows that “Management and leadership style” and
“Government policy” are the most significant factors at present
(Raut et al., 2019).

The process of data mining is shown in Figure 1.
Big Data is a rapidly generated amount of information from a

variety of sources and in a different format. Data analysis is the
examination and transformation of raw data into interpretable
information, while data science is a multidisciplinary field of
various analyses, programming tools, and algorithms, forecasting
analysis statistics as well as machine learning that aims to

recognize and extract patterns in raw data. Thus, Big Data
primarily looks at ways to analyse, systematically extract or
otherwise handle data from datasets that are too large or complex
to handle with traditional data processing application software
that requires significant scaling (multiple nodes) to process
efficiently. In other words, Big Data can be defined by the 5V key
characteristics, i.e., volume, velocity, variety, veracity, and value
(Laney, 2001).

The storage, sustainability, and analysis of massive content is a
challenge that the current state of algorithms and systems cannot
handle (Trifu and Ivan, 2014) in an integrated manner, therefore
the synergies of the different sources are not sufficiently exploited.
The purpose of using Big Data is to provide data management
and analysis tools for the ever-increasing amount of data
(Anuradha et al., 2015). As is shown in Figure 2, data analysis can
be divided into four general categories (Erl et al., 2016). In the
environments of Big Data analytics, data analytics involves the
use of highly scalable distributed frameworks and technologies
to extract meaningful information from large amounts of raw
data that requires the use of different data analysis methods
(Rajaraman, 2016).

Big Data is usually associated with two technologies, cloud
computing and the Internet of Things (IoT) (Honti and Abonyi,
2019). Cloud computing accelerates unlimited data storage,
parallel data processing, and analysis (Inukollu et al., 2014).
The key benefits of cloud computing are improved analysis,
simplified infrastructure, and cost reduction. IoT offers the ability
to connect computing devices, mechanical and digital machines
as well as objects and people (Lavin et al., 2015). With the advent
of the IoT, huge amounts of data can be collected using smart
devices connected via the Internet (Suchetha et al., 2015).

The applicability of Big Data techniques is also significantly
enhanced by the novel tools that support data collection
and integration. The interoperability of the systems can
be improved by data warehouses and the related ETL
(extract, transform, load) functionalities that can also be
used to gather information from multiple models and data
sources. The benefit of these structure are demonstrated in
the EC4MACS (European Consortium for Modeling of Air
Pollution and Climate Strategies) data warehouse that establishes
a suite of modeling tools for a comprehensive integrated
assessment of the effectiveness of emission control strategies
for air pollutants and greenhouse gases. In this system the
integrated data are loaded into the GAINS (Greenhouse gas-
Air pollution Interactions and Synergies) Data Warehouse.
This assessment brought together expert knowledge in the
fields of energy, transport, agriculture, forestry, land use,
atmospheric dispersion, health and vegetation impacts, and
it developed a coherent outlook into the future options
to reduce atmospheric pollution in Europe (Nguyen et al.,
2012).

The integration of different information can also be supported
by ontology-based linked data. Ontology Web Language (OWL)
models enables the semantic characterization of the different
events that can describe the climate change story from
multiple perspectives, including scientific, social, political, and
technological ones (Pileggi et al., 2020).
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FIGURE 1 | The process of data mining.

FIGURE 2 | The types of data analytics.

Artificial intelligence (AI) and machine learning (ML) are
also the key enabler technologies of big data analysis. This
paper focuses on the applicability of ML-based models. AI is
mainly used to support decision-making, but it also can skilfully
fill observational gaps when combined with numerical climate
model data. An example of this application can be found in the
extension of historical temperature measurements used in global
climate datasets like HadCRUT4 (Kadow et al., 2020).

Analysis of Big Data combines traditional methods of
statistical analysis with computational approaches. Based on the

complexity between the variables and the type of results required,
data analysis can be a simple data set query or a combination
of sophisticated analysis techniques (Al-Shiakhli, 2019). The
analysis of Big Data is a synthesis of quantitative and qualitative
analyses. Climate computing combines multidisciplinary
researches in regard to climatic, data and system sciences to
efficiently capture and analyse climate-related Big Data as well as
to support socio-environmental efforts. Underlying this aspect,
a complex model of the earth system is continuously developed
by DKRZ using supercomputers relying on Big Data, numerical
computations, and simulation models to enable scientists to
integrate chemical and biological processes, as well as investigate
the interaction of the climate and the socio-economic system
(Klimarechenzentrum, 2021).

Exploratory Data Analysis (EDA) techniques are approaches
for analysing large data sets. These techniques make the main
features clearer by hiding other aspects. Most EDA techniques
are graphical in nature, with some non-graphical additions. Some
basic EDA tools are histograms, quantile quantile plots (Q-Q-
plots), scatter plots, box plots, stratification, log transformation,
and other summary statistics (Komorowski et al., 2016).
Qualitativemodels can be classified into qualitative causal models
and abstraction hierarchies. The causal models can be classified
into Digraphs, Fault Trees, and Qualitative Physics. Abstraction
hierarchies consist of two important components: structural and
functional (Venkatasubramanian et al., 2003).

Data mining is a set of methods that extracts certain
information from large and complex databases. Data discovery
uses automated, software-based techniques to eliminate
randomness and uncover hidden patterns and trends (Fayyad
and Simoudis, 1997). The classification of datamining techniques
is summarized in Table 1 (Zaki and Ho, 2000), including a

Frontiers in Environmental Science | www.frontiersin.org 5 March 2021 | Volume 9 | Article 619092

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Sebestyén et al. Big Data in Climate Change Research

TABLE 1 | Data mining techniques and areas of application.

Method Definition Data analysis techniques Areas of application Climatic examples

Classification
Discriminating data into

different labeled subsets

according to class

attributes. Retrieving

important and relevant

information about data and

metadata.

Neural network Support

vector machine (SVM)

Decision tree k-nearest

neighbors algorithm

Bayesian network Genetic

algorithm

Predefined distribution (e.g.,

identification of differences)

Fault detection Anomaly

detection problems

Evaluation of hydrological

responses Poff et al., 1996,

Climate modeling Knutti

et al., 2003 Peterson et al.,

2002, Mapping mangrove

areas Heumann, 2011, land

cover Friedl and Brodley,

1997, Vulnerability of the

river basin Sharif and Burn,

2006, Forecast uncertainty

Gutierrez et al., 2011,

Optimizing water distribution

system Wu et al., 2010

Clustering
Grouping the database

according to their

similarities. Discovering

similarities and dissimilarities

between the data.

Partition-based algorithms

(e.g., K-Means, Fuzzy

C-Means) Hierarchical

clustering (e.g.,

dendrograms)

Density-based methods

Grid-based methods

Model-based methods

Data segmentation (division

into homogeneous sets)

Identification of typical

prototypes (e.g.,

simultaneous identification

of time-homogeneous

periods and their

averages/trends)

Assess soil erosion risk

Aslan et al., 2019,

atmospheric data

Cuzzocrea et al., 2019, wind

patterns Wang M.et al.,

2020, groundwater level

fluctuation Zare and Koch,

2018, Determine drought

homogeneous regions

Goyal and Sharma, 2016

Regression analysis
Identifying and analysing the

relationship between

variables. Predicting and

forecasting the process or

dependent variables.

Multivariate linear regression

Neural networks Regression

tree

Creating a model that

predicts time (e.g., creating

a model for predicting

temperatures)

Assess flood risk in urban

catchments Jato-Espino

et al., 2018, effects on the

hydrology cycle Keliang,

2019 and soil organic

carbon distribution

Olaya-Abril et al., 2017,

Determine the shift in

climatic trends (temperature)

Maheshwari et al., 2020

Frequent itemset/pattern mining
Determining the association

between different datasets.

Tracking patterns and

creating groups of data that

have dependently linked

variables.

Frequent itemset search

algorithms: Apriori

algorithm, FP-grow

algorithm sequence search

algorithms: refixSpan,

Spade, SPAM

Identification of common

co-occurring anomalies

Exploring the relationships

between events and their

order

The discovery of

spatio-temporal fluctu-ating

patterns with regard to the

outbreak of an epidemic

Teng et al., 2019 Mapping

wind profile patterns Yusof

et al., 2017, atmospheric

environment Li et al., 2019,

and deforestation Toujani

et al., 2020. Predicting

climate variability Rashid

et al., 2017

Visualization
Displaying multivariate data.

