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Atmospheric visibility is an important parameter of the environment which is dependent
on meteorological and air quality conditions. Forecasting of visibility is a complex task
due to the multitude of parameters and nonlinear relations between these parameters.
In this study, meteorological, air quality, and atmospheric visibility data were analyzed
together to demonstrate the capabilities of the multidimensional logistic regression
model for visibility prediction. This approach allowed determining independent variables
and their significance to the value of the atmospheric visibility in four ranges (i.e., 0–10,
10–20, 20–30, and ≥ 30 km). We proved that the Iman–Conover (IC) method can be
used to simulate a time series of meteorological and air quality parameters. The visibility
in Warsaw (Poland) is dependent mainly on air temperature and humidity, precipitation,
and ambient concentration of PM10. Three logistic models of visibility allowed us to
determine precisely the number of days in a month with visibility in a specific range.
The sensitivity of the models was between 75.53 and 90.21%, and the specificity 78.51
and 96.65%. The comparison of the theoretical (modeled) with empirical (measured)
distribution with the Kolmogorov–Smirnov test yielded p-values always above 0.27 and,
in half of the cases, above 0.52.

Keywords: atmospheric visibility, logistic model, air pollution, meteorological parameters, monte carlo methods,
case study, Poland

INTRODUCTION

The effects of anthropogenic air pollution are discussed for years (Schedling, 1967; Saikawa et al.,
2017; Kinney, 2018; Grewling et al., 2019; Makra, 2019). Visibility, an indicator of atmospheric
transparency, refers to the visual range that distant objects can be clearly discerned (Li et al., 2019).
Visibility is an atmospheric parameter, which can serve as a visual index for air quality (Kuo et al.,
2013). Generally, visibility is the “distance at which the contrast of a given object with respect to
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its background is just equal to the contrast threshold of an
observer” (WMO, 2015). It can also be defined as the clearness
with which objects stand out from their backgrounds or other
objects and how far people can see and how well they can
identify objects (Bennett, 1930; Wooten and Hammond, 2002).
Thus, a reduction in visibility is not simply fewer colors. On
polluted days, however, the sky will appear white or grayish, and
there is diminished contrast, making it difficult to discern the
contours and details of objects (Ding et al., 2020). Many studies
were made to evaluate the relationship between air pollution
and visibility (Hyslop, 2009; Majewski et al., 2015; Qu et al.,
2020). The impairment of visibility is primarily attributed to the
scattering and absorption of visible light by particulate matter
(PM). As the number of particulate of PM and selected PM
components (e.g., black carbon) increases, more light is absorbed
and scattered, resulting in less clarity, color, and visual range
(Latha and Badarinath, 2003). Therefore, visibility at urban sites
is mainly shaped by the emission of PM and PM precursors from
anthropogenic sources like road traffic, combustion of fossil fuels,
municipal solid waste treatment, and industry (Tsai et al., 2007;
Deng et al., 2008; Zhao et al., 2011; Fajardo et al., 2013; Majewski
et al., 2014; Zhuang et al., 2014).

Forecasting visibility is a complex task due to the multitude
of parameters and nonlinear relations between these parameters.
The statistical models which are currently used in the prediction
of visibility have limited capabilities (Madan et al., 2000;
Zhang et al., 2017; So et al., 2018; Dietz et al., 2019). We
decided to use a classification model to make our forecast of
visibility. We used multidimensional logistic regression since
it allows us to assess the impact of a given variable on
visibility without any additional calculations and the need
for implementation of complex numerical algorithms (Hosmer
et al., 2013). Although it is not easy to implement visibility–
air quality interactions in the model, multiple outputs can
be combined to improve visibility forecasting. Our solution
allows the identification of visibility values in as many
as four classes, taking into account different meteorological
conditions and air quality measures (including the concentration
of PM), which have not been analyzed in such scope
before. Using the designated logistic models, cumulative
empirical distributions of selected independent variables were
identified, which was the basis for the development of their
Monte Carlo generators. The obtained tool makes it possible
to model the number of days with the visibility value
within the appropriate range, which has not been analyzed
in detail so far.

