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Produced water (PW) generation has been increasing recently due to the expansion of
fossil fuel extraction and the aging of oil wells worldwide, especially in the United States.
The adverse health risks, seismicity, and environmental impacts associated with PW
have become a challenging concern. Therefore, there is increased demand for improved
PW treatment and reuse management options. There are multiple methods for treating
PW; this article focuses on treatment through membrane filtration. Moreover, this mini
review aims to summarize statistics on PW abundance and trends in PW generation
over time, to briefly call attention to health-related issues, highlight some treatment
challenges, and mention the potential purposes for reuse with an emphasis on the
United States, the largest generator of PW worldwide.
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INTRODUCTION

Global energy demand has led to robust and widespread oil and gas industry with exploration
and production activities around the world (Halvorsen, 1977; Cleveland, 2005; Caulk and Tomac,
2017). The environmental concerns associated with the diverse oil and gas extraction processes
include threats to human and ecological health and contamination of water, air, and soil (Mondal
and Wickramasinghe, 2008; Fakhru’l-Razi et al., 2009; Cordes et al., 2016; Mcintosh et al., 2018).
Wastewater generated during the extraction of oil and gas is the largest waste stream in the
oil and gas industry and is typically referred to as produced water (PW) (Veil, 2011; Dickhout
et al., 2017; Al-Ghouti et al., 2019). PW generally contains substantial concentrations of petroleum
components (such as phenols, polycyclic aromatic hydrocarbons, and volatile hydrocarbons),
production chemicals (such as biocides and corrosion inhibitors), dissolved gases (such as CO2
and H2S), salts (such as sodium bicarbonate and sodium chloride), dissolved minerals including
heavy metals (such as barium, zinc, lead, iron, etc.), and solids such as sand, silt, carbonates, and
clays (Hansen and Davies, 1994; Duraisamy et al., 2013; Farag and Harper, 2014; Igunnu and Chen,
2014; Al-Haddabi et al., 2015).

Produced water can be categorized according to the extraction activity, for example, oilfield
PW, natural gas PW, and coal bed methane PW (Veil et al., 2004; Igunnu and Chen, 2014;
Al-Ghouti et al., 2019); of these three, oilfield PW contributes 60% of the total volume
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(Fakhru’l-Razi et al., 2009; Igunnu and Chen, 2014). Oilfield PW
generally results from two different processes (Al-Ghouti et al.,
2019): (I) as a result of oil diffusion into the seawater during
the oil extraction (Bader, 2007; Al-Ghouti et al., 2019); and (II)
due to the water injection to the oil field in order to push
the oil rise to the surface (Puntervold and Austad, 2008; Al-
Ghouti et al., 2019). Similarly, PW from a natural gas processing
field is mainly made up of the fracturing fluid. This fluid is
a water solution containing multiple chemicals used to assist
the hydraulic fracturing operation (Chapman et al., 2012). Also,
this PW usually contains large volume of brines (Chapman
et al., 2012; Orem et al., 2014). In coalbed methane wells, the
hydrostatic pressure caused by water does not allow the gas to
be released from the coal; therefore, the water should be removed
in order to be able to collect gas, resulting in the coal bed methane
PW (Veil et al., 2004; Orem et al., 2014).