Reducing the number of

variables. Exploring the

internal context of data.

Principal Component

Analysis (PCA)

Multidimensional scaling

(MDS) t-SNE, Self

Organizing Map (SOM)

Exploratory data analysis

Identification of factors

Preparation of composite

indicators Monitoring of

complex systems

Analysis of atmospheric

circulation patterns and

temperature anomalies Gao

et al., 2019 and changes in

land cover Li et al., 2018,

Mapping climate Uddin

et al., 2019/ drought

Balaganesh et al., 2020,

vulnerability and flood

hazard mapping in urban

environments Rahmati et al.,

2019
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straightforward description of the method, common analytical
techniques, the definition of relevant application areas and
examples related to climate studies.

Classification is fundamental in terms of data mining
techniques (Zaki and Ho, 2000). Classification models define
the similarity structure of the variables and are partitioned into
groups (classes) (Aggarwal, 2015). In Big Data-based climate
studies, classification models and techniques are greatly utilized.
Two streams with different hydroclimatologies were studied in
the United States using an artificial neural network (ANN). The
analysis identified a large effect on a variety of factors such as
average runoff, flow variability, flood frequency and baseline flow
stability (Poff et al., 1996). To overcome the great uncertainties
inherent in climate models, an alternative neural network-based
climate model has been developed that increases the efficiency
of large climate model sets by at least one order of magnitude.
Based on this, it can be concluded that heating exceeds the
surface heating range estimated by the IPCC for almost half of
the members of the ensemble (Knutti et al., 2003). This neural
network is an effective tool for dealing with such difficult and
challenging problems, moreover, has been widely used to explore
the mechanisms of climate change and predict trends is climate
change that take full advantage of the unknown information
hidden in climate data, however, it cannot decipher it.

General Circulation Models (GCMs)—the most advanced
tools for estimating future climate change scenarios- operate
on a coarse scale, which can be downscaled by support
vector machine (SVM) approaches, training meteorological
subdivisions (MSDs) and developing a downscaling model
(DM) that has been shown to be better than conventional
downscaling using multilayered regenerative artificial neural
networks (Tripathi et al., 2006). The utilization of solar energy is
evolving dynamically in connection with SDG 7, but power plant
performance may fluctuate due to the diversity of meteorological
conditions, which can be compensated by satellite imagery and
SVM learning scheme to predict the motion vector of clouds
(Jang et al., 2016). Object-based image analysis (OBIA) and
support vector machine (SVM) combined with a decision-
tree classification are suitable for mapping mangrove areas
that was impossible by traditional remote sensing methods
other than rough spatial resolution (Heumann, 2011). Decision
tree algorithms consistently outperform maximum likelihood
and linear discriminant function classifiers in terms of land
cover mapping problems classification accuracy (Friedl and
Brodley, 1997). Using a weather-generating model,which allows
the nearest neighbor to be re-sampled by disturbing historical
data, it is possible to create a set of climatic scenarios based
on probable climatic scenarios to produce meteorological data
that can be used to assess the vulnerability of the river basin
to extreme events (Sharif and Burn, 2006). The ability of the
Bayesian Network (BN) to predict long-term changes in the
shoreline associated with rises in sea level and quantitatively
estimate forecast uncertainty renders it suitable for research into
the effects of climate change (Gutierrez et al., 2011). It has
been used successfully to assess the effects of climate change
disturbances on the structure of coral reefs (Franco et al., 2016)
and in terms of belief updating concerning the reality of climate

change in response to presenting information concerning the
scientific consensus on anthropogenic global warming (AGW)
(Cook and Lewandowsky, 2016). Using genetic algorithm and
occurrence data from museum specimens, ecological niche
models were developed for 1,870 species occurring in Mexico
and projected onto two climatic surfaces modeled for 2055
(Peterson et al., 2002). A multi-objective genetic algorithm
for optimizing water distribution systems (WDS) was used
as a discovery tool to examine trade-offs between traditional
economic goals and minimize greenhouse gas emissions (Wu
et al., 2010). The European territory was subdivided into similar
regions of predicted climate change based on simulations of
total daily precipitation as well as recent (1986–2005) and long-
term future (2081–2100) temperatures using K-mean cluster
analysis (Carvalho et al., 2016). An automated procedure based
on a cluster initialization algorithm is proposed and applied
to changes in the 27 climatic extremes. The proposed method
requires, on average, 40% fewer scenarios to meet the 90%
threshold than k-means clustering (Cannon, 2015).

Clustering-based analyses are widely accepted data mining
techniques, however, improvements in terms of time and cost
savings are constantly required due to the management of
an increasing amount of data (Shirkhorshidi et al., 2014).
Regarding its usage in climatic analyses, a clustering-based
spatio-temporal analysis framework of atmospheric data was
developed to support both governmental and industrial decision-
making processes (Cuzzocrea et al., 2019). To assess erosivity risk,
clustering and classification analyses were applied on the national
level in Turkey, moreover, an artificial neural network-based
prediction was also made. The results identified an increasing
risk of soil erosion in the southern and western regions of
Turkey, which demands erosion control practices (Aslan et al.,
2019). Research has been conducted to regionalize Europe
according to similar surface temperatures based on data between
1986 and 2005. The differences between long-term predictive
data (CMIP5) and historical data were analyzed with k-means
clustering analyses to determine grid points (Carvalho et al.,
2016). A fuzzy c-means approach regionalization was determined
in western India for the analysis of meteorological drought
homogeneous regions to provide effective support for water
resources planning andmanagement during droughts (Goyal and
Sharma, 2016). Clustering techniques can support simulation
and predict models by grouping large-scale data. “Wind energy
production is expected to be affected by shifts in wind patterns
that will accompany climate change.” In California, wind patterns
have been clustered using model simulations from the variable-
resolution Community Earth System Model (VR-CESM) and
analyzed according to the change in the frequency of clusters
and changes in winds within clusters. The changes in capacity
factor have significant influence with regard to energy generation
(Wang M.et al., 2020).

Regression analysis sought to reveal functional relationships
between variables that can further support predictive and
forecasting models. Urbanization tends to have a significant
impact on climate change, as underlined by an Australian study
which determined that changes in land use and vegetation as
a result of shifts in urbanization that affect the local climate
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and water cycle as well as its impacts are considered to be
local specific (Maheshwari et al., 2020). Multiple regression-
based analysis has been used to determine flood risk in
urban catchments by combining multiple linear regression,
multiple nonlinear regression and multiple binary logistics
regression. This framework sought to support action plans
concerning drainage management and maximize the impacts of
flood susceptibility strategic implementations (Jato-Espino et al.,
2018). Regarding water management, the influence of climate
change on the hydrological cycle in the Yangtze River Basin has
been analyzed using a regression analysis model and geographic
information system (Keliang, 2019). Soil plays a significant role
in carbon sequestration, therefore, moderate undesired climatic
effects. A model has been designed regarding the top 25 cm of
topsoil of the Sierra Morena (Red Natura 2000) area to determine
the relationship between independent variables and soil organic
carbon (SOC), moreover, by the use of multiple linear regression
analysis examined the effects of these variables on SOC content.
The results indicated that “SOC in a future scenario of climate
change depends on average temperature of coldest quarter
(41.9%), average temperature of warmest quarter (34.5%), annual
precipitation (22.2%), and annual average temperature (1.3%).”
The comparison between the current (2016) and future situations
reflects a reduction of 35.4% SOC content and a trend in
northward migration (Olaya-Abril et al., 2017).