Generally, there is a lack of studies concerning the
problem of visibility and air pollution in Poland since
the air quality in Poland is one of the lowest in Europe
(EEA, 2019). The air pollution in Poland is mainly caused
by the emission from road traffic, industry, and energy
production (Pastuszka et al., 2003; Rogula-Kozłowska et al.,
2013; Błaszczak et al., 2016; KOBIZE, 2019). The impact
of air quality in Poland can be seen in the scale of the
whole of Europe (Spindler et al., 2010; Rogula-Kozłowska
et al., 2014; Leoni et al., 2018); hence, monitoring of air
quality including atmospheric visibility is very important.

However, the visibility is monitored only at 15 places in
Poland (PANSA, 2020), i.e., one place per over 20,000 km2.
This proves that the crucial point is the development of
the methodology of forecast visibility which is based on
historical data.

Here we presented an original model with the consistent
methodological approach and assumptions. This approach to
the visibility forecast can be successful in application to
the analysis of publicly available data concerning many sites
around the world.

MATERIALS AND METHODS

Model Overview
The workflow of our original visibility forecast model is shown in
Figure 1.

Air Quality and Meteorological
Observations
The information used in the study came from the period
between 2004 and 2013. We used data from three different
monitoring stations located in the southern part of Warsaw, the
capital of Poland. Their location is shown in Supplementary
Figure 1. The air quality data were from the monitoring
station MzWarWokalna located at 52.160772N, 21.033819E.
We used 1-h average concentrations of sulfur dioxide (SO2),
carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2),
and PM10, monitored via pulsed fluorescence, infrared
absorption, absorption of ultraviolet light, chemiluminescence,
and a β-gauge automated particle sampler, respectively.
The daily, arithmetic mean of 24 1-h concentrations was
calculated for this study. The meteorological parameters
were recorded at the Ursynów-SGGW station (52.160810N,
21.045681E). The meteorological data covered 24-h averaged
data about air temperature T [◦C], solar irradiance S

[
W
m2

]
,

precipitation P [mm], and wind velocity V
[m

s
]
. All the
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FIGURE 1 | The workflow of determination of probabilistic model of simulation
of visibility (Vis).
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meteorological measurements were done according to the
procedures of the Polish Institute of Meteorology and Water
Management, National Research Institute (IMGW-PIB).
The visibility was measured at the Warsaw Chopin Airport
weather station (52.162876N, 20.961125E) with the use of a
visibility meter equipped with an atmospheric phenomenon
detector—Vaisala FS11 (wavelength 875 nm). It performed
the functions of a visibility meter using light dispersion
measurements and an atmospheric phenomenon detector
with a measurement range from 10 to 50 km. The data (1-
h values) were shared by the IMGW-PIB. For the whole
research period, the 87,634 1-h values were obtained and
a daily mean was calculated as for air quality data. We are
then aware that during rain phenomena, the instrument
FS11 is measuring beam attenuation due to scattering
processes and is not physically taking absorption, e.g., by
water vapor into account. The manufacturer claims that
the response of the FS11 has been tested, evaluated, and 25
times verified with a transmissometer including a visible
light band emitter at different locations around the world.
Therefore, the absorption effect is covered to a certain extent,
according to the manufacturer. We see the need of further
research, aimed at a detailed analysis of visual range changes
and precipitation.

The datasets were validated before the usage. The
meteorological equipment was daily calibrated and validated
by the personnel of the SGGW-WULS. The air quality
data, before the publication in the archive of the Chief
Inspectorate for Environmental Protection, are cross-
checked and validated. The quality of the visibility data was
constantly checked by the personnel at the Warsaw Chopin
Airport since it determines the safety of the operation
of the airport. As a result of these data quality control
procedures, all the data which were outlier were removed
by the respective services.