Improper management and control of PW can lead to the
contamination of natural water resources as a result of oil spills
or leaks (EPA, 2012; Esfahani et al., 2019). PW production is
estimated to be more than 70 billion barrels annually (Al-Ghouti
et al., 2019), and many of the associated contaminants are threats
to marine life and human health (Neff, 2002; Chowdhury et al.,
2004; Shakhawat et al., 2006; Mathieu et al., 2011; Beyer et al.,
2012; Hosseini et al., 2012; Wilson and VanBriesen, 2012; Torres
et al., 2016). High levels of organic and inorganic compounds
have been reported in PW; these compounds are typically
associated with shale gas wells (Torres et al., 2016). The level of
these compounds varies based on the age of the reservoir, the
type of produced hydrocarbon, and the local geology (Fakhru’l-
Razi et al., 2009; Al-Ghouti et al., 2019). Dissolved organic carbon
levels greater than 5.5 g/L have been reported for PW and include
alkanes, carboxylic acids, aliphatic, and aromatic compounds
with potential carcinogenic and other severe health effects
(Torres et al., 2016). Animal studies indicate that PW-associated
organic contaminants can cause respiratory complications in rats
(Freeman et al., 2004; Torres et al., 2016), uterus complication
in mice, and hemolytic anemia and adverse renal effects in
animals (Vale and Meredith, 1981; ATSDR, 1999; Ismail et al.,
2016; Alegbeleye et al., 2017), and respiratory complications and
dysfunction of reproductive system in mice (Maguire-Boyle and
Barron, 2014). Furthermore, volatile fatty acids (<53.7 mg/L)
produced by bacteria in PW, cause unpleasant odors and have
corrosive effects on skin with possible damage to eyes and nasal
cavities (Maguire-Boyle and Barron, 2014; Orem et al., 2014).
Furthermore, the inorganic contents of PW (Supplementary
Table 1; Wilson and VanBriesen, 2012; Torres et al., 2016;
Zhang et al., 2018) and their potential combination can cause
health concerns (Warner et al., 2013). For example, if the
bromide in PW is combined with disinfectant chlorine, it can
yield brominated disinfection by-products that can cause brain,
kidney, and liver damage (Brown, 2014; Vengosh et al., 2014).
As another example, the interaction of the salt in the shale
water with the surrounding rocks can mobilize radionuclides
(Rich and Crosby, 2013). This results in a high concentration
of radium-226 in some PW (Fisher, 1998; Osborn et al.,
2011; Fan et al., 2016). Although water treatment approaches
could reduce radioactive contamination by more than 90%

(Rich and Crosby, 2013; Brown, 2014), chronic exposure to the
remaining radium-226 contamination in drinking water can
pose serious health risks such as cancer, anemia, and dental
fractures (Rich and Crosby, 2013; Warner et al., 2013; Brown,
2014). Therefore, more investigation is required to identify more
effective treatment methods for radioactive contaminants in PW.

Moreover, underground disposal of PW, the most widespread
PW management strategy in the United States, has resulted in
additional concerns such as induced seismicity (Scanlon et al.,
2019). The state of Oklahoma is a particular example of observed
seismic activity associated with subsurface injection sites (Rajesh
and Gupta, 2021). Seismicity in Oklahoma has been linked
statistically to PW volumes and PW injection rates (Van der
Baan and Calixto, 2017; Roach, 2018; Scanlon et al., 2019). PW
injection into disposal wells contributes to seismicity mostly
by reducing normal stress which causes movement along a
pre-existing fault inducing earthquakes (Murray and Holland,
2014; Rubinstein and Mahani, 2015). However, to induce felt
earthquakes by injection, a combination of several factors is
necessary such as being near an active fault, fault size, stress size,
and fluid pressure (Capper and Lee, 2017). The injection risk
factors in addition to health hazards and water demand further
motivate the treatment and reuse of PW.

The ratio of water to oil in the process of oil extraction
is reported to be around three to one (Veil, 2011; Dickhout
et al., 2017; Al-Ghouti et al., 2019). However, the amount of PW
generation increases as the oil well ages (Figure 1A; Igunnu and
Chen, 2014; Kusworo et al., 2018). Some studies (Global Water
Intelligence, 2011; McCabe, 2020) predict that this ratio will be
12 to one on average by 2025 considering crude oil reservoirs.
Even in 2004, an average of 9.5:1 ratio (water:oil volume) in
the United States has been reported (Veil et al., 2004; Veil and
Clark, 2011). The PW volume could even reach 98% of extracted
product in fields that are close to being depleted (McCabe, 2020).