Frequent itemset/pattern mining is a commonly used
technique to extract knowledge from databases. The handling
of an increasing amount of heterogeneous data is becoming
ever more difficult, therefore, “an efficient algorithm is required
to mine the hidden patterns of the frequent itemsets within a
shorter run time and with less memory consumption while the
volume of data increases over the time period” (Chee et al.,
2019). Association rule mining (ARM) models have been built
for atmospheric environment monitoring based on the Apriori
algorithm and D-S theory/ER algorithm. These techniques
provide both technical and theoretical support to prevent as well
as manage air pollution (Li et al., 2019). Association rule mining
has also been used in terms of monitoring weather behavioral
data to develop a prediction model for climate variability (Rashid
et al., 2017). Furthermore, climate variability has an impact
on agriculture, which demands a greater understanding with
regard to the impact of the climate on crop production and food
security. Therefore, the impact of seasonal rainfall on rice crop
yield was determined based on ARM techniques (Gandhi and
Armstrong, 2016). For the understanding of wind conditions,
multidimensional sequential pattern mining is used that can
define which pattern is suitable for wind energy (by taking into
consideration the factors of space, time, and height). According
to a study on the Netherlands, 68.97% of the country covered by
a suitable wind pattern (at 128 m) and already has wind turbines
installed (Yusof et al., 2017). A spatio-temporal pattern-based
sequence classification framework was built to estimate the extent
of deforestation. This approach was applied on a Tunisian case
study that took into consideration 15 years of satellite images and
historical wildfire GIS data (Toujani et al., 2020).

Visualization methods sought to explore the interconnections
between data by simplifying multivariate data. Self-organizing

map neural network (SOMN) method has been used to analyse
anomalous atmospheric circulation patterns in China with regard
to surface temperature anomalies between 1979 and 2017 (Gao
et al., 2019). This method is greatly used for mapping changes,
e.g., regarding urban flood hazards (Rahmati et al., 2019). A
study on the city of Amol in Iran was conducted and according
to the aforementioned model of urban flood hazard mapping,
23% of the land area of the city is expected to high or
very high levels of flood risk, which demands efficient flood
risk management. SOMN and grid cells method were applied
to determine changes in spatio-temporal land cover in Inner
Mongolia between 2004 and 2014 (Li et al., 2018). The Principal
Component Analysis (PCA) technique has been used to assess
the vulnerability of the coastal region of Bangladesh while taking
into consideration the IPCC framework. The study used 31
indicators (24 socio-economic, 7 natural). PCA was applied
and determined seven eigenvectors [Demographic Vulnerability
(PC1), Economic Vulnerability (PC2), Agricultural Vulnerability
(PC3), Water Vulnerability (PC4), Health Vulnerability (PC5),
Climate Vulnerability (PC6), and Infrastructural Vulnerability
(PC7)] that take into consideration climate change scenarios
from 2013 to 2050 (Uddin et al., 2019). PCA has also been used
to build the composite drought vulnerability index (Balaganesh
et al., 2020).

4. SYSTEMATIC REVIEW OF CLIMATE
CHANGE-RELATED ANALYSES

4.1. Overview of Big Data-Based Climate
Change Analysis
The significance of Big Data in climate-related studies is greatly
recognized and its techniques are widely used to observe and
monitor changes on a global scale. It facilitates understanding
and forecasting to support adaptive decision-making as well as
optimize models and structures (Hassani et al., 2019).

Review articles can provide a better organized structure of
previous studies, so the major focus areas are determined with
regard to previous review articles concerning the connection
between climate change and Big Data. The major objective is to
reveal how diverse disciplines appears in the related researches,
therefore narrowing when and how Big Data applications and the
relation with data science are appeared in climate studies.

A comprehensive overview was conducted based on
the Scopus database. Fifty-seven articles were retrieved
from the following search: [TITLE-ABS-KEY(“climate
change”) AND TITLE-ABS-KEY(“Big Data”)] AND
[TITLE-ABS-KEY(“overview”) ORTITLE-ABS-KEY(“review”)].

Articles were reviewed and selected individually for the
final sample. Table 2 shows the number of articles selected
and excluded.

The 47 articles of the final sample are shown in Tables 3–
5, where a straightforward description and focus area of the
research are indicated as well as categorized accordingly. It is
notable that mostly specific climate issues are observed (e.g.,
decarbonization of energy or land ecosystem) and their potential
with regard to Big Data determined. The two most affected
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TABLE 2 | Selection of articles related to the review of climate data.

Scopus database search No. of articles No. of duplicates No. of unavailable No. of excluded No. of reviewed

“climate change” AND “Big Data”

AND “review/overview”
77 3 8 19 47

categories are agriculture and studies of sustainable cities and
communities. This is a good illustration of how intertwined
research on climate action is with sustainable development goals.

The quality and safety of agricultural products can be assured
through solutions provided by the Internet of Things (IoT)
and cloud computing (Marcu et al., 2019). Remote sensing and
Artificial Intelligence technologies enables to integrate Big Data
into predictive and prescriptive management tools, to improve
e.g., the resilience of agricultural systems (Jung et al., 2020). Big
Data virtualization in the field of agriculture enables physical
objects to be virtualized, e.g., sensors and devices used for
defining soil moisture, water flows, or salinity, where these
objects can provide diversemeaningful information in each phase
of a data chain to support decision-making and information
handling (Mathivanan and Jayagopal, 2019). Furthermore, Big
Data techniques are utilized in terms of plant breeding (Taranto
et al., 2018), crop ideotypes for food security (Christensen
et al., 2018), or in precision agriculture framework (Demestichas
et al., 2020). Climate Smart Agriculture framework aims to
enhance the capacity of the agricultural systems to support food
security, supporting adaptation, and mitigation into sustainable
agriculture development through latest technologies as IoT, AI,
geo-informatics, and Big Data analytics (Gulzar et al., 2020).
The interdisciplinary and systematic approach of soil use and
management to achieve related sustainability goals has also been
explored (Hou et al., 2020).

Alignment with regard to the focus area of sustainable cities
and communities with the 11th sustainable development goal
(Sustainable cities and communities) has been explored through
reviews. Big Data management can enhance the opportunity
for organizations to respond to the risk of climate change in
time (Seles et al., 2018) as well as offers possibilities to consider
sustainable production and lower emission rates. Furthermore,
machine learning can be effectively utilized for low-carbon
urban planning (Milojevic-Dupont et al., 2020). Outside the
field of industry, co-operation, legislation, and environmental
agreements are essential to realize a sustainable manufacturing
environment (Hämäläinen and Inkinen, 2019). The concept
of smart cities seeks to overcome and prevent climate change
and issues concerning urbanization (Sharifi, 2019), moreover,
smart transportation policies can utilize the advantages of Big
Data (De Gennaro et al., 2016). In this smart environment,
civil engineers are seen as future risk and uncertainty managers
to improve community resilience through smart infrastructure
programs (Berglund et al., 2020).

Climate resilience studies assess how to prepare for, recover
from and adopt to climate-related risks (Center for Climate
and Energy Solutions, 2019). Big Data seeks to support these
activities by providing a large volume, variety, and quality data

to reveal patterns and enables data democratization (Faghmous
et al., 2014). Therefore, Big Data approach can serve as a source
of key information for decision-makers in terms of creating
and adapting appropriate strategies, determining current, and
upcoming issues, as well as identifying stages of recovery for
taking actions in time (Sarker et al., 2020). News media can
serve as a near-real-time geolocated information, which can
support the understanding of social movements and early-
warning systems. “Combining news media with social and
biophysical data is important to verify results and limit biases in
analysis” (Buckingham et al., 2020). One of the issues concerning
urban environments is energy efficiency and carbon emissions,
for which net zero energy movements seek to bring about a
solution as well as the application of a resilience ecological
framework for net zero energy research (Hu and Pavao-
Zuckerman, 2019). Furthermore, Big Data techniques with
regard to machine learning enable the attitude of people toward
and recognition of environmental changes to be determined
(Park et al., 2020). Big Data and machine learning approaches are
vital in comprehensively merging heterogeneous genomic and
ecological datasets (Cortés et al., 2020).

However, review articles have explored the potential for
utilizing Big Data techniques in diverse areas, moreover,
comprehensive overviews about climate change are becoming
less of a focus. Even though data-intensive research applications
may seems to be unbalanced among disciplines (Hassani et al.,
2019), the dynamism and complexity of climate issues must not
be neglected. This complexity brings about an interdisciplinary
approach and the intertwining of diverse disciplines, to which
the System of Systems concept (climate computing) is the
urgent answer.