In the summer period (May–August), the median of all
daily values of visibility in each month Vis(p = 0.50)
has the highest value and is in the range 28.8–30.8 km,
while in the winter period (November–February), the monthly
visibility was the lowest and almost constant (in the range
of 0.5 km). The visibility in the mid-period (March–April
and September–October) has the highest change (from 13.4
to 28.8 km). Similar monthly trends are also observed for
the Vis

(
p = 0.05

)
and Vis(p = 0.95). According to these

observations and results of clustering data points (Figure 2),
we divided the year into three periods (i.e., N = 3):
(I) November–February, (II) March–April and September–
October, and (III) May–August, which we analyzed separately
(Supplementary Figure 2).

Data Analysis
For each of the N periods, the visibility values are converted
to a binary variable. It is the fundament for forecasting
visibility. The binary value represented is true when visibility
Vis is higher than the threshold visibility for the given
period VisN . In parallel, we determine which M independent
variables xi has an impact on the values of Vis in a given

FIGURE 2 | The dendrogram of the data points used in the work. The data
are clustered into three groups: C1, C2, and C3. The x-axis represents
measured air quality and meteorological data vectors, and the y-axis is the
distance between points. The horizontal line represents the threshold distance
between clusters we used in the work, and C_ denotes datasets.

period. The parallel M independent variables are determined
with the backward stepwise algorithm. The independence
of variables was checked using Spearman’s coefficient of
correlation ρ. We treat two variables as dependent if the
significance was at p < 0.05. The values of ρ are provided in
Supplementary Table 2.

We use the logistic model to forecast the binary data. Contrary
to other classification models, the result of these calculations is
probability. In general, the model can be described by Equation
(1) (Harrell, 2015):

p =
exp

(∑M
i = 1 α·x+α0

)
1+exp

(∑M
i = 1 α·x+α0

) (1)

where p is the probability that Vis is greater than the specific
threshold value Vislim, x is the vector of independent variables—
air quality data or meteorological conditions, and α is the vector
of the coefficients determined using the maximum likelihood
estimation method (Hosmer et al., 2013). The variable is assumed
to be independent if the hypothesis about the dependence of
variables can be rejected at p< 0.05.

We conducted three phases of the logistic model
determination: learning, testing, and validation. The data
for each of these phases were selected randomly, 400 points, i.e.,
3,600 points for three models and three phases.

The crucial point of the analysis was the determination
of value probability plim for which p(Vis > Vislim) = plim.
According to the value of Vislim, the data about visibility were
divided into two classes: Vis > Vislim and Vis ≤ Vislim; we
choose plim = 0.50 (Majewski et al., 2014). Since the preliminary
analysis of the data revealed three periods with similar visibility
(Figure 2), we used N = 3 models, and hence, we will determine
three values of Vislim, three sets of independent variables (for
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each logistic model M1, M2, and M3), and three sets of
coefficients α i.

Based on the N determined models of the forecast of
Visi = 1,2,..., N = f (x1, x2, . . ., xj), we found empirical distributions
of each of the j variables. Using these distributions, we decided
to find the best fitting theoretical distribution. The choice of the
distribution was done using the Kolmogorov–Smirnov (K-S) test
(Massey, 1951). To get the highest compatibility of the measured
and forecasted data, we analyzed the following distributions
as a candidate for modeling variables (Krishnamoorthy, 2016):
normal, lognormal, exponential, beta, generalized extreme value
(GEV), Gumbel, Weibull, Fischer-Tippet, Johnson, Rayleigh, and
Pareto with K-S test.