The United States is the largest generator of PW worldwide,
reportedly producing about reported to be 24.4 billion barrels,
∼30% of total PW in the world (Veil, 2015; Dickhout et al.,
2017; Al-Ghouti et al., 2019; Veil, 2020). There are around one
million oil/gas wells in the United States which are producing
different amounts of PW (Veil and Clark, 2011; Veil, 2015).
Figure 1B indicates how oil and gas wells are distributed
across the United States with the ranges of PW total dissolved
solids (TDS) concentrations (Breit and Otton, 2002; Shaffer
et al., 2013). Moreover, wells in the United States remain
in production longer than the global average well (Veil and
Clark, 2011). A comprehensive 10-year study by Veil et al. in
three different articles has shown that PW generation in the
United States has been increased by 16.2% between 2007 and
2017, with a particularly sharp increase in recent years (15.2%
between 2012 and 2017) (Clark and Veil, 2009; Veil, 2015,
2020). Generation of PW in the United States in 2017 was
dominated by three states, Texas, California, and Oklahoma,
which generated 41, 13, and 12%, respectively, of the total
(Veil, 2020). Conclusively, as the leading PW generator in the
world, the United States is urged to put more effort into PW
treatment and reuse.However, to reduce the potential health risks
of PW spills and/or discharge, and to consider further reuse for
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FIGURE 1 | (A) PW and oil production as a typical well ages [modified from Igunnu and Chen (2014)]. (B) Distribution of active shale plays across the United States
with the ranges of PW total dissolved solids (TDS) concentrations [modified from Shaffer et al. (2013)]. (C) PW volumes and hydraulic fracturing water demand in
2017 and irrigation water demand in 2015 across the United States [modified from Scanlon et al. (2020)].

different purposes, the aforementioned contaminations need to
be investigated and lowered to acceptable levels (EPA, 2004).
Here in this article, the aim is to discuss some reuse possibilities
and examples, and review the application of membrane-based
technologies for treating PW.

PRODUCED WATER REUSE

Reuse of treated PW has the potential to provide a useful water
resource, particularly in water-scarce regions with increasing of
oil and gas production (Echchelh et al., 2020; Gray, 2020; Nadella
et al., 2020). The proposed uses of treated PW are diverse and
include irrigation, habitat watering, livestock consumption, dust
control, power generation, oil and gas field operations, and as
an extreme example, drinking water (Echchelh et al., 2018; Al-
Ghouti et al., 2019; Ginsberg et al., 2019; Scanlon et al., 2020).
For instance, Figure 1C presents PW volumes and hydraulic
fracturing water demand across the United States in 2017, in
addition to water demand for irrigation in 2015 (Scanlon et al.,
2020). Units are in billion gallons. This map includes Black
Warrior, Powder River, San Juan, and Uinta basins as coal bed
methane reservoirs, and Bakken, Barnett, Eagle Ford, Fayetteville,
Haynesville, Marcellus, Niobrara, Oklahoma Area of Interest
(AOI), and Permian (Delaware and Midland basins) as oil and
gas reservoirs (Scanlon et al., 2020).

Depending on the intended application of treated water,
different standards have been issued (Murray-Gulde et al.,
2003; Uyttendaele et al., 2015). The United States Department
of Agriculture (USDA) has provided such standards for
irrigation and livestock consumption (Sirivedhin et al., 2004;
Al-Ghouti et al., 2019). Additionally, regulations for treated
water reuse as drinking water are generally provided by
the United States Environmental Protection Agency (EPA)
(Sirivedhin et al., 2004; Al-Ghouti et al., 2019). Supplementary

Table 2 demonstrates the standards recommended for reuse in
irrigation, livestock consumption, and drinking (Hildenbrand
et al., 2018; Al-Ghouti et al., 2019). Recommendations for
drinking water are necessarily stricter and therefore it requires
more substantial treatment of PW. In contrast, little treatment
is needed for PW reuse in oil and gas industry and dust
controlling operations (Al-Ghouti et al., 2019). Pondering
different applications, a factor that determines obtainable options
and plays an important role in considering reuse is expense
efficiency (Bagheri et al., 2018), which is very site-specific
(Echchelh et al., 2018).