4.2. Meta-Analysis With Regard to the
Methods of Climate-Related Analyses
Co-word analysis examines the relationships between keywords
to reveal the structure and development of methodologies or
applications. The relationships between keywords in research
papers “contains valuable information about knowledge structure
of the field, its relevant concepts, and their connections” Lozano
et al. (2019). It is our aim to determine diverse focus areas,
methodologies and techniques regarding Big Data-driven climate
change analyses and harmonize these to allow better utilization of
the achieved field-specific results.

The Scopus database was used to identify the corresponding
papers using the following search: [TITLE-ABS-KEY(“climate
change”) AND TITLE-ABS-KEY(“Big Data”)]. As a result 442
articles were retrieved and the co-occurrence of their keywords
analyzed using VOSviewer. The time period in which the
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TABLE 3 | Overview of articles analysing Big Data usage with climate change issues categorized into the domains of Agriculture, Cleaner production, and Climate

resilience.

Agriculture

Focus area Description Usage References

Soil The article provides a comprehensive overview

about soil in connection with sustainability

issues—several SDGs.

The overview highlights that interdisciplinary studies

which incorporate such advances may lead to the

innovative sustainable use of soil and management

strategies that seek to optimize soil health and

achieving the SDGs.

Hou et al., 2020

Land ecosystem The article analyses the developmental

characteristics and trends of research into global

land ecosystem services using the Bibliometrix

software package.

The overview highlights the diverse facets of land

ecosystem services and the practical application of

land ecosystem services.

Xie et al., 2020

Virtualization, soil,

water, crops, plants

The article provides a comprehensive review of Big

Data virtualization in the agricultural domain.

The overview highlights the potential in information a

the virtual object as it has large volume of data

which helps data analysis or to create application

services like decision-making, problem notification,

and information handling.

Mathivanan

and Jayagopal, 2019

Crop production, food

security

The article examines modeling strategies for the

development of crop ideotypes and scientific

visualization technologies that have led to

discoveries in “Big Data” analysis.

The overview highlights that integrative modeling

and advanced scientific visualization may help

overcome challenges in agricultural and nutritional

data as large-scale and multidimensional data

become available in these fields.

Christensen et al., 2018

Soil The article explores trends in the development of

pedotransfer around the world and considers trends

between data and methods to build pedotransfer

relationships.

The overview highlights that the physics-based

interpretation of

pedotransfer functions (PTFs) is expected to be in

demand.

Pachepsky et al., 2015

Plants, biotechnology The article describes technologies concerning plant

breeding and provides examples of their application

to breed climate- resilient cultivars.

The overview highlights that technological

improvements in phenotypic and genotypic

analysis, as well as the biotechnological and digital

revolution, will reduce the breeding cycle in a cost-

effective manner.

Taranto et al., 2018

IoT, cloud technology,

Smart farming

The article explores the potential in IoT technology

with regard to the agricultural sector—plants are

sensitive to changes, in climate change context and

monitoring, IoT can bring about dramatic progress.

The overview can be used as a basic tool for

choosing an IoT platform solution for future

telemonitoring systems.

Marcu et al., 2019

Smart farming, crops The article presents a review of some areas involved

in the definition of an alert system for diseases and

pests in terms of Smart Farming, based on machine

learning and graph similarity.

The article proposes an architecture for coffee

disease and pest detection.

Lasso and Corrales,

2017

Food safety The article presents a review of the likely

consequences of climate change for foodborne

pathogens and associated human illnesses in

higher-income countries.

The overview highlights that climate change may

have important effects of foodborne illnesses.

Lake and Barker, 2018

Agricultural systems,

AI, remote sensing

This article focuses on the use of recent

technological advances in remote sensing and AI to

improve the resilience of agricultural systems.

The review presents a unique opportunity for the

development of prescriptive tools needed to

address the next decade’s agricultural and human

nutrition challenges.

Jung et al., 2020

Smart farming The article conducts a literature review of prominent

ICT solutions, focusing on their role in supporting

different phases of the lifecycle of precision

agriculture-related data.

The article also introduce a developed data lifecycle

model as part of a novel categorization approach for

the analyzed solutions.

Demestichas et al.,

2020

Food safety The article discuss some of the forefront issues in

food value chains with a focus on using technology.

The article highlights that the cultural awareness

and social innovation to prevent food waste and

therefore improve food security and sustainability

will also prove to further complexities.

Chapman et al., 2020

Smart agriculture This article presents an analytical review of smart

agriculture (SA) and climate smart agriculture (CSA)

along with a thorough CSA architectural taxonomy.

The article surveys CSA and devise its architectural

taxonomy in terms of technological components of

SA as well as climate change mitigation to ensure

food security, environment sustainability and lesser

CO2 emissions.

Gulzar et al., 2020

(Continued)

Frontiers in Environmental Science | www.frontiersin.org 10 March 2021 | Volume 9 | Article 619092

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Sebestyén et al. Big Data in Climate Change Research

TABLE 3 | Continued

Cleaner production

Focus area Description Usage References

Cleaner production The article provides an overview of the scope and

trends in venture capital-funded innovation in

Cleantech.

The overview explores trends in venture

capital-funded innovation in Cleantech, the broad

scope of the basic science and technology, and the

impacts of Cleantech that affect global climate

change.

Huang, 2015

Energy The article provides a comprehensive review that

assesses the current as well as the potential impact

of digital technologies within cyber-physical systems

(CPS) on the decarbonization of energy systems.

The overview highlights advances in CPS and

Artificial Intelligence (AI) with regard to real-world

adaptation in energy systems.

Inderwildi et al., 2020

Climate resilience

Focus area Description Usage References

Satellites, remote

sensing

The article explores the potential of Big Data with

regard to implementing a proper strategy against

the effects of climate change as well as enhancing

the resilience of people in the light of the adverse

effects of climate change.

The overview enables policymakers and related

stakeholders to implement appropriate adaptation

strategies for enhancing the resilience of the people

from the affected areas.

Sarker et al., 2020

Machine learning The article explores the attitude of people toward

climate change issues based on news analysis.

The article highlights the potential in using this

method for monitoring functions, recognition and

that detection of opinion.

Park et al., 2020

Satellites, simulation,

weather, water, land

ecosystem, air

The article explores the advances of climate change

studies based on Earth observation Big Data and

provides examples of case studies that utilize Earth

observation Big Data in climate change research.

The overview suggests that the management of

data resources should be strengthened and the

construction of the global change Earth observation

data-sharing platform for the realization of the

effective sharing of data resources accelerated.

Guo et al., 2015

Energy, climate

resilience

The article provides an initial step in terms of

understanding the research activities of the past five

decades in these two areas (NZE and resilience) as

well as their connection to their ecological roots.

The overview highlights the major difference

between the net zero movement and resilience

theory in terms of the urban environment and their

respective relations to their ecological origins.

Hu and

Pavao-Zuckerman,

2019

Water The article explores some important impacts on the

development of hydrology and water resources in

Australia.

The overview highlights that the value and

distribution of water resources will change.

Fitzharris, 2016

Forestry The article discuss predictive genomic approaches

that promise increasing adaptive selection accuracy

and shortening generation intervals.

The article discuss how trees’ phylogeographic

history may affect the adaptive relevant genetic

variation available for adaptation to environmental

change. Encouraging “Big Data” approaches

(machine learning—ML) capable of comprehensively

merging heterogeneous genomic and ecological

datasets.

Cortés et al., 2020

papers were written was between the years 2012 and 2020. In
Figure 3, seven clusters are indicated by a diverse range of colors
that overarch topics related to climate change and application
methods of Big Data.

Each cluster refers to a focus area including its attributes
of interrelationships as well as methodologies and techniques
applied in the field.