We used the Spearman coefficient of correlation ρ between
variables and best fit theoretical distribution to build a Monte
Carlo (MC) generator of synthetic time series of air quality and
meteorological data. In case when variables are dependent, we
used the Iman–Conover method (IC) which is a modification of
the MC method (Iman and Conover, 1982). In the IC method,
the variability of variables is based using marginal distributions
(theoretical distributions) and the covariance is assessed by the
Spearman coefficient of correlation (Chun and Tsang, 2004).
Thus, the usage of this method needs to meet specific conditions
(see section Conditions for the Iman–Conover method of the
Supplementary Material). In our work, time series are generated
using the IC method based on air quality and meteorological
data except for the precipitation. We used the MC method
to simulate the precipitation (P), according to the theoretical
models of days with precipitation. The aim was to calculate the
number of days with the precipitation nr in the given period.
The precipitation P was modeled as binary data (P = 0—no
precipitation, P = 1—precipitation).

Simulation of Time Series Using
Iman–Conover MC
We used our logistic models and generators to simulate
time series K-times in a given period (day, week, month,
etc.) of the meteorological parameters and air quality data.
We used it to determine the probability that the value of
Vis exceeds the limit. This procedure was repeated for each
of the N models (for each model for a given variability of
visibility). As a result, N cumulative distribution functions
(CDFs) of the probability of the number of days with
visibility higher than a specific value for every period
were determined.

As a result of K = 10,000 simulations, we obtained time
series with 7, 30, 365, etc. values for weekly, monthly,
and yearly forecasts, respectively. We used these values
to calculate p

(
Vis > Vislim1,2,3

)
. Let’s define a function

9
(
Vislimk, x1, x2, ..., xMk

)
with domain for a whole forecast

period in such a way:

9 =

{
p
(
Vislimk, x1, x2, ..., xMk

)
> 0.5→ D(Vislim) = 1

p
(
Vislimk, x1, x2, ..., xMk

)
> 0.5→ D(Vislim) = 0

(2)
The value D is a binary parameter describing whether it is more
probable that visibility is higher than Vislim (D = 1) or more

probable that visibility is lower (D = 0). We analyzed the total
number of days with visibility higher than Vislim for the forecast
periods and the value of Dp was the number of days in the given
period when the above conditions were satisfied. The expected
value of Dp can be calculated using Formula (3):

E
(
Dp
)
=

∫ ∫
. . .

∫
9
(
x1, x2, . . . , xM,Vislim1,2,3

)
· f (x1)

·f (x2) . . . f (xM)dx1dx2 . . . dxj (3)

where f (xi) is the probability density function of theoretical
distribution which is the best fitting empirical distribution
for variable xi.

Since the variables in the integral above are not independent,
the analytical solution is hardly feasible, and hence, we
used the MC method.

Prediction Assessment
The assessment of the performance of the models is made
using sensitivity (SENS) and specificity (SPEC). According to
Hosmer et al. (2013) and Harrell (2015), we used also the
third measure for logistic models—counting uncertainty Rz

2. We
choose the following threshold values for further calculations:
Vislim1 = 10 km, Vislim2 = 20 km, and Vislim3 = 30 km (Figure 2
and Supplementary Figure 2).

Finally, we used the two-sample Kolmogorov–Smirnov test
to compare CDF from the logistic model and CDF from the
experiment. It allowed us to evaluate numerically whether
our model prediction of the number of days within the
specific visibility range is in agreement with the empirical
distributions of visibility.

RESULTS AND DISCUSSION

The Logistic Regression Model
During the initial design of the model, we analyzed Vislim
with different lowest values and different intervals between
them. The Warsaw Chopin Airport, where the visibility was
measured, is located at the site where visibility is good and
the share of measurement with limited visibilities is low.
Hence, the visibility data models with intervals lower than
10 km had poor performance. In this work, we present the
performance and possibilities of the logistic regression model
with three limit values. We present the modes with values
Vislim1 = 10 km, Vislim2 = 20 km, and Vislim3 = 30 km, which
have good capabilities of forecasting visibility. For example,
for nm1 = 2, 517 data points, where Vis = 10 km (i.e.,
Vislim1 > 10 km), the forecast was in agreement for 1,896 points
(SENS = 75.53%), while for the remaining 517 data points,
500 was in agreement (SPEC = 96.65%). The value of Vislim
is crucial for the number M of the independent variables for
each model (M1 = 7, M2 = 6, M3 = 5). The CDFs for
three different Vislim divided into three periods are provided in
Supplementary Figures 3–5.