Reaching specified standards after the treatment, PW reuse
for crop irrigation in arid and semi-arid areas has been
recommended (Sirivedhin et al., 2004; Echchelh et al., 2018),
especially for crops that are salt-tolerant (Gray, 2020). It also
helps to preserve freshwater resources in the region (Echchelh
et al., 2018, 2020). However, it is pivotal what crop type
is determined to be irrigated by treated PW due to several
challenges, largely due to the high content of TDS, including
various salts and sodium (Drewes et al., 2009; Echchelh et al.,
2018). For instance, the impact of PW on biofuel crops has been
investigated in a case study of treated PW reuse for irrigation
in the United States (Pica et al., 2017). The water used in this
study contained∼2 g/L total organic carbon (TOC) and∼20 g/L
TDS and was taken from a central processing facility which
supplies ∼500 wells in the Denver–Julesburg Basin (Pica et al.,
2017). The outcome of this study indicates that achieving 3.5 g/L
TDS is necessary for the treated water to be considered for
irrigation (Pica et al., 2017). Moreover, it is concluded that TOC
concentration of <5 mg/l is needed to keep a viable biofuel crops
production rate (Pica et al., 2017).

The water consumed by animals also requires some standards
to avoid adverse impacts on their health (Embry et al., 1959;
Faries and Loneragan, 2007). However, these standards are
usually less strict compared to human ingestion standards, and
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many livestock are more tolerant (Al-Ghouti et al., 2019). Salinity
and TDS tolerance vary among different species (Alam et al.,
2017; Arora and Dagar, 2019), but generally livestock can be
watered with a source containing 1 g/L of TDS (Veil et al.,
2004; Al-Ghouti et al., 2019). Moreover, moderately treated PW
with confirmed harmlessness based on water quality regulations
can be used as a source of drinking water for wildlife and also
a habitat for water birds and fish species (Sirivedhin et al.,
2004). In the United States state of Wyoming, PW with TDS
concentration of <5 g/L can be discharged to surface waters
in order to be used by livestock and wildlife (Ramirez, 2002;
Gray, 2020). This PW with low salinity is primarily from coal
bed methane operations, and the aforementioned discharge is
subject to permit requirements (Ramirez, 2002). However, due
to uncertainties in the water quality, some studies do not support
PW reuse other than in the energy sector (Scanlon et al., 2020).
The two most common applications for reusing PW in the
energy sector are enhanced oil recovery (EOR) and makeup
water used for hydraulic fracturing fluid (Khatib, 2007; Graham
et al., 2015; Arora and Dagar, 2019); for these applications,
high salt concentrations do not preclude use, and thus, only
minimal PW treatment may be required for reusage (Webb
and Zodrow, 2020). PW reuse for hydraulic fracturing requires
efficient removal of solids and iron (≤10 mg/L) (Munirasu
et al., 2016; Nadella et al., 2020); in addition, it is necessary to
inactivate microorganisms to reduce the chance of well clogging
and damage (Barnes et al., 2015). For EOR use, filtration may
be implemented to remove further targeted particles (Shams
Ashaghi et al., 2007; Buono et al., 2019).

PRODUCED WATER TREATMENT

As with other liquid waste streams, the options for PW include
proper treatment and discharge, beneficial reuse, or some
combination of these (Shaffer et al., 2013; McLaughlin et al.,
2020). Because contaminants and concentrations in PW vary,
physical, chemical, and biological treatment processes may be
required (Fakhru’l-Razi et al., 2009). There are generally three
core steps in PW treatment: pre-treatment, main treatment,
and post-treatment (Al-Ghouti et al., 2019). It is essential to
select a treatment approach based on efficiency, selectivity, and
cost. Additionally, many PW treatment operations must take
place in settings (e.g., offshore) with severe restrictions on space,
weight of the equipment, durability, and ability to operate in
harsh environments (Arthur et al., 2011; Dolan et al., 2018).
Widely studied techniques for PW treatment include adsorption
(Al-Ghouti et al., 2019), chemical precipitation (Blumenschein
and Banerjee, 2005; Fakhru’l-Razi et al., 2009), and membrane
filtration (Dickhout et al., 2017). Briefly, chemical precipitation
is a method to separate a substance from a solution either
by converting the substance into an insoluble form or by
altering the solvent composition to decrease the solubility of
the substance (Firouzjaei et al., 2020a; Peng and Guo, 2020).
Adsorption is the adhesion of dissolved constituents to the
surface of an insoluble interface, which leads to formation of
a thin film creation on the adsorbent surface (Fathy et al.,

2018; Firouzjaei et al., 2020b). This article focuses on membrane
treatment of PW.