The “Red” cluster denotes the connections between Big Data
technologies and methods applied for optimization procedures,
measures the impact of climate change and resilience as well as
makes predictions. Technologies are considered, e.g., artificial
intelligence, learning algorithms such as machine learning and
deep learning, data analytics, neural networks, and cluster
computing. Neural networks are used to analyse climate change,
weather prediction, and visualization (Buszta and Mazurkiewicz,

2015), while machine learning techniques are used for intelligent
recognition (Demertzis and Iliadis, 2016) and to define the
impact of climate change and resilience (Rolnick et al., 2019).
In addition, they are used to predict epidemics and diseases
in both social (Rees et al., 2019) and environmental contexts
e.g., in the case of crops (Fenu and Malloci, 2019), coffee
disease and pest (Lasso and Corrales, 2017), or pedotransfer
functions (Benke et al., 2020). Clustering techniques on cloud
computing infrastructure have been applied, e.g., to map changes
in glaciers (Ayma et al., 2019). A novel machine learning
approach has been developed by the U.S. Department of Energy’s
National Renewable Energy Laboratory using adversarial training
in climate forecasting, in which the model provides a “physics-
informed variation to the super resolution generative adversarial
network (SRGAN) model, which extends proven performance
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TABLE 4 | Overview of articles analysing Big Data usage in terms of climate change issues categorized into the domains of Cyberinfrastructure (IoT), Impact assessment

and Methods.

Cyberinfrastructure (IoT)

Focus area Description Usage References

Climate models The article provides an overview of some Big Data

problems of climate science’s and the technical

solutions being developed to advance data

publication, climate analytics as a service as well as

interoperability within the Earth System Grid

Federation (ESGF), which is currently the primary

cyberinfrastructure supporting global climate

research activities.

The overview highlights how improved

machine-to-machine interoperability can lead to

increased analytical capabilities across distributed

storage systems.

Schnase et al., 2016

Plants, biotechnology The article describes technologies applied to plant

breeding and provides examples of their application

to breed climate-resilient crop cultivars.

The overview highlights that technological

improvements in phenotypic and genotypic

analyses, as well as the biotechnological and digital

revolution, will reduce the breeding cycle in a

cost-effective manner.

Taranto et al., 2018

IoT, cloud technology,

Smart farming

The article explores the potential of IoT technology

in the agricul- tural sector—plants are sensitive to

changes in terms of climate change and monitoring,

IoT can bring about dramatic progress.

The overview can be used as a basic tool for

choosing an IoT platform solution for future

telemonitoring systems.

Marcu et al., 2019

Smart farming, Crops The article presents a review of some areas involved

in the definition of an alert system for diseases and

pests in terms of Smart Farming, based on machine

learning and graph similarity.

The article proposes an architecture for coffee

disease and pest detection.

Lasso and Corrales,

2017

Water, IoT The article provides a review of the application of

the Internet of Things in the field of marine

environment monitoring.

The overview highlights that Big Data analytics can

be used not only as feedback for agencies and

control center of marine environment but also for

autonomous vessels and remotely developed

devices in order to take real-time actions.

Xu et al., 2019

Agricultural systems,

AI, remote sensing

This article focuses on the use of recent

technological advances in remote sensing and AI to

improve the resilience of agricultural systems.

The review presents a unique opportunity for the

development of prescriptive tools needed to

address the next decade’s agricultural and human

nutrition challenges.

Jung et al., 2020

Remote sensing, urban

development, ML

The article show that the emergence of Big Data

and machine learning methods enables climate

solution research to overcome generic

recommendations and provide policy solutions at

urban, street, building and household scale,

adapted to specific contexts, but scalable to global

mitigation potentials.

The article suggests a meta-algorithmic architecture

and framework for using machine learning to

optimize urban planning for accelerating, improving

and transforming urban infrastructure provision.

Milojevic-Dupont et al.,

2020

Impact assessment

Focus area Description Usage References

Climate models The article provides a critical overview and synthesis

of issues related to climate models, data sets, and

impact assessment methods pertaining to islands

which can benefit decision-makers and other end

users of climate data in island communities.

The overview explores challenges of islandness in

terms of top-down, model-led climate impact

assessment and bottom-up, vulnerability-led

approaches.

Foley, 2018

Risk management,

water, energy, food

safety

The article examines the challenge facing risk

assessment posed by the transmission of climate

risk.

The overview aims to support future national risk

assessments, ensuring that they adequately

account for the transmission mechanisms of climate

risk.

Challinor et al., 2018

Water The article explores some important impacts on the

development of hydrology and water resources in

Australia.

The overview highlights that the value and

distribution of water resources will change.

Fitzharris, 2016

Food safety The article presents a review of the likely impacts of

climate change for foodborne pathogens and

associated human illnesses in higher-income

countries.

The overview highlights that climate change may

have important effects on foodborne illnesses.

Lake and Barker, 2018

(Continued)
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TABLE 4 | Continued

Focus area Description Usage References

Climate change The article identifies the potential of this new data

source for the increasingly important role that

computational social science can play alongside

established biophysical data in monitoring

largescale environmental change.

The article highlights that combining news media

data, such as GDELT, with other social and

biophysical data sources is an important method for

verifying results and limiting biases in data collection

and analysis.

Buckingham et al.,

2020

Methods

Focus area Description Usage References

Machine learning,

crowdsourcing, data

fusion, cluster analysis

The article provides an overview of techniques and

approaches with regard to climate studies.

The overview provides brief knowledge of a few

strategies in terms of suppor-ting Big Data

administration and investigation in the domain of

geoscience for climate studies.

Radhika et al., 2016

Water The article presents the advances in machine

learning and deep learning through novel

classification methods.

The overview outlines present state-of-the-art

machine-learning and deep-learning methods used

to model and identify application areas.

Ardabili et al., 2019

Water, weather, air

quality, Hazard

management

The article provides a review of

crowdsourcing-related papers in seven domains:

weather, precipitation, air pollution, geography,

ecology, surface water and natural hazard

management.

The overview outlines knowledge development in

terms of crowdsourcing within the specific domain

of geophysics as well as similarities and differences.

Zheng et al., 2018

Plants The article reviews phenology models as an

important component of earth system modeling.

The overview highlights that the mechanistic

development of phenological observation is

essential.

Tang et al., 2016

Climate models The article explores space-time analytics dealing

with spatial processes, examples of space-time

concepts and tools to analyse data.

The overview suggests movement-based

space-time analytics by addressing processes

across multiple levels with constraints of boundary

conditions and initial conditions for the processes at

the focal level.

Yuan and Bothwell,

2013

Remote sensing, urban

development, ML

The article show that the emergence of Big Data

and machine learning methods enables climate

solution research to overcome generic

recommendations and provide policy solutions at

urban, street, building and household scale,

adapted to specific contexts, but scalable to global

mitigation potentials.

The article suggests a meta-algorithmic architecture

and framework for using machine learning to

optimize urban planning for accelerating, improving

and transforming urban infrastructure provision.

Milojevic-Dupont et al.,

2020

Land ecosystem The article provides an overview on Integrated

Climate Sensitive Restoration Framework that

recognizes the local participation in mapping

degraded lands, identification of species for

supporting species modeling to better understand

climate uncertainty.

The article highlight that the framework potentially

helps in sustainable land restoration by

transformative changes for achieving UN decade on

Ecosystems Restoration (2021–2030), SDGs 15

and addressing the post 2020 Global Biodiversity

Framework.

Dhyani et al., 2020

on super resolution of natural images to scientific datasets”
(Stengel et al., 2019). This breakthrough is capable of saving
computational time and data storage, moreover, can provide
more accessible high-resolution climate data that can be utilized
in a wide range of climate scenarios. These techniques seek to
assess risk management in terms of human and environmental
health by providing vital information concerning the present
conditions and making predictions about the future.

Keywords included in the “orange” cluster, mainly describe
agriculture-related climate issues and adaptations. IoT
technologies, information systems and sensor networks
tend to be applied in a field. Big Data increase the heterogeneity
“across farms, farmers, climates, crops, soils, natural resources,
models, management strategies and outcomes, post production

value chain system, and other economic variables of interest”
that can boost knowledge with regard to the concept of
climate-smart agriculture (Rao, 2018). IoT technologies have
been proven to be beneficial in improving efficiency in the
complex field of agriculture. Sensors are used to collect
vital information about soil, fertilizer, moisture, sunshine,
temperature, and geographic information of farmland for
monitoring as well as to link to other databases for identifying
attributes (Yan-e, 2011). The combination of automation and
IoT technologies broad perspectives in smart agriculture,
as remote controlled robots to perform tasks, smart and
intelligent decision making based on real time data as well
as warehouse management (Gondchawar and Kawitkar,
2016).
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TABLE 5 | Overview of articles analysing Big Data usage in terms of climate change issues categorized into the domains of Sustainable cities and communities, Water,

and Biodiversity.