Below, we present the values of coefficients α and reminding
the vector of concentrations x for the logistic model described in
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the Data Analysis section (Equation 1). The zeros in α vectors are
put for dependent variables.

x =



PM10
SO2
CO

NO2
O3
T
V
Rh
P


(4)

αI =



−0.088 ± 0.007
−0.029 = 0.015
−0.0017 ± 0.0002
−0.044 ± 0.010

0
0.127 ± 0.014

0
−0.257 ± 0.014
−0.28 ± 0.04


, αII =



−0.120 ± 0.007
0
0

−0.023 ± 0.008
0.013 ± 0.005
0.114 ± 0.009

0
−0.191 ± 0.010
−0.55 ± 0.04


,

αIII =



−0.119 ± 0.007
0
0
0

−0.022 ± 0.004
0.10 ± 0.09

0
−0.192 ± 0.009
−0.74 ± 0.08


(5)

α0I = 26.0 ± 1.4, α0II = 18.6 ± 1.0, α0III = 16.2 ± 0.9
(6)

The prediction assessment for the models we yielded is as follows:
for model I, SENS = 75.53%, SPEC = 96.65%, Rz

2 = 93.03%
based on 2,517 points in the set; for model II, SENS = 86.82%,
SPEC = 89.21%, Rz

2 = 88.09% based on 1,616 points; and for
model III, SENS = 90.21%, SPEC = 78.51%, Rz

2 = 86.28 %
based on 1,021 points. For the chosen values of limits Vislim,
the concentration of PM10 and the values of Rh,T, andP have
an impact on Vis in all the models. The solar irradiance and
wind velocity are omitted in the vectors above since none of
these variables was independent in any model. The increase of
values of Rh, P, and PM10 results in the decrease of Vis, while
the increase of T results in an increase of Vis. These results are
in the agreement with earlier studies (e.g., Deng et al., 2014;
Majewski et al., 2015; Aman et al., 2019; Araghi et al., 2019; Won
et al., 2020). The concentrations of CO and SO2 are independent
variables only in the model where Vislim1 = 10 km, and the
increase of both of them decreases visibility. NO2 decreases the
values of Vis for Vislim1 = 10 km and Vislim2 = 20 km.

The results of the fitting coefficients show that with the
increase of Vislim, the positive influence of temperature decreases,

while the negative influence of the concentration of PM10 and
the presence of precipitation increases. The increase of relative
humidity decreases the probability of occurrence of the given
visibility, but this influence decreases with the Vislim.

The sensitivity analysis of the logistic models was done using
odds ratio (OR). We assumed percentage variability of marginal
values of Rh(0), PM10(0), and T(0) by 30%. The OR for Rh
is increasing with Vislim from ORRh

(
Vislim = 10km

)
= 0.0058

to ORRh
(
Vislim = 20km

)
= 0.0212 to ORRh

(
Vislim = 30km

)
=

0.0217, while for T, P, and PM10, the OR is decreasing
with the Vislim (for Vislim = 10km, ORPM10 = 0.49,ORT =

1.99,ORT = 0.75; for Vislim = 20km ORPM10 = 0.39,ORT =

1.85,ORT = 0.58; for Vislim = 30km, ORPM10 = 0.35,ORT =

1.67,ORT = 0.40).
The results of OR clearly show that the choice of values of

Vislim has an impact on the sensitivity of the model and, hence,
on the results of the model.

Empirical and Theoretical Distribution
Fitting
Since we divided the year into N = 3 periods, our analysis of
variables was also conducted in three periods. We determined
empirical distributions of air quality data and meteorological
data. We evaluated which of the distribution has the K-S p-value
(Table 1). We provided more details in see section Distributions
of the Supplementary Material.