Membrane filtration is a physical separation technique which
selectively fractionates components from a flowing substance via
pores in a continuous structure (Zirehpour et al., 2016; Firouzjaei
et al., 2018a; Rahimpour et al., 2018; Mozafari et al., 2019).
Membrane separations are categorized by the driving force and
the pore size of applied materials (Xu et al., 2008; Pejman et al.,
2020a). In addition to drinking water and wastewater treatment,
there are many other applications associated with this technology
in diverse industries including the petrochemical (Ravanchi et al.,
2009), pharmaceutical (Firouzjaei et al., 2018b; Seyedpour et al.,
2020a), and food industries (Pabby et al., 2015). There are
different types of membrane materials and membrane processes
applied to many applications, but the main goal is always the
same: separation. The most common membrane materials are
ceramic (Abadi et al., 2011), metal (Li et al., 2020), and polymer
(Seyedpour et al., 2020b). Membranes can be classified based on
the separation processes.

Microfiltration (MF) (Yang et al., 1998), ultrafiltration (UF)
(Ma et al., 2017), nanofiltration (NF) (Anand et al., 2018), and
reverse osmosis (RO) (Yang et al., 2019) are four main pressure-
driven membrane processes (Van der Bruggen et al., 2003). They
can also be categorized as porous (mainly MF and UF) and
non-porous (mainly RO and NF) membranes (El-Samak et al.,
2020; Zhao et al., 2020). In addition, forward osmosis (FO) is
an osmotic pressure-driven membrane process (Pejman et al.,
2020b). An ideal membrane for a specific separation purpose
should have sufficient mechanical resistance, high flux, and high
selectivity (Judd and Jefferson, 2003), with reasonable capital
and operating costs. The mechanical resistance is dependent
on material and the thickness (Elshorbagy and Chowdhury,
2013; Vajner et al., 2016). High flux can be achieved largely
through high porosity and/or large pore sizes. In contrast,
high selectivity can be achieved by having small pores with
a narrow range of sizes. Therefore, there is usually a trade-
off between flux and selectivity (Judd and Jefferson, 2003; Park
et al., 2017; Moon et al., 2020). In addition, there is generally
an inverse relationship between membrane thickness (number
of layers) and flux (Shirazi et al., 2014) which suggests a
general trade-off between mechanical resistance and flux. PW
treatment using membranes is generally intended to remove
contaminants with the size range of 1 nm–1 µm from the
feed (Ebrahimi et al., 2010; Alkhudhiri et al., 2013; Dickhout
et al., 2017). Ceramic membranes have attracted major interest
due to their extreme thermal stability, mechanical stability, and
their compatibility with harsh cleaning methods (i.e., intensifying
the cleaning regimes) (Fakhru’l-Razi et al., 2009; Aziz et al.,
2019; Ebrahimi et al., 2020). Periodic cleanings are cycles of
chemical soaks and backwashes to remove foulants from the
membrane surface and are required in any membrane system.
Ceramic membranes endurance to higher pressures results in
more efficient backwashing (Freeman and Shorney-Darby, 2011).
Furthermore, the combination of a wider tolerance of pressure
and cleaning chemicals lead to yield more stable permeability
in ceramic membranes. For instance, a sustainable flux of
700 [ L

m2.hr ] with a permeability of 1,400 [ L
m2.hr.bar ] has been
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reported by using silicon carbide MF ceramic membranes, fed
by PW from an oilfield in the Persian Gulf (Zsirai et al., 2018).
Moreover, more than 99% oil removal has been accomplished by
using commercial α-alumina MF ceramic membranes (0.8 µm
pore size), fed by synthetic PW containing 250–1,000 ppm
concentrations of heavy crude oil droplets of 1–10 micron
diameter (Mueller et al., 1997; Al-Ghouti et al., 2019); in all these
experiments, the permeate contained <2 ppm total hydrocarbons
(Mueller et al., 1997). Polymeric and composite membranes
are generally less expensive than ceramic membranes, and
their performance has been studied in several research studies
(Alzahrani and Mohammad, 2014; Lee et al., 2015; Dickhout
et al., 2017). Table 1 compares the membrane-based technologies
utilized for the treatment of PW, highlighting their advantages
and downsides (Igunnu and Chen, 2014; Al-Ghouti et al.,
2019). Most PW contaminants can be removed efficiently with
membrane treatment; for example, total suspended solids (TSS),
oil and grease (O&G), and sulfate have been shown to be highly
removed in PW treatment (Mondal and Wickramasinghe, 2008;
Alzahrani and Mohammad, 2014; Al-Ghouti et al., 2019). For
example, >99.9% removal of these three contaminants has been
reported for NF followed by RO using commercially available
polyamide thin film composite (PA-TFC) NF and low-pressure
RO membranes, including NF270 (an NF membrane for salt
rejection application) or BW30 (an RO membrane for brackish
water treatment application) (Mondal and Wickramasinghe,
2008; Ozgun et al., 2013; Alzahrani and Mohammad, 2014; Al-
Ghouti et al., 2019).