Sustainable cities and communities

Focus area Description Usage References

IoT, visualization, water,

air, energy,

crowdsourcing

The article explores the role of civil engineers with

regard to conventional and smart infrastructure

programmes—managers of risk and uncertainty—

as well as considers climate change mitigation

The overview incites inventive thinking to develop

research agendas and creatively integrate new

technologies across infrastructures.

Berglund et al., 2020

Smart city The article provides a critical analysis of 34 selected

smart city assessment tools to highlight their

strengths and weaknesses as well as examine their

potential contribution to the evolution of the smart

city movement.

The study can be used by interested target groups

such as smart city developers, planners, and policy

makers to choose tools that best fit their needs.

Sharifi, 2019

Emissions tracking The article illustrates that Big Data is utilized in

various industries, and explores a large variety of

pollutants.

The overview addresses the need for using and

combining data resources, particularly at the

industrial level, in order to develop more efficient

tools for environmental monitoring and

decision-making.

Hämäläinen and

Inkinen, 2019

Energy The article builds complex uncertainty models of

power demand and the cost of renewable energy

generation, as well as proposes an improved IRSP

model based on complex uncertainty simulation.

The overview highlights the necessity to look at the

development of electricity from the perspective of

energy, moreover, additional primary energy

limitations will be introduced into the model in the

future.

Zheng et al., 2019

Remote sensing,

weather, climate model,

air quality, machine

learning,

The article reviews the current state of urban data

science in the context of climate change

investigates the contribution of urban metabolism

studies, remote sensing, Big Data approaches,

urban economics, urban climate and weather

studies.

The overview highlights that data-based approaches

have the potential to upscale urban climate

solutions and bring about change on a global scale.

Creutzig et al., 2019

Air quality, energy The article develops a framework for reducing dust

emissions and energy consumption on construction

sites.

The article highlights that the proposed framework

can be used on construction sites to conduct

real-time monitoring, evaluation and the

minimization of dust emissions and energy

consumption.

Hong et al., 2019

Air quality, energy The article explores the application of Big Data in

terms of road transport policies in Europe,

namely—minimize the environmental impact, handle

climate change mitigation and sustainability

challenges, as well as maximize system efficiency.

TEMA designed for supporting EU transport policies

via Big Data.

De Gennaro et al.,

2016

Risk management The article analyses the challenges and

opportunities that the climate crisis presents for

organizations and how organizations respond to this

scenario, while examining the implications of Big

Data management.

The overview highlights that Big Data is a key

component to understand

the opportunities and challenges of the climate

crisis and organization responses.

Seles et al., 2018

Energy, climate

resilience

The article provides an initial step in understanding

the research activities over the past five decades in

these two areas (NZE and resilience) and their

connections to their ecological roots.

The overview highlights the major difference

between the net zero movement and resilience

theory in the urban environment and their respective

relations to their ecological origins.

Hu and

Pavao-Zuckerman,

2019

Remote sensing, Urban

development, ML

The article show that the emergence of Big Data

and machine learning methods enables climate

solution research to overcome generic

recommendations and provide policy solutions at

urban, street, building and household scale,

adapted to specific contexts, but scalable to global

mitigation potentials.

The article suggests a meta-algorithmic architecture

and framework for using machine learning to

optimize urban planning for accelerating, improving

and transforming urban infrastructure provision.

Milojevic-Dupont et al.,

2020

Water

Focus area Description Usage References

Water The article provides a systematic review of the

literature on the ecological models and

eutrophication.

The overview aims to improve the level of

application with regard to ecological models in the

field of water eutrophication and to better serve

environmental water science research.

Hu et al., 2019

(Continued)
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TABLE 5 | Continued

Focus area Description Usage References

Water The article explores and compares global

wetland-related datasets and suggest a synthetic

method for wetland mapping.

The overview suggests that this synthetic method of

wetland mapping should be applied.

Hu et al., 2017

Water The article explores the development of watershed

management, potential uses of new technologies,

current issues as well as the future direction of

watershed management and research.

The overview highlights the importance of

employing integrated watershed management

strategies and outlines methods for improving

management strategies.

Wang et al., 2016

Water The article explores some important impacts on the

development of hydrology and water resources in

Australia.

The overview highlights that the value and

distribution of water resources will change.

Fitzharris, 2016

Water, IoT The article provides a review of the application with

regard to the Internet of Things in the field of marine

environment monitoring.

The overview highlights that Big Data analytics can

be used not only as a source of feedback for marine

environmental management agencies and control

centers but also for autonomous vessels and

remotely developed devices to take real-time

actions.

Xu et al., 2019

Water The article reviews the evolution of Managed Aquifer

Recharge (MAR) concept, and then captures its

current research in terms of MAR tech-nologies,

process of the MAR implementation, applications of

MAR, as well as common problems and challenges

that are associated with MAR.

The article recommends that further studies on

MAR should focus on systematic clogging

mechanism and prevention, the theory of seepage

calculation, theory of infiltration for MAR, purification

mechanism, and application of Big Data and

artificial intelligence in MAR

Zhang et al., 2020

Water The article uses information visualization technology

of CiteSpace to present a systematic review of

published literature on the application of

eco-models to eutrophication from 1968 to 2018.

The article highlights that eco-models range from

dimension-models to time-dependent dynamic

models and that the recent trend of close coupling

between modeling and the acquisition of new types

of experimental data (i.e., remote sensing,

high-frequency field sensors) provides a higher

prediction ability of ecological models.

Hu et al., 2019

Biodiversity

Focus area Description Usage References

Biodiversity The article reviews the current state of lichen

conservation in Canada and the United States.

The review highlights the effective usage of Big Data

in informing and monitoring species.

Allen et al., 2019

The “purple” cluster represents natural disasters caused by
climate change, e.g., floods or deteriorating air quality, and
the related risk management. Decision-making processes are
supported by data mining techniques and statistical as well
as spatial analysis. The frequency of natural disasters in the
Philippines increased by 147% from 1980 to 2012 and continues
to rise (Garcia and Hernandez, 2017). Big Data through data
mining plays a significant role in creating real-time feedback
loops on natural disasters to support disaster management in
prevention, protection, mitigation processes as well as response
and recovery, moreover, in increasing the resilience of citizens
(Yang et al., 2017).

“Light blue” clusters climate models that define interactions of
the drivers of climate change. Topics like ecology, biodiversity,
vulnerability, and the issue of water resources are included. Big
Data-based techniques are widely used and the importance of
open data must be recognized. Cloud computing and uncertainty
analysis tend to support the modeling of life cycles and climatic
effects. The open data science approach ensures a transparent
and collaborative environment for multi-model climate change

data analytics (Fiore et al., 2018). Information about the
geographic distribution of greenhouse gas emissions can be
useful in terms of high-resolution modeling (Charkovska et al.,
2019).

The “green” cluster defines topics with regard to sustainable
development, dealing with gas emissions, greenhouse gases,
energy efficiency, and environmental policies. Information
analytics and environmental technologies as well as green
computing seek to minimize hazardous waste while maximizing
energy efficiency and recyclability to foster the concept of a
circular economy. Data mining, generic algorithms, and neural
networks are gradually applied in sustainable consumption
research, that enables more accurate and better visualized results
(Wang et al., 2019). Managing efficient energy use is a commonly
discussed issue that takes into consideration the climate change
impact analysis with regard to the energy use of campus buildings
(Fathi and Srinivasan, 2019), life-cycle assessment of energy-
consuming products (Ross and Cheah, 2019) as well as the
adaptation of green computing to reduce the carbon footprint of
ICT (Airehrour et al., 2019).
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FIGURE 3 | The network of keywords co-occurrence in climate-related Big Data articles.