Simulation of Visibility Occurrence
We used developed logistic models and MC generators of air
quality and meteorological data to determine the number of
days in month DVis, when visibility was in one of four ranges
(defined by the chosen values of Vislim): (a) below 10 km,
i.e., [0, 10[, (b) [10, 20[, (c) [20, 30[, and (d) [30,+∞[. The
calculations of CDFs of DVis were done for all three periods—
three models—which were used in the work. The results are
shown in Figure 3. It presents two families of CDFs: the dashed
which is based on the measurement data and the continuous
which is based on our model. We see that the shape of the
dashed and respective continuous distributions is very similar.
We verified our results using the K-S test for measurement
data from the visibility monitoring station and our model.
We found that for all comparisons, we could not reject the
hypotheses that empirical distribution and theoretical (from
the model) are the same. The probabilities (p-values of the K-S
test) can be presented as the following matrix of

(
pKS

)
ij where

i, row index, denotes period, and j describes the range of visibility:
1—[0, 10[ km, [10, 20[ km, 3—[20, 30[ km, and 4—[30,+∞[ km:

pKS =

 0.418 0.512 0.720 0.792
0.712 0.512 0.273 0.525
− 0.747 0.563 0.321

 (7)

Since the CDFs for Vis < 10 km in the summer period (black)
in Figure 3C do not have enough degrees of freedom, we did not
evaluate pKS for this range in this period. In general, these values
are high to very high, which confirms the quality of our model.
We achieved that the model correctly determines the probability
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TABLE 1 | Best fit theoretical distributions (according to the Kolmogorov–Smirnov
test) for the variables.

Variablexi Distribution Parameters p(K-S)

(I) Period: November–February

PM10 Lognorm µ = 3.508, σ = 0.613 0.5052

SO2 Lognorm µ = 2.346, σ = 0.551 0.6346

CO Lognorm µ = 6.335, σ = 0.413 0.7953

NO2 Gamma µ = 26.144, k = 5.104, β = 5.122 0.2355

O3 Weibull µ = 0.224, β = 1.876, γ = 32.527 0.1251

T Weibull µ = -78.01, β = 17.62, γ = 80.849 0.6783

Rh GEV k = -0.017, β = 1.189, µ = 1.779 0.4401

nr Poisson λ = 9.636 0.746

(II) Period: March–April and September–October

PM10 Lognorm µ = 3.474, σ = 0.495 0.971

SO2 Lognorm µ = 1.979, σ = 0.539 0.944

CO Lognorm µ = 6.133, σ = 0.404 0.675

NO2 Lognorm µ = 3.107, σ = 0.446 0.235

O3 GEV k = 0.241, β = 20.185, µ = 40.035 0.476

T Weibull β = 5.931, γ = 31.952, µ = 20.526 0.345

Rh Weibull k = 12.069, β = 150.179, µ = −72.444 0.499

nr Poisson λ = 6.6913 0.588

(III) Period: May–August

PM10 Lognorm µ = 3.218, σ = 0.363 0.885

SO2 GEV k = -0.078, β = 1.670, µ = 4.319 0.426

CO GEV k = 0.06, β = 80.543, µ = 282.42 0.421

NO2 Lognorm µ = 2.927, σ = 0.402 0.959

O3 GEV k = 0.181, β = 14.391, µ = 54.036 0.653

T Weibull β = 2.213, γ = 2.276, µ = 0.321 0.992

Rh Normal µ = 66.92, σ = 0.109 0.876

nr Poisson λ = 10.636 0.385

µ, β, γ, k, and λ are empirical parameters described in Supplementary Material.

that the number of days with the given visibility is less or equal to
a specific value.

In period I (November–February), the number of days in
a month with visibility in the range [10, 20[is the highest
and the median of the simulated number of days with such
visibility is DVis = 15, while the median for the range [0, 10[is
DVis = 11. Similarly, we found that for period II (March–April
and September–October), the highest number of days in a month
is for the interval [10, 20[with the median DVis = 12; however,
the number of days in all intervals with visibility above 10 km is
similar to the median number of days DVis = 8 for [30,+∞[ and
DVis = 9 for [20, 30[. For period III (May–August), the median
number of days in a month DVis = 21 is the highest for the
interval [30,+∞[.