Applying non-pressure driven membrane processes such as
membrane distillation (MD) is another separation approach
(Wang and Chung, 2015). MD is a thermally driven membrane
process and is based on the vapor pressure gradient and vapor
transport across the membrane (Macedonio et al., 2014; Wang
and Chung, 2015). There are many different MD techniques such
as air gap MD (Meindersma et al., 2006), sweeping gas MD
(Shirazi et al., 2014), and permeate gap MD (Shirazi et al., 2014).
A process which has lately been considered for PW treatment
is the direct contact membrane distillation (DCMD) (Ali et al.,
2018; Anari et al., 2019; Zou et al., 2020). DCMD is a membrane
process in which the aqueous feed and permeate are kept in
different temperatures while in contact with a hydrophobic
membrane which hinders the liquid permeation but allows the
vapor to pass (Lawson and Lloyd, 1996; Ashoor et al., 2016);
the temperature difference leads to a vapor pressure difference
that drives the flux through the membrane from hot feed to the
cold permeate (Lawson and Lloyd, 1996; Ashoor et al., 2016).
Through DCMD, TDS can be removed by fabricated hollow fiber
membranes with the ratio of >99% which sustains even for 100 h
of operation (Ali et al., 2018; Zou et al., 2020).

It is also shown that pre-treatment techniques can improve
membrane performance and reduce costs (Hilal et al., 2003;
Padaki et al., 2015; Kusworo et al., 2018). For instance, the
lifetime, flux, and anti-fouling properties of membranes can
be improved by using adsorbents at the pre-treatment phase
(Kusworo et al., 2018). Another example of pre-treatment is
using bioreactors (Huang et al., 2020). For some classes of oil
and gas industry wastewater including oil-gas field PW and

petrochemical wastewater, bioreactors can be a very efficient
approach to reducing chemical oxygen demand (COD), with
reported reductions of 80% for a PW with a COD range of
1,710–3,030 mg/L (Ozgun et al., 2013; Huang et al., 2020).
Regarding COD reduction, bioreactors may provide superior
performance as pretreatment for RO; pretreatment with MF and
UF membranes has been reported to yield <25% reduction of
COD (Ozgun et al., 2013; Al-Ghouti et al., 2019).

Membrane filtration is an efficient technique to remove
TDS from PW (Çakmakce et al., 2008; Strong et al., 2017;
Venkatesan and Wankat, 2017; Atoufi and Lampert, 2020) due
to the following reasons: (1) the energy consumption and cost
are relatively low [82–84], (2) rejection rates are relatively
high (Webb and Zodrow, 2020), and (3) adding less chemicals
is required through the process (Webb and Zodrow, 2020).
Generally, MF and UF membranes remove a considerable
fraction of solids and can serve as pretreatment for NF, RO, or FO
techniques in order to reach desired TDS rejection (Atoufi and
Lampert, 2020). For example, 95% removal of TDS from PW has
been reported by implementing RO (Funston et al., 2002; Atoufi
and Lampert, 2020). Specifically, membrane distillation and FO
are reported to be very promising for treating PW with high
TDS concentration due to the fact that these two techniques use
temperature and concentration gradients, respectively, instead
of pressure gradient (Coday et al., 2014; Duong et al., 2015;
Webb and Zodrow, 2020). However, pressure-driven membranes
processes like RO are impractical for treatment of very high
salinity (e.g., >35 g/L) PW (Shaffer et al., 2013); because the
hydraulic pressure needed to overcome the osmotic pressure
of high-salinity waters can be over the allowable pressure of
the RO membrane modules, desalination of high-salinity PW
with TDS concentrations higher than ∼35 g/L requires more
energy intensive technologies (Greenlee et al., 2009; Shaffer
et al., 2013). Unlike RO, FO is driven by osmotic pressure
rather than hydraulic pressure, and is not restricted by the high-
pressure operating limitation associated with TDS concentration
as high as 70 g/L (Martinetti et al., 2009). Also, low-pressure NF
has been practical for removing ions like sulfate and calcium
(Fakhru’l-Razi et al., 2009; Webb and Zodrow, 2020). High
heavy metal concentrations are an important concern for many
PWs, as many heavy metals have major adverse health effects
(Supplementary Table 3; Fakhru’l-Razi et al., 2009; Tchounwou
et al., 2012; Atoufi and Lampert, 2020); NF and RO have
been reported to be successful in treating feed water containing
multiple heavy metals; reported results indicate an average
removal efficiency of 97 and 99% for NF and RO, respectively
(Qdais and Moussa, 2004).