The “blue” cluster seems to reveal methodologies considered
in climatology, urbanization, and adaptive management. Remote
sensing and satellite imagery make it possible to collect a large
amount of data that supports mapping and is used to make
further predictions. Satellite remote sensing quantifies processes
and spatio-temporal states of the atmosphere, land, and oceans
(Yang et al., 2013), moreover enables, for example, climate change
and the impact of human activities on cropland productivity to
be detected (Yan et al., 2020) and changes in water resources to be
mapped (Senay et al., 2017). Themonitoring of carbon by satellite
observation provides information about greenhouse gases and
emissions that can be utilized in estimation processes regarding
the investigation of CO2 (Zhao et al., 2019).

The “yellow” cluster consists of the global climate change-
related data analyses, visualization methods, regression analysis,
and time series analysis. Open systems and open sources
are gaining ever more attention in this field. A web-based
visualization of complex climate data can assure scientists,
resource managers, policymakers, and the public to explore

climate-balance projections even at the local level (Alder and
Hostetler, 2015). The assessment of spatiotemporal data to gain
knowledge from it is a complex challenge, however, a well-
developed visual analytical system can support performance
improvement methods and techniques (Li et al., 2013). A high
performance query analytical framework that proposes grid
transformation can provide a complex climate data observation
and model simulation (L et al., 2017). For climate environmental
analyses, a 3D visualization simulation of cloud data is gaining
attention in the fields of computer graphics andmeteorology (Xie
Y. et al., 2019).

The application of contemporary technologies like Big
Data analytics and IoT-based models is sought to gain a
knowledge base in any field by collecting and analysing large
complex heterogeneous data sets. This enables evidence-based
policy making to be encouraged and serves as a decision
support tool for risk assessment and resilience adaptation,
while forecasting future socio-economic as well as aiding
environmental conditions caused by climate-related change. The
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Big Data researches are important in itself and contribute to the
understanding of climate change, but managing their results in
an integrated way increases the level of problem extraction and
provides new solutions for decision makers.

4.3. The Role of Social Sciences in Climate
Change Studies
Most articles on climate change belong to the field of
environmental science, closely followed by Earth and planetary
sciences, then agricultural and biological sciences. Interestingly,
the number of articles published in the social sciences precedes
the fields of engineering and energy.

The growing amount of information and knowledge renders
multidisciplinary analyses covering the whole field of science
and the development of such analytical tools indispensable as
the knowledge accumulated cannot be directly utilized without
systematization and targeted processing.

Climate change issues tend to connect different disciplines
as well as research ideas, models, and solutions related to these
issues. In the following, significant connection between climate
and social sciences is discussed. The Scopus database was used to
extract relevant information for meta-analysis.

The search for a connection with social sciences yielded
1,203 documents: [TITLE-ABS-KEY(“climate change”) AND
TITLE-ABS-KEY(“social sciences”)]. The networks concerning
the co-occurrence of keywords referring to the interrelationship
between climate change and social sciences is shown in Figure 4.

Based on the intersections presented in Figure 4, seven
communities are detected. The red community includes
emissions, energy and economic hubs. The yellow community
includes habitat-related nodes. The light blue community covers
regulators and issues concerning water management, while the
purple community summarizes concepts related to “change,”
e.g., vulnerability, adaptation, etc. The green community
includes interdisciplinary subject areas, while the dark blue
one represents political keywords and the orange community
describes sustainable mergers.

A complex relationship exists between human and natural
processes involving social, political, geographic, and cultural
contexts that demands a multidisciplinary concept (Fiske
et al., 2018). Environmental changes call for socio-economic
transformation to mitigate the effects caused by humans and
increase resilience. Changes are observed in a diverse range
of areas such as agriculture and food security, air quality,
waters, energy consumption, land ecosystem as well as global
warming. These issues must be managed through strategic
planning and management with a high degree of focus on long-
term sustainable operation. Socio-ecological-economic models
must integrate social and biophysical information in order to
develop sufficient mitigation and adaptation strategies (Sullivan
and Huntingford, 2009). The impact of climate change on water
resources is critical as it is related to floods, droughts, tidal
waves, and humidity. Big Data-based processes are used to
determine, for example, soil conditions and humidity (Anton
et al., 2019) to estimate energy consumption (Seyedzadeh et al.,
2018) or greenhouse gas emissions (Hamrani et al., 2020) that

enable optimal processes and interventions to be predicted.
Decision support algorithms, models, and databases are used to
provide evidence-base for policymaking and legislation (Aragona
and De Rosa, 2019) as well as disaster management (Akter
and Wamba, 2019). These can be considered at organizational
(Kouloukoui et al., 2019), local (Giest, 2017), sub-national (Hsu
et al., 2019), national (Iacobuta et al., 2018), or even global levels
(Flato et al., 2014).

Socio-environmental sciences are sought to explore the
systematic cause-effect relationship following the environmental
impact of human induced climate change. By providing
heterogeneous data and supportive models, positive changes can
be achieved through interdisciplinary data-driven perceptions
that contribute to a better understanding of the complex issue,
monitor changes, support decision-making, and bring about
in-time interventions.

4.4. The Importance of the System of
Systems Approach
Climate change is one of the most significant global challenges
that need to be managed. To resolve any of the climate change-
related challenges, “it is essential to elicit and integrate knowledge
across a range of systems, informing the design of solutions
that take into account the complex and uncertain nature of
the individual systems and their interrelationships” (Little et al.,
2019). The system of system (SoS) framework enables to analyse
the interdependencies between various systems (e.g., human,
information, environmental, and physical systems), therefore
provides a clear understanding of the complex nature of the
issue (Fan and Mostafavi, 2019). The trends in data science and
information technology (Tannahill and Jamshidi, 2014) supports
the integration of various disciplines and research outcomes to
represent a socio-environmental system holistically inform policy
and decision-making processes (Iwanaga et al., 2020) , which can
be referred as climate computing.

To highlight the importance of the application of the system
of systems approach, the latest Big Data-based works in the field
of climate change were reviewed, based on which we identified
a SoS framework (Figure 5). In the network of applications, the
nodes show the different researches, and the edges represent the
relationships of the research results. The BigData applications
have been grouped according to sustainable development goals,
thus showing the possible scientific contributions with the
other fields.

By processing satellite data, the system developed in Semlali
and El Amrani (2021) can monitor changes in air quality, which
can also be used to monitor agricultural areas (Majidi et al.,
2021). Cloud tracking (He et al., 2020) further helps to assess the
evolution of air pollution, the reliability of which can be further
enhanced with statistical downscaling solutions (Wang Q. et al.,
2020). The time-series data (Joshi et al., 2019) extracted from
satellite images support long-term forecasts, but the description
of cloud motion (Xie Y. et al., 2019) can also be used to refine
shorter-term analyzes. The use of satellite imagery as a data
source in urban planning also helps identify climate-friendly
solutions (Milojevic-Dupont et al., 2020).
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FIGURE 4 | The relation between social sciences and climate change.

Web-based water management (Mourtzios et al., 2021) can be
supported with trends identified from time-series data (Ise et al.,
2020), but remotely sensed water flow data also complements
the agricultural water management model (Ismail et al., 2020).
And if we increase the resolution of the data (Jimenez et al.,
2019), we can also understand the causal relationships related
to consumption. In terms of infrastructure load, patterns of
population movement (Gurram et al., 2019) offer exciting
opportunities, but can also be integrated with the condition of
buildings (Gouveia and Palma, 2019), which also supports the
satisfaction of urban planning tasks (Milojevic-Dupont et al.,
2020) at a higher level.

Agricultural satellite imagery applications (Majidi et al., 2021)
can be transferred to air quality satellite monitoring (Semlali and
El Amrani, 2021), or time-series data (Ise et al., 2020) can be used
to plan better agricultural interventions. By implication, satellite-
based support plays an important role in modeling agricultural
water management (Ismail et al., 2020), but disaster news (Park
et al., 2020) also helps provide a deeper understanding of social
involvement. In assessing disaster resilience in different areas,
(Sasaki et al., 2020) satellite imagery provides feedback on risks
that can even be revealed over time (Joshi et al., 2019). Satellite-
based results can be supported by on-site special (Lambrinos,

2019) andmeteorological (Mabrouki et al., 2021) sensor data, and
flood protection of valuable agricultural areas can also be planned
with flood models (Avand et al., 2021).