From the application point of view, the most important is
predicting the number of days with visibility in the range below
10 km since the visibility in this range is connected with aviation.
Based on the curves in Figure 3, in the winter period, we see that
the probability of the number of days in a month with visibility
below 10 km is ß(DVis ≤ 21) = 1, while in the mid-period, this
number of days in a month decreases to 7 and in the summer
period to 2. The beginning of each curve also plays an important
role in the analysis of the visibility conditions at the given site.

FIGURE 3 | CDF of the number of days DVis in a month (30 days) with Vis in
given range, “th” in the legend stands for theoretical CDF (calculated from the
described model), “emp” denotes CDF from measurements, and E(x) is the
expected value of DVis for the (A) winter period, (B) mid-period, and (C)
summer period.

According to Figure 3, in the winter period, we can conclude that
there are always 2 days in a month with Vis = 10 km since
ß(DVis = 2) = 0, while in the summer period, there are at
least 13 days in a month with Vis = 30 km. The application
of this model to another site after training allows to identify
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the support of the probability density function (PDF), i.e., the
inverse image of open interval ]0, 1[ of values of CDF. In the
case of our data, the support of PDF for VIS is as follows:

• Vis ε [0, 10[km is:

◦ Winter DVis ε ]2, 21[,
◦ Mid-period DVis ε ]0, 6[,
◦ Summer DVis ε ]0, 2[.

• Vis ε [10, 20[

◦ Winter DVis ε ]6, 24[,
◦ Mid-period DVis ε ]4, 19[,
◦ Summer DVis ε ]0, 8[.

• Vis ε [20, 30[km

◦ Winter DVis ε ]0, 10[,
◦ Mid-period DVis ε ]2, 15[,
◦ Summer DVis ε ]1, 14[.

• Vis ε [30,+∞[km

◦ Winter DVis ε ]0, 5[,
◦ Mid-period DVis ε ]3, 17[,
◦ Summer DVis ε ]13, 29[.

The intervals presented above are the essential description of
the visibility conditions at the site we were training our model
and can be applied elsewhere.

The further analysis of the CDF generated with our model
gives information about the 5th percentile or the 95th percentile
of the number of days in a month with specific visibility
or lower. This plays an important role in the evaluation of
the projects which require the assessment of limited visibility
occurrence. We believe that our model can be easily applied
if the sources of pollutants are similar to Warsaw and, hence,
if the spatial distribution of values of the concentrations of
pollutants is similar. For example, in Poland, the differences in
PM10 concentrations between particular regions may be high
(Łowicki, 2019; GIOŚ, 2020). It is mainly caused by the high
impact of local sources of emission (Rogula-Kozłowska et al.,
2012, 2014; Błaszczak et al., 2020). However, the described model
was developed based on the data collected in Warsaw, where air
quality and sources are similar to most European cities, where
the spatial distributions of concentrations of air pollutants are
rather flat (Dziennik Urzędowy Województwa Mazowieckiego,

2007, 2017; Holnicki et al., 2017). It caused our proposal of
visibility forecasting to be quite universal and useful for most
European cities.
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Dziennik Urzędowy Województwa Mazowieckiego (2017). UCHWAŁA NR
96/17 SEJMIKU WOJEWÓDZTWA MAZOWIECKIEGO. Warsaw: Masovian
Voivode.

EEA (2019). Air Quality in Europe — 2019 Report. Belgium: EEA.
Fajardo, O. A., Jiang, J., and Hao, J. (2013). Assessing young People’s preferences

in urban visibility in Beijing. Aerosol Air Quality Res. 13, 1536–1543. doi:
10.4209/aaqr.2012.11.0307
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