In summary, membrane-based treatment of PW has shown
success across many contaminants and applications. Although
membrane filtration technologies are very effective, desalination
of PW with high salinity (>70 g/L) still has room for
improvement (Ahmad et al., 2020). Hybrid treating systems,
i.e., combination of two or more membrane processes, show
more efficacy for treating PW (Murray-Gulde et al., 2003;
Ahmad et al., 2020). For example, a four-step method has
recently been proposed by Atoufi and Lampert (2020) that is
focused on removing salts from PW. The first step is called
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TABLE 1 | The membrane technologies used for PW treatment and comparison of their properties [modified from Igunnu and Chen (2014)].

Technology Feasibility Chemical use Pre/post-treatment Life Cycle
(years)

Advantages Disadvantages

Ceramic MF/UF membrane Applicable for the treatment of
all PW types, especially oilfield
PW, but could be problematic
for PW with high concentration
of salts and TDS.

– Coagulant agents used
for precoagulation:
aluminum sulfate,
polyaluminum chloride,
and ferric chloride.

– Agents for cleaning
process: acids, bases,
and surfactants.

– Pre-treatment: cartridge
filtration and coagulation.

– Post-treatment:
depending on the PW,
polishing may be
needed.

>10 • Product water is completely
free of suspended solids.

• Operable in both dead-end
and cross flow filtration
modes

• Product water has recovery
range of 90–100%.

• Longer lifetime compared to
other membranes

• Ceramic membranes are
superior in thermal,
mechanical, and chemical
stability

• Periodic cleaning required
for the membrane

• Irreversible fouling may
occur with large amount of
iron in the feed water.

• Recycling, disposal, or more
treatment of the generated
waste throughout cleaning
and back-wash processes is
needed.

Polymeric MF/UF membrane Applicable for the treatment of
PW with high concentration of
TDS and salinity.

– Coagulant agents used
for precoagulation:
aluminum sulfate,
polyaluminum chloride,
and ferric chloride.

– Agents for cleaning
process: acids, bases,
and surfactants.

– Pre-treatment: cartridge
filtration and coagulation.

– Post-treatment:
depending on the PW,
polishing may be
needed.

≥7 • Product water is completely
free of suspended solids.

• Product water has recovery
range of 85–100%.

• Periodic cleaning required
for the membrane

• Recycling, disposal, or more
treatment of the generated
waste throughout cleaning
and back-wash processes is
needed.

NF Not recommended to be
implemented alone for PW
treatment and can be used for
treating PW with 0.5–25 g/l of
TDS.

– Fouling prevention
occurs by caustic and
scale inhibitors.

– Agents for cleaning
process: NaOH, HCl,
H2O2, Na2SO4, and
Na4EDTA.

– Pre-treatment:
extensively required for
fouling inhibiting.

– Post-treatment: may
need remineralization in
order to restore sodium
adsorption ratio (SAR)
values.

3–7 • High pH is tolerable.
• Automatically operating

system
• Energy expenses may be

lowered by applying energy
recovery sub-systems.

• Solid waste disposal is not
required.