Identifying patterns in time-series data (Ise et al., 2020) helps
with research in many other areas, whether it is agricultural water
management (Ismail et al., 2020) or marine habitat protection
(Coro et al., 2020). It allows (Kubo et al., 2020) forecasting and a
better understanding of coastal traffic and increases the reliability
of disaster resilience estimation (Sasaki et al., 2020). By extracting
time series data (Joshi et al., 2019) from satellite imagery, we
can indirectly validate the models by comparing the time series
or identify the factors of potato disease (Fenu and Malloci,
2019). In urban developments (Milojevic-Dupont et al., 2020)
and in building condition surveys (Gouveia and Palma, 2019)
the forecast shows the development of infrastructure expansion
and maintenance, to which the probability of flood protection
problems (Avand et al., 2021) can also be linked.

Statistical downscaling (Wang Q. et al., 2020) helps to find
the external variables of Mourtzios et al. (2021) consumption
patterns identified based on remote sensing and is comparable
with the results of satellite image-based analyzes (Semlali and
El Amrani, 2021). And comparable to other approaches (Jimenez
et al., 2019), which strengthens confidence in the models (Qin
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FIGURE 5 | The system of systems concept of BigData applications.

and Chi, 2020). Better resolution data supports marine habitat
protection planning (Coro et al., 2020), risk assessment input
(Fenu and Malloci, 2019), but can also be used (Gouveia
and Palma, 2019) to analyze building consumption data. The
efficiency of downscaling techniques can be increased with the
Internet of Things (Lambrinos, 2019) toolbar. The increase of
the number of observations allows a more accurate description
of local climatic conditions to estimate floods (Avand et al., 2021)
and heat island effects, as well as other sustainable urban planning
(Milojevic-Dupont et al., 2020) aspects.

Coastal tourism monitoring (Kubo et al., 2020) can be
integrated with traffic data (Hu et al., 2020) to optimize traffic
management and thereby reduce pollutant emissions. The effect
of transport on plant damage can be included (Meineke et al.,
2020) as a factor to be analyzed, or we can use it (Gurram et al.,
2019) to identify patterns in population movement.

Population movements (Gurram et al., 2019) affect water
consumption (Mourtzios et al., 2021), can damage plants
(Meineke et al., 2020), show the popularity of coastal areas
(Kubo et al., 2020), but are also suitable for improving transport
planning (Hu et al., 2020). Because the movement of residents
is closely related to the infrastructure (Milojevic-Dupont et al.,
2020), it is a very valuable input in urban planning.

The data of the Internet of Things sensors (Mabrouki et al.,
2021) allow the conclusions drawn from the satellite images
to be verified (Majidi et al., 2021), as a measuring station
(Jimenez et al., 2019) increases the number of observations,
thus better downscaling solutions (Wang Q. et al., 2020) can
be made. It can be used for causal exploration of plant
morphological damage (Fenu and Malloci, 2019) and supports
agricultural irrigation water demand planning (Ismail et al.,
2020), but can also be imported into flood models (Avand et al.,
2021).

In the Big Data application, that supports the energy demand
management of buildings (Gouveia and Palma, 2019), we can use
water consumption data (Mourtzios et al., 2021) as an extension,
development alternatives can be ranked based on time series
data (Ise et al., 2020), or based on time series extracted from
satellite images (Joshi et al., 2019), which can be supported by a
deeper understanding of energy demand downscaled data (Wang
Q. et al., 2020), because the resolution of the input data can be
improved (Jimenez et al., 2019).

Based on the presented system of systems framework, it
can be seen how the new results of Big Data applications
related to climate change contribute to other areas. Remote
sensing of water consumption (Mourtzios et al., 2021), analysis
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of cloud water content (He et al., 2020), and the agricultural
water management model (Ismail et al., 2020) contribute to
the goal of clean water and sanitation (SDG6). Planning based
on the analysis of traffic data (Hu et al., 2020), studying
population movements (Gurram et al., 2019) and flooding
models (Avand et al., 2021) support the goal of industry,
innovation and infrastructure (SDG9). Climate-friendly urban
planning (Milojevic-Dupont et al., 2020), monitoring the energy
demand of buildings (Gouveia and Palma, 2019), and defining
disaster resilience (Sasaki et al., 2020) play an important role
in achieving sustainable cities and communities (SDG11). The
Climate Action goal (SDG13) tackles most data gaps, so research
such as linking satellite images to Semlali and El Amrani (2021)
with air quality, preprocessing them (Meraner et al., 2020; Qin
and Chi, 2020; Semlali et al., 2020), the analysis of time series
data (Ise et al., 2020) and its exploration (Joshi et al., 2019),
downscaling (Wang Q. et al., 2020) techniques, enrichment
of precipitation and temperature data (Jimenez et al., 2019),
tracking the movement of clouds (Xie Y. et al., 2019), or
just using IoT sensors (Mabrouki et al., 2021) are all key in
creating a strategy to support the achievement of the climate
goal. For the sustainability of life below water (SDG14), marine
life prediction models (Coro et al., 2020) and human coastal
activity (Kubo et al., 2020) can be integrated. Of course, the
goal of life on land (SDG15) also requires new research, where
a satellite-based study of agriculture and forestry (Majidi et al.,
2021), deployment of IoT sensors (Lambrinos, 2019), analysis
of climatic factors of potato damage (Fenu and Malloci, 2019),
studying the morphology of plants (Meineke et al., 2020), or
social media based illustration of palm oil consumption (Teng
et al., 2020) are promising. Partnerships for the goals (SDG17)
is critical in several ways, on the one hand we recommend the
grouping of climate services (Howard et al., 2020), which fits
the SoS concept we propose, and on the other hand we need to
integrate the knowledge and give feedback to society. An exciting
tool for measuring the effectiveness of climate and sustainability
related measures is the analysis of news comments (Park et al.,
2020).

It is essential to highlight that Big Data research on
climate change can be used in other areas and as shown
by the SDG grouping in Figure 5. Thus, based on the
recommended SoS viewpoint, the specific results of
sustainability-related research and development projects
can be integrated, enhancing knowledge accumulation
and utilization.

5. DISCUSSION

This paper described the essential need for research and
development objectives to realize and manage the complex
issues of climate change through Big Data tools. Data-driven
applications were reviewed through the co-occurrence analysis
of keywords, which showed the widespread application of Big

Data technologies and tools, however, comprehensively utilized
and integrative analyses are less prevalent.

This research aimed to highlight the perspective of
systems of systems (SoS) as the drivers and effects of
climate as well as that their resilience and adaptation cannot
be determined without the exploration of the synergies
between new research trends and disciplines. Based on
the recommended SoS viewpoint, the specific results of
sustainability-related research and development projects
can be integrated, enhancing knowledge accumulation and
utilization. The tools of data and systems sciences can play a
crucial role in recognition of climate challenges and mitigation
opportunities thanks to the integration of heterogeneous
data and models, and the exploration of the relationship
between environmental and social factors. This integrated
thinking lays the groundwork for promising future trends in
climate computing.

It can be claimed that the exclusive analysis of climatic factors
cannot bring about sufficient strategic adaptation by itself, rather
the socio-environmental factors must be integrated the climate
change models.

Mitigating the impacts of climate change and successful
adaptation requires effective climate change strategic
planning by countries worldwide whose decision-making
requires complex models and sources of information. The
Big Data toolkit enables the systematization, processing,
and evaluation of heterogeneous data and information
sources, which is unfeasible with traditional disciplinary
analysis tools. The harmonization of the ever-expanding
scientific knowledge and diversified data sources related to
climate change may be one of the most urgent tasks for
researchers in the future. This research presented Big Data
analytics tools and their contribution toward exploring the
characteristics of climate change as well as climate action-related
counterparts such as sustainability and social sciences that are
essential for the successful development and implementation
of strategies.
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