• Water recovery of 75–90%

• High sensitivity to organic
and inorganic components
in the feed water

• Membranes are not able to
tolerate feed temperatures
over 45 ◦C.

• Multiple back-washing
cycles are needed.

RO To be effective in PW treatment,
it is necessary to extensively
pre-treat the PW feed. Notably,
multiple pilot studies failed to
use it due to the poor
pre-treating process.

– Fouling prevention
occurs by caustic and
scale inhibitors.

– Agents for cleaning
process: NaOH, HCl,
H2O2, Na2SO4,
Na4EDTA, and H3PO4.

– Pre-treatment:
extensively required for
fouling inhibiting.

– Post-treatment: may
need pH stabilization or
remineralization in order
to restore SAR values.

3–7 • High pH is tolerable
• Automatically operating

system
• Energy expenses may be

lowered by applying energy
recovery sub-systems.

• Great performance for
treating PW that is properly
pre-treated

• High sensitivity to organic
and inorganic components
in the feed water

• Membranes are not able to
tolerate feed temperatures
over 45 ◦C.
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feed softening and is purposed to lower the fouling chances
during the membrane processes by adding calcium hydroxide
to the sample; large suspended solids can be removed by sand
filtration which counts as the second step; the third step targets
O&G to be removed and is based on ceramic membranes;
using RO technique with PA-TFC membrane is the last step
(Atoufi and Lampert, 2020). To boost the capabilities of hybrid
systems and reduce the cost and energy, it is crucial to consider
a right combination of pre-, main stage, and post-treatments
based on the treatment purpose (Ahmad et al., 2020). Hence,
thorough understanding is required to achieve the optimized
hybrid system for any case.

CONCLUSION AND FUTURE PROSPECT

Due to the environment and health concerns caused by PW
discharge and/or leakage, the oil and gas industry is attempting
to find better approaches to manage PW. Considering required
standards, recycled PW reuse can be partly a great solution to
reduce demand for freshwater. PW is being treated and reused in
oil and gas field operations such as drilling and EOR. As demand
for water increases globally, more governments have started to
show interest in PW reuse outside of the oil and gas industry
applications (Zolghadr, 2016; McLaughlin et al., 2020). Examples
are irrigation, livestock consumption, wildlife watering, and, as
an extreme example, drinking water. Regarding health concerns,
these ideas of PW reusage require very cautious and responsible
consideration of the potential advantages and downsides in a
case-by-case manner. What took place in Pennsylvania, where
water supplies were polluted by PW which was not properly
treated (Webb and Zodrow, 2020), emphasizes the need for
careful consideration how to handle PW treatment and reuse.
On other hand, this experience also suggests that increasing
restrictions on disposal can encourage reuse (Behl et al., 2018;
Webb and Zodrow, 2020). A successful example is reusing
the treated PW from fields with low concentration of TDS
(∼750 mg/L), located in Kern County, California (Gray, 2020).
This treated PW is used for irrigating by local districts after
it is blended with other fresh water supplies. Additionally, PW
reuse in drilling operations in the Permian Basin by the Apache
Corporation is another successful example of PW reusage in the

United States (US Energy Information Administration, 2016).
Notably, Apache Corporation has constructed six recycling
systems in the west of Texas since 2016 in order to treat around
90% of PW for drilling operations (Behl et al., 2018; Gray, 2020).

It is predicted that the average ratio of water to oil in the
process of oil extraction will be 12 to one by 2025 (Global Water
Intelligence, 2011; McCabe, 2020). This ratio is approximately
four times larger compared to the average ratios reported in the
last decade (Veil, 2011; Dickhout et al., 2017; Al-Ghouti et al.,
2019). Even in 2004, an average ratio of 9.5–1 has been reported
in the United States (Veil et al., 2004; Veil and Clark, 2011).
Moreover, the amount of generated PW increases as the oil well
ages. The PW volume could even reach 98% of extracted product
in fields that are about to being depleted (McCabe, 2020). As a
result, PW characterization, treatment, and reuse are expected
to attract more attention in the market, and more guidelines are
needed for this significant potential. As the largest contributor in
the PW generation worldwide, the United States has a great role
to investigate different potential reuse purposes and accordingly
different techniques for PW treatment.